NO115577B - - Google Patents

Download PDF

Info

Publication number
NO115577B
NO115577B NO16133666A NO16133666A NO115577B NO 115577 B NO115577 B NO 115577B NO 16133666 A NO16133666 A NO 16133666A NO 16133666 A NO16133666 A NO 16133666A NO 115577 B NO115577 B NO 115577B
Authority
NO
Norway
Prior art keywords
precipitation
solution
approx
aluminum
litres
Prior art date
Application number
NO16133666A
Other languages
Norwegian (no)
Inventor
A Ve
Original Assignee
Elektrokemisk As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elektrokemisk As filed Critical Elektrokemisk As
Priority to NO16133666A priority Critical patent/NO115577B/no
Priority to CH767A priority patent/CH476642A/en
Priority to YU4767A priority patent/YU31654B/en
Priority to DE19671592099 priority patent/DE1592099C/en
Priority to NL6700583A priority patent/NL6700583A/xx
Priority to GB298367A priority patent/GB1175085A/en
Priority to ES0335815A priority patent/ES335815A1/en
Priority to BE692995D priority patent/BE692995A/xx
Priority to FR92002A priority patent/FR1508758A/en
Publication of NO115577B publication Critical patent/NO115577B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/50Fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Glass Compositions (AREA)
  • Secondary Cells (AREA)

Description

Fremgangsmåte for fremstilling av aluminiumfluorid. Process for the production of aluminum fluoride.

A1F3fremstilles vanligvis ved felling av AIF3• 3H20 fra en overmettet oppløsning av A1F3, hvorpå det utfelte hydrat tørkes og kalsi-neres. Den overmettede oppløsning av A1F3fremstilles vanligvis ut fra aluminium-hydroksyd, bauxitt, aluminium-metall og lignende, som bringes til å reagere med fluorholdige råstoffer som HF, H2SiF6, HBF4etc. Fluorkonsentrasjonen i det fluorholdige råstoff er ved de kjente me-toder relativt høy og gjerne av størrelsesorden som tilsvarer ca. 15 % HF. Når en syre som inneholder 15 % HF utreagerer med Al(OH)3vil den resulterende oppløsning inneholde ca. 220 gr. AIF3pr. liter. A1F3 is usually prepared by precipitation of AIF3•3H20 from a supersaturated solution of A1F3, after which the precipitated hydrate is dried and calcined. The supersaturated solution of A1F3 is usually prepared from aluminum hydroxide, bauxite, aluminum metal and the like, which is reacted with fluorine-containing raw materials such as HF, H2SiF6, HBF4etc. The fluorine concentration in the fluorine-containing raw material is, with the known methods, relatively high and often of the order of magnitude corresponding to approx. 15% HF. When an acid containing 15% HF reacts with Al(OH)3, the resulting solution will contain approx. 220 gr. AIF3pr. litres.

Ved utfelling av aluminiumfluorid fra den By precipitation of aluminum fluoride from it

overmettede oppløsning kan der dannes produk-ter med varierende innhold av krystallvann. For å oppnå best mulig felling blir de fleste fellings-prosesser utført i temperaturområdet 75—100° C, supersaturated solutions can form products with varying contents of crystal water. In order to achieve the best possible precipitation, most precipitation processes are carried out in the temperature range 75-100° C,

og det er kj ent at utf ellingshastigheten kan økes ved tilsats av kim av A1F3 • 3H20. and it is known that the rate of precipitation can be increased by adding seeds of A1F3 • 3H20.

I det temperaturområdet (75—100° C) hvor fellingen vanligvis foregår er løsligheten av aluminiumfluorid ca. 10—15 gr. A1F3pr. liter. Det har imidlertid vist seg i praksis at utfellingsreaksjonen stopper eller får meget lav hastighet når man kommer ned i en konsentrasjon på ca. 20—30 gr. AIF3pr. liter. Dette vil si at når man anvender en utgangsoppløsning med ca. 200 gr. AIF3pr. liter kan oppnå opp til 90 % utfellings-grad. Ved utgangsoppløsninger med lavere fluorinnhold vil utfellingsgraden synke. Ved anvendelse av 5 % HF som fluorholdig råstoff kan det eksempelvis fremstilles overmettede oppløsnin-ger som inneholder ca. 70 gr. A1F3pr. liter. Ved felling av denne oppløsning ved 90° C under tilsats av kim av A1F3 • 3H20 ble det oppnådd en restkonsentrasjon på ca. 15 gr. A1F3pr. liter. Dette tilsvarer en utfelling på knapt 80 % av utgangsoppløsningens fluorinnhold. In the temperature range (75-100° C) where precipitation usually takes place, the solubility of aluminum fluoride is approx. 10-15 gr. A1F3pr. litres. However, it has been shown in practice that the precipitation reaction stops or becomes very slow when you get down to a concentration of approx. 20-30 gr. AIF3pr. litres. This means that when using an output resolution of approx. 200 gr. AIF3pr. liter can achieve up to 90% precipitation rate. In the case of starting solutions with a lower fluorine content, the degree of precipitation will decrease. By using 5% HF as a fluorine-containing raw material, supersaturated solutions containing approx. 70 gr. A1F3pr. litres. When this solution was precipitated at 90° C while adding seeds of A1F3 • 3H20, a residual concentration of approx. 15 gr. A1F3pr. litres. This corresponds to a precipitation of almost 80% of the initial solution's fluorine content.

Oppfinneren har nu funnet at man kan øke utfellingshastigheten og senke restkonsentrasjo-nen og dermed heve utbyttet ved å anvende kom-mersielt aluiminumoksyd A1203som kim for utfellingen av aluminiumfluorid, istedenfor kim av A1F3 • 3H20. Når kim-tilsatsen er tilstrekkelig stor vil utfellingsreaksjonen forløpe med tilfreds-stillende hastighet ved konsentrasjoner på ned til ca. i gr. AIF3pr. liter. Ved f. eks. å gå ut fra 5% HF, tilsvarende en overmettet oppløsning med ca. 70 gr. A1F3pr. liter, kan man på denne måten utvinne 99 % av fluorinnholdet. Prosessen kan utføres i ett trinn ved at Al203-kim tilsettes ved såvel hovedfellingen som ved restfellingen. Prosessen kan imidlertid også utføres i to trinn, idet det i første trinn tilsettes kim av A1F3• 3H20 på kjent vis, mens det i annet trinn anvendes kim av Al203. Bunnfallet fra første trinn kan filtre-res fra før fellingen i annet trinn, men man kan også sløyfe filtrering og la oppløsningen med bunnfallet gå direkte til felling i annet trinn. The inventor has now found that it is possible to increase the precipitation rate and lower the residual concentration and thus raise the yield by using commercial aluminum oxide A1203 as seed for the precipitation of aluminum fluoride, instead of seed of A1F3 • 3H20. When the seed addition is sufficiently large, the precipitation reaction will proceed with satisfactory speed at concentrations of down to approx. in Gr. AIF3pr. litres. By e.g. starting from 5% HF, corresponding to a supersaturated solution with approx. 70 gr. A1F3pr. litres, 99% of the fluorine content can be recovered in this way. The process can be carried out in one step by adding Al2O3 seeds during both the main precipitation and the residual precipitation. However, the process can also be carried out in two stages, in that in the first stage seeds of AlF3•3H2O are added in a known manner, while in the second stage seeds of Al2O3 are used. The sediment from the first stage can be filtered before precipitation in the second stage, but you can also skip the filtration and let the solution with the sediment go directly to precipitation in the second stage.

Metoden tillater anvendelse av råstoffer med lavt innhold av HF, og man kan således med fordel anvende den HF-oppløsning som frem-kommer ved at avgasser fra aluminiumelektrolyse-ovner vaskes med vann. Denne oppløsning som ofte kalles tårnsyre, inneholder ca. 3—5 % HF. Metoden gir dermed også mulighet for gjen-vinning av det fluor som finnes i avgassene fra aluminiumelektrolyse-ovner. The method allows the use of raw materials with a low content of HF, and one can thus advantageously use the HF solution that is produced by washing exhaust gases from aluminum electrolysis furnaces with water. This solution, which is often called tower acid, contains approx. 3-5% HF. The method thus also offers the possibility of recovering the fluorine found in the exhaust gases from aluminum electrolysis furnaces.

Man kan også anvende andre HF-holdige oppløsninger, f. eks. oppløsninger som stammer fra pyrohydrolytisk spaltning av kullstoffholdig avfallsmateriale fra aluminium-industrien. Metoden kan forøvrig anvendes i forbindelse med hvilkensomhelst lavkonsentrert oppløsning av HF for oppnåelse av bedre fellingsutbytte. You can also use other HF-containing solutions, e.g. solutions originating from the pyrohydrolytic decomposition of carbon-containing waste material from the aluminum industry. The method can also be used in connection with any low-concentration solution of HF to achieve a better precipitation yield.

Eksempel.Example.

1000 kg 5 % HF ble utreagért med Al(OH)3. 1000 kg of 5% HF was reacted with Al(OH)3.

Det ble herved dannet en oppløsning som inne-holdt 70 kg AIF3. Til denne oppløsning ble tilsatt 250 kg A12C>3. Reaksjonen gikk i fire timer under kraftig omrøring, og oppløsningens innhold av oppløst A1F3sank herved til ca. 1 kg. Ef ter filtrering, tørking og kalsinering fikk man 319 kg produkt som besto av 69 kg A1F3og 250 kg AI0O3. Produktet ble anvendte som råstoff for aluminiumelektrolyse-ovner. A solution containing 70 kg of AIF3 was thereby formed. 250 kg of A12C>3 was added to this solution. The reaction went on for four hours under vigorous stirring, and the solution's content of dissolved A1F3 thereby decreased to approx. 1 kg. After filtration, drying and calcination, 319 kg of product was obtained, consisting of 69 kg of A1F3 and 250 kg of AI0O3. The product was used as raw material for aluminum electrolysis furnaces.

Det utfelte aluminiumfluorid som altså inneholder en del aluminiumoksyd tørkes og kalsi-neres på kjent måte. Det kalsinerte produkt kan anvendes som råstoff for aluminiumelektrolyse-ovner. 1. Fremgangsmåte til fullstendig utfelling av aluminiumfluorid fra overmettede oppløsninger,karakterisert vedat der for utfelling tilsettes aluminiumoksyd i en mengde som er mi-nimum 3 ganger mengden av oppløst aluminiumfluorid. 2. Fremgangsmåte som i krav 1,karakterisert vedat utfellingen med aluminiumoksyd foretas etter en forutgående delvis utfelling ved hjelp av aluminiumfluorid-kim. The precipitated aluminum fluoride, which thus contains some aluminum oxide, is dried and calcined in a known manner. The calcined product can be used as raw material for aluminum electrolysis furnaces. 1. Method for the complete precipitation of aluminum fluoride from supersaturated solutions, characterized in that, for precipitation, aluminum oxide is added in an amount that is at least 3 times the amount of dissolved aluminum fluoride. 2. Method as in claim 1, characterized in that the precipitation with aluminum oxide is carried out after a previous partial precipitation using aluminum fluoride seeds.

NO16133666A 1966-01-20 1966-01-20 NO115577B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NO16133666A NO115577B (en) 1966-01-20 1966-01-20
CH767A CH476642A (en) 1966-01-20 1967-01-03 Process for the production of aluminum fluoride
YU4767A YU31654B (en) 1966-01-20 1967-01-12 Postupak za dobijanje aluminijum fluorida
DE19671592099 DE1592099C (en) 1966-01-20 1967-01-13 Process for the precipitation of aluminum fluond from its supersaturated solutions
NL6700583A NL6700583A (en) 1966-01-20 1967-01-13
GB298367A GB1175085A (en) 1966-01-20 1967-01-19 Improved Method of Producing Aluminium Fluoride
ES0335815A ES335815A1 (en) 1966-01-20 1967-01-19 A method for producing aluminum fluoride. (Machine-translation by Google Translate, not legally binding)
BE692995D BE692995A (en) 1966-01-20 1967-01-20
FR92002A FR1508758A (en) 1966-01-20 1967-01-20 Process for the production of aluminum fluoride, as well as products according to those obtained by the present process or similar process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO16133666A NO115577B (en) 1966-01-20 1966-01-20

Publications (1)

Publication Number Publication Date
NO115577B true NO115577B (en) 1968-10-28

Family

ID=19909416

Family Applications (1)

Application Number Title Priority Date Filing Date
NO16133666A NO115577B (en) 1966-01-20 1966-01-20

Country Status (8)

Country Link
BE (1) BE692995A (en)
CH (1) CH476642A (en)
ES (1) ES335815A1 (en)
FR (1) FR1508758A (en)
GB (1) GB1175085A (en)
NL (1) NL6700583A (en)
NO (1) NO115577B (en)
YU (1) YU31654B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321399B2 (en) * 1975-03-25 1978-07-03

Also Published As

Publication number Publication date
YU31654B (en) 1973-10-31
GB1175085A (en) 1969-12-23
DE1592099B2 (en) 1972-09-14
DE1592099A1 (en) 1970-05-27
BE692995A (en) 1967-07-03
NL6700583A (en) 1967-07-21
YU4767A (en) 1973-04-30
CH476642A (en) 1969-08-15
ES335815A1 (en) 1967-12-01
FR1508758A (en) 1968-01-05

Similar Documents

Publication Publication Date Title
US3311449A (en) Process of recovering valuable components from red mud
US2196077A (en) Method of producing sodium aluminum fluoride
SE7904257L (en) METHOD OF PRODUCING PURE ALUMINUM OXIDES BY ATTACKING CHLORINE WHEAT ON ALUMINUM-CONTAINING MINERALS AND REMOVING THE POLLUTIONS THROUGH SULFURIC ACID TREATMENT
US2961297A (en) Process for producing alumina of low soda content
NO147516B (en) PROCEDURE FOR THE EXPOSURE OF A PURE ALUMINUM CHLORIDE FROM SOLUTIONS CONTAINING ALUMINUM AND MAGNESIUM IONS
US1494029A (en) Process of separating the constituents of mineral silicates
NO115577B (en)
US3492086A (en) Method of producing supersaturated solutions of aluminum fluoride
US4105747A (en) Method for dehydrating metal chlorides
US2996355A (en) Process for the manufacture of sodium aluminum fluorides
US2592113A (en) Process for the manufacture of alkali aluminum fluoride
US2597302A (en) Process for utilization of the gas washing lye from aluminum electrolysis in cryolite production
US1966371A (en) Process for the preparation of pure beryllium compounds
NO161336B (en) SEALING RING FOR FITTING IN A TELESCOPIC COUMPER.
US1007495A (en) Process of making pure alumina.
GB836928A (en) Improvements in or relating to the manufacture of alkali metal aluminium fluorides
US1256605A (en) Treatment of aluminous compounds.
US1873727A (en) Double aluminum alkali fluoride compounds
US2939765A (en) Method for reducing the silica content of alumina containing materials of the bauxite type
US2504696A (en) Production of beryllium oxide
US3533924A (en) Method of producing aluminum fluoride
GB762635A (en) Process of producing cryolite from washing and waste liquors containing sodium fluoride
US1857844A (en) Process for production of aluminum oxide and other aluminum combinations
Redlich et al. Extraction of alumina from clay
GB999246A (en) Improvements in or relating to processes for recovery of fluorine values as cryolitefrom waste products from the electrolytic production of aluminium