NO115180B - - Google Patents

Download PDF

Info

Publication number
NO115180B
NO115180B NO14278462A NO14278462A NO115180B NO 115180 B NO115180 B NO 115180B NO 14278462 A NO14278462 A NO 14278462A NO 14278462 A NO14278462 A NO 14278462A NO 115180 B NO115180 B NO 115180B
Authority
NO
Norway
Prior art keywords
aluminum
aluminum silicate
catalyst
conversion
cracking
Prior art date
Application number
NO14278462A
Other languages
Norwegian (no)
Inventor
E Rosinski
P Weisz
V Frilette
C Plank
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of NO115180B publication Critical patent/NO115180B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves

Description

Fremgangsmåte for omdannelse av hydrokarboner, Process for the conversion of hydrocarbons,

særlig for krakking av gassolje.especially for the cracking of gas oil.

Foreliggende oppfinnelse angår en fremgangsmåte for omdannelse av hydrokarboner, særlig for krakking av gassolje for å fremstille produkter som koker i bensinområdet, og hvor hydrokarbonene bringes i kontakt med en krystallinsk aluminiumsilikatkatalysator under krakkingsbetingelser egnet for omdannelsen. The present invention relates to a method for converting hydrocarbons, in particular for cracking gas oil to produce products that boil in the petrol range, and where the hydrocarbons are brought into contact with a crystalline aluminosilicate catalyst under cracking conditions suitable for the conversion.

Aluminiumsilikatkatalysatorer som er kjent Aluminum silicate catalysts which are known

under navnet zeolit, er behandlet med syre for å nøytralisere de baseutvekslende komponenter i zeoliten. Det er også blitt foreslått å anvende syre ved fremstillingen av kiselsyre, aluminium-oksydgelkatalysatorer. Ikke i noen av de tidligere fremsatte forslag er det imidlertid blitt an-tydet at en i det minste delvis krystallinsk, po-røs aluminiumsilikatkatalysator kunne inneholde en mengde av hydrogenioner, som ville øke aktiviteten av katalysatoren langt over aktiviteten av noen av de tidligere anvendte aluminiumsilikatkatalysatorer. under the name zeolite, is treated with acid to neutralize the base-exchange components in the zeolite. It has also been proposed to use acid in the production of silicic acid, aluminum oxide gel catalysts. However, not in any of the previously made proposals has it been suggested that an at least partially crystalline, porous aluminosilicate catalyst could contain an amount of hydrogen ions, which would increase the activity of the catalyst far above the activity of some of the previously used aluminosilicate catalysts .

Et betydelig antall stoffer er hittil foreslått som katalysatorer for omsetning av hydrokarboner til ett elier flere ønskede produkter. I den katalytiske krakking av flytende hydrokarboner, f. eks. hvor flytende hydrokarboner med høyere kokepunkter omsettes til hydrokarboner med lavere kokepunkter, særlig hydrokarboner som koker i motorbrenselområdet, er de katalysatorer som brukes i størst utstrekning, faste stoffer som oppviser sur karakter, hvorved hydrokarboner blir krakket. Skjønt sure katalysatorer av denne type besitter en eller flere ønskede egenskaper, har en mengde av disse katalysatorer mindre ønskede egenskaper, så som mangel på termisk stabilitet, hensiktsmessighet, mekanisk styrke osv., hvorved en lang rekke passende egenskaper ikke kan påberopes. Syntetiske kiselsyre-aluminiumoksyd-sammenset-ninger, så vidt vites, de mest populære katalysatorer som hittii er foreslått, gir begrensede utbytter av bensin for et gitt utbytte av koks, og lider dessuten av den mangel at de hurtig forringes og blir uvirksomme i nærvær av damp, særlig ved temperaturer over 540°C. Andre katalysatorer, som er brukt i mindre utstrekning, omfatter de stoffer av leirenatur, f. eks. bentonitt og montmorillonitt, som er blitt behandlet med syre for å få frem deres latente krakkings-egenskaper. Katalysatorer av denne generelle type er relativt billige, men bare middels aktive dg viser tilbakegang i aktivitet over perioder med mange konversjons- og regenerasjons-syk-ler. Noen syntetiske stoffer, f. eks. de som inneholder silika og magnesia, er mer aktive enn konvensjonelle kiselsyre-aluminiumoksyd-katalysatorer og gjennomgår normal elding, men er av begrenset nytte, bl. a. på grunn av den frem-stilte bensins lave oktantall. A considerable number of substances have so far been proposed as catalysts for the conversion of hydrocarbons into one or more desired products. In the catalytic cracking of liquid hydrocarbons, e.g. where liquid hydrocarbons with higher boiling points are converted to hydrocarbons with lower boiling points, in particular hydrocarbons that boil in the engine fuel range, the catalysts used to the greatest extent are solid substances that show an acidic character, whereby hydrocarbons are cracked. Although acid catalysts of this type possess one or more desirable properties, a number of these catalysts have less desirable properties, such as lack of thermal stability, suitability, mechanical strength, etc., whereby a wide range of suitable properties cannot be claimed. Synthetic silica-alumina compositions, so far as known, the most popular catalysts proposed so far, give limited yields of gasoline for a given yield of coke, and also suffer from the shortcoming of rapidly degrading and becoming inactive in the presence of steam, especially at temperatures above 540°C. Other catalysts, which have been used to a lesser extent, include substances of a clay nature, e.g. bentonite and montmorillonite, which have been treated with acid to bring out their latent cracking properties. Catalysts of this general type are relatively cheap, but only moderately active ones show a decline in activity over periods of many conversion and regeneration cycles. Some synthetic substances, e.g. those containing silica and magnesia are more active than conventional silica-alumina catalysts and undergo normal ageing, but are of limited use, e.g. a. due to the low octane number of the produced petrol.

Andre mangler ved hittil foreslåtte katalysatorer innbefatter ringe aktivitet, kjemisk stabilitet og produktfordeling når det gjelder å oppnå ønskede utbytter av nyttige produkter. Other shortcomings of hitherto proposed catalysts include poor activity, chemical stability and product distribution in achieving desired yields of useful products.

I henhold til det foran anførte går fremgangsmåten ifølge oppfinnelsen ut på omdannelse av hydrokarboner, særlig for krakking av gassolje for å fremstille produkter som koker i bensinområdet, og hvor hydrokarbonene bringes i kontakt med en krystallinsk aluminiumsilikatkatalysator under krakkingsbetingelser egnet for omdannelsen, og det karakteristiske ved fremgangsmåten er at krakkingen utføres under anvendelsen av et krystallinsk aluminiumsilikat som inneholder minst 0,5 ekvivalent hydrogenioner pr. gramatom aluminium ved ioneveks-ling på i og for seg kjent måte, som det eneste kation, bortsett fra den mulige tilstedeværelse av opp til 0,25 ekvivalent alkalimetallioner pr. gramotom aluminium som forurensning, og at aluminiumsilikatet er suspendert eller fordelt i en porøs grunnmasse. According to the foregoing, the method according to the invention involves the conversion of hydrocarbons, in particular for the cracking of gas oil to produce products that boil in the gasoline range, and where the hydrocarbons are brought into contact with a crystalline aluminum silicate catalyst under cracking conditions suitable for the conversion, and the characteristic of the method is that the cracking is carried out using a crystalline aluminum silicate which contains at least 0.5 equivalent hydrogen ions per gram atom of aluminum by ion exchange in a manner known per se, as the only cation, apart from the possible presence of up to 0.25 equivalent alkali metal ions per gramotomous aluminum as a contaminant, and that the aluminum silicate is suspended or distributed in a porous base mass.

De høyaktive hydrokarbonomsetningskata-lysatorer som kommer til anvendelse ved foreliggende fremgangsmåte, kan fremstilles ved behandling av et naturlig eller syntetisk aluminiumsilikat med et flytende medium som inneholder et hydrogenion eller et ion som kan omdannes til et hydrogenion, i en mengde som er tilstrekkelig til å gi produktet katalytiske egenskaper. Disse katalysatorer besitter et vidt spektrum i størrelsen av katalytisk aktivitet, kan brukes i ytterst små konsentrasjoner og be-virker at visse hydrokarbonomsetninger kan ut-føres under praktisk brukbare og kontrollerbare forhold ved temperaturer som er meget lavere enn de som hittil har vært brukt. The highly active hydrocarbon conversion catalysts used in the present process can be prepared by treating a natural or synthetic aluminosilicate with a liquid medium containing a hydrogen ion or an ion that can be converted into a hydrogen ion, in an amount sufficient to give the product's catalytic properties. These catalysts have a wide spectrum in terms of catalytic activity, can be used in extremely small concentrations and mean that certain hydrocarbon conversions can be carried out under practically usable and controllable conditions at temperatures that are much lower than those that have been used up to now.

De med disse katalysatorer oppnåelige re-aksjonshastigheter pr. volumenhet katalysator kan, når hydrokarbonoljer krakkes katalytisk til hydrokarbonprodukter med lavere molekyl-vekt, varierer til mange tusen ganger de hastig-heter som oppnåes med de beste, hittil kjente kiselsyreholdige katalysatorer. The reaction rates achievable with these catalysts per unit volume of catalyst can, when hydrocarbon oils are catalytically cracked into hydrocarbon products with a lower molecular weight, vary to many thousands of times the speeds achieved with the best silicic acid-containing catalysts known to date.

De ved fremgangsmåten ifølge oppfinnelsen anvendte, høyaktive katalysatorer er krystallinske aluminiumsilikatsammensetninger som har sterkt sur karakter som resultat av en behandling med et flytende medium inneholdende et hydrogenion eller et ion som kan omdannes til et hydrogenion. Uorganiske og organiske syrer representerer hydrogenionkilder, mens am-moniumforbindelser er representanter for kationer som kan omdannes til hydrogenioner. Det produkt som resulterer av behandlingen med det flytende medium, er et aktivert i det minste delvis krystallinsk aluminiumsilikat som i det vesentlige er fritt for metalliske kationer, og hvis kjernestruktur er blitt modifisert bare i den utstrekning at protoner er blitt kjemisorbert eller ionisk bundet til den. Det aktiverte aluminiumsilikat skal inneholde minst 0,5 ekvivalent, og fortrinnsvis mer enn 0,9 ekvivalent, av hydrogenioner pr. gramatom aluminium. Når unntas alkalimetallkationer, som kan være til stede som forurensninger i en mengde av mindre enn 0,25 ekvivalent pr. gramatom aluminium, er ingen metalliske kationer bundet til aluminiumsilikat. Når dette produkt med en partikkelstørrelse mindre enn 40 mikron, deretter dispergeres eller på annen måte blandes intimt med en porøs grunnmasse, har vi funnet at det er yttrst ak-tivt som katalysator f or hydrokarbonomsetning. The highly active catalysts used in the method according to the invention are crystalline aluminosilicate compositions which have a strongly acidic character as a result of treatment with a liquid medium containing a hydrogen ion or an ion that can be converted into a hydrogen ion. Inorganic and organic acids represent hydrogen ion sources, while ammonium compounds are representatives of cations that can be converted into hydrogen ions. The product resulting from the treatment with the liquid medium is an activated at least partially crystalline aluminosilicate which is essentially free of metallic cations and whose core structure has been modified only to the extent that protons have been chemisorbed or ionically bound to it . The activated aluminum silicate must contain at least 0.5 equivalent, and preferably more than 0.9 equivalent, of hydrogen ions per gram atom aluminum. When excluding alkali metal cations, which may be present as impurities in an amount of less than 0.25 equivalent per gram atom of aluminum, no metallic cations are bound to aluminum silicate. When this product with a particle size of less than 40 microns is then dispersed or otherwise mixed intimately with a porous matrix, we have found that it is extremely active as a catalyst for hydrocarbon conversion.

Ved fremstilling av den for fremgangsmåten anvendte katalysator bringes aluminiumsilikatet i kontakt med et ikke-vandig eller vandig flytende medium som omfatter en gass, et polart oppløsningsmiddel eller en vandig opp-løsning inneholdende det ønskede hydrogenion eller ammoniumion som kan omdannes til et hydrogenion. Vann er det foretrukkede medium, av økonomiske grunner og fordi det letter fremstillingen når det arbeides i stor skala, både ved kontinuerlig og diskontinuerlig behandling. Av samme grunn er organiske oppløsningsmidler mindre å foretrekke, men kan brukes når oppløs-ningsmiddelet tillater ionisering av syren eller ammoniumforbindelsen. Som typiske oppløs-ningsmidler kan nevnes: cykliske og acykliske etere, f. eks. dioksan, tetrahydrofuran, etyleter, dietyleter, diisopropyleter og lignende; ketoner som aceton og metyletylketon, estere som etyl-acetat, propylacetat, alkoholer som etanol, pro-panol, butanol etc. og forskjellige oppløsnings-midler som dimetylf ormamid og lignende. When producing the catalyst used for the method, the aluminum silicate is brought into contact with a non-aqueous or aqueous liquid medium comprising a gas, a polar solvent or an aqueous solution containing the desired hydrogen ion or ammonium ion which can be converted into a hydrogen ion. Water is the preferred medium, for economic reasons and because it facilitates production when working on a large scale, both in continuous and discontinuous processing. For the same reason, organic solvents are less preferable, but can be used when the solvent allows ionization of the acid or the ammonium compound. As typical solvents can be mentioned: cyclic and acyclic ethers, e.g. dioxane, tetrahydrofuran, ethyl ether, diethyl ether, diisopropyl ether and the like; ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, propyl acetate, alcohols such as ethanol, propanol, butanol etc. and various solvents such as dimethylformamide and the like.

Hydrogenionet eller ammoniumionet kan være tilstede i det flytende medium i en mengde som varierer innen vide grenser, avhengig av det flytende mediums pH-verdi. Hvor aluminiumsilikatmaterialet har et atomforhold silisium til aluminium større enn omtrent 2,5, kan det flytende medium inneholde hydrogenioner, ammoniumioner eller en blanding av dem, i en mengde ekvivalent til en pH-verdi fra mindre enn 1,0 opp til en pH-verdi på 12,0. Innen disse grenser ligger pH-verdiene for flytende medier inneholdende ammoniumioner, mellom 4,0 og 10,0, fortrinnsvis mellom 4,5 og 8,5. For flytende medier som inneholder hydrogenioner, ligger pH-verdiene fra mindre enn 1,0 og opp til omtrent 7,0 og fortrinnsvis i området fra mindre enn 0,1 og opp til 4,5. Hvor atomf orholdet i aluminiumsilikat er større enn omtrent 1,4 og mindre enn 2,5, ligger pH-verdien for de flytende media som inneholder et hydrogenion, mellom 3,8 og 7,0, og fortrinnsvis mellom 4,0 og 4,5. Hvor ammoniumioner anvendes, enten alene eller i kombinasjon med hydrogenioner, ligger pH-verdiene mellom 4,5 og 9,5, fortrinnsvis mellom 4,5 og 8,5. Når aluminiumsilikatmaterialet har et atomforhold silium til aluminium på mindre enn omtrent 3,0, er det foretrukkede medium et flytende medium som inneholder et ammoniumion. Avhengig av forholdet silisium til aluminium, varierer således pH-verdien innen temmelig store grenser. The hydrogen ion or the ammonium ion can be present in the liquid medium in an amount that varies within wide limits, depending on the liquid medium's pH value. Where the aluminosilicate material has a silicon to aluminum atomic ratio greater than about 2.5, the liquid medium may contain hydrogen ions, ammonium ions, or a mixture thereof, in an amount equivalent to a pH value of from less than 1.0 up to a pH value of of 12.0. Within these limits, the pH values for liquid media containing ammonium ions lie between 4.0 and 10.0, preferably between 4.5 and 8.5. For liquid media containing hydrogen ions, the pH values are from less than 1.0 and up to about 7.0 and preferably in the range from less than 0.1 and up to 4.5. Where the atomic ratio in aluminosilicate is greater than about 1.4 and less than 2.5, the pH of the liquid media containing a hydrogen ion is between 3.8 and 7.0, and preferably between 4.0 and 4, 5. Where ammonium ions are used, either alone or in combination with hydrogen ions, the pH values are between 4.5 and 9.5, preferably between 4.5 and 8.5. When the aluminosilicate material has a silicon to aluminum atomic ratio of less than about 3.0, the preferred medium is a liquid medium containing an ammonium ion. Depending on the ratio of silicon to aluminium, the pH thus varies within rather large limits.

Ved utførelsen av behandlingen med det flytende medium omfatter den anvendte fremgangsmåte for fremstilling av katalysatoren, å holde aluminiumsilikatet i kontakt med det ønskede flytende medium i så lang tid at metalliske kationer som opprinnelig var til stede i aluminiumsilikatet, faktisk er fjernet. Visse metalliske kationer vil hvis de er til stede i det omdannede aluminiumsilikatet, ha tendens til å undertrykke eller begrense de katalytiske egenskaper, hvis aktivitet som alminnelig regel av-tok med økende innhold av metallkation. Effek-tiv behandling med det flytende medium for å oppnå et omdannet aluminiumsilikat med gode katalytiske egenskaper vil naturligvis variere med varigheten av behandlingen og den temperatur ved hvilken den finner sted. Høyere temperaturer påskynner behandlingsfarten, mens varigheten av behandlingen varierer omvendt proporsjonalt med hydrogenion- eller ammoni-umionkonsentrasjonen i det flytende medium. I alminnelighet svinger de anvendte temperaturer fra under vanlig romtemperatur (24°C) opp til temperaturer under aluminiumsilikatets spaltningstemperatur. Etter behandlingen med det flytende medium blir det behandlede aluminiumsilikat vasket med vann, fortrinnsvis destillert vann, til det avløpende vaskevann har en pH-verdi som rent vaskevann, dvs. mellom 5 og 8. Aluminiumsilikatet blir så analysert på metall-ioninnhojd ved metoder som er kjent for fag-mannen. Analysen omfatter også analyse av av-løpsvaskevannet på anioner som måtte være opptatt i vaskevannet som resultat av behandlingen, såvel som bestemmelse av og korreksjon for anioner som kommer inn i det utstrømmende vaskevann fra oppløselige substanser eller spalt-ningsprodukter av uoppløselige substanser som ellers er til stede som forurensninger i alumium-silikatet. When carrying out the treatment with the liquid medium, the method used for producing the catalyst includes keeping the aluminum silicate in contact with the desired liquid medium for such a long time that metallic cations originally present in the aluminum silicate have actually been removed. Certain metallic cations, if they are present in the converted aluminum silicate, will tend to suppress or limit the catalytic properties, whose activity as a general rule decreased with increasing metal cation content. Effective treatment with the liquid medium to obtain a converted aluminum silicate with good catalytic properties will naturally vary with the duration of the treatment and the temperature at which it takes place. Higher temperatures accelerate the rate of treatment, while the duration of the treatment varies inversely proportional to the hydrogen ion or ammonium ion concentration in the liquid medium. In general, the temperatures used range from below normal room temperature (24°C) up to temperatures below the aluminum silicate's decomposition temperature. After the treatment with the liquid medium, the treated aluminum silicate is washed with water, preferably distilled water, until the effluent wash water has a pH value like pure wash water, i.e. between 5 and 8. The aluminum silicate is then analyzed for metal ion content by methods that are known to the specialist. The analysis also includes analysis of the waste wash water for anions that may be trapped in the wash water as a result of the treatment, as well as determination of and correction for anions that enter the flowing wash water from soluble substances or cleavage products of insoluble substances that are otherwise present present as impurities in the aluminum silicate.

Fremgangsmåten som anvendes for utførel-sen av væskebehandlingen av aluminiumsilikatet, kan gjennomføres diskontinuerlig eller kontinuerlig ved et trykk lik, under eller høyere enn 1 atmosfære. En oppløsning av hydrogenionet og/eller ammoniumionet, i form av smeltet materiale, damp, vandig eller ikke-vandig opp-løsning, kan føres langsomt gjennom et fast lag av aluminiumsilikatet. Om ønskes kan hydro-termisk behandling eller tilsvarende ikke-vandig behandling med polare oppløsningsmidler gjen-nomføres ved innføring av aluminiumsilikatet og det flytende medium i et lukket kar som hol-des under selvdannende trykk. På lignende måte kan behandlinger som medfører smelte- eller dampfasekontakt anvendes, forutsatt at syrens eller ammoniumforbindelsens smeltepunkt eller fordampningstemperatur er under aluminiumsilikatets spaltningstemperatur. The procedure used to carry out the liquid treatment of the aluminum silicate can be carried out discontinuously or continuously at a pressure equal to, below or higher than 1 atmosphere. A solution of the hydrogen ion and/or the ammonium ion, in the form of molten material, steam, aqueous or non-aqueous solution, can be passed slowly through a solid layer of the aluminum silicate. If desired, hydrothermal treatment or equivalent non-aqueous treatment with polar solvents can be carried out by introducing the aluminum silicate and the liquid medium into a closed vessel which is kept under self-generating pressure. In a similar way, treatments that involve melt or vapor phase contact can be used, provided that the acid or ammonium compound's melting point or evaporation temperature is below the aluminum silicate's decomposition temperature.

Forskjellige sure forbindelser kan brukes Various acidic compounds can be used

som kilde for hydrogenioner og omfatter både uorganiske og organiske syrer. as a source of hydrogen ions and includes both inorganic and organic acids.

Representative forbindelser er saltsyre, svovelsyre, salpetersyre og kullsyre, såvel som monokarboksyl-, dikårbdksyl- og polykarboksyl-syrer som av natur kan være alifatiske, aroma-tiske eller cykloalifatiske. En annen klasse forbindelser som kan anvendes, er uorganiske og organiske ammoniumsalter som ammoniumklo-rid, ammoniumhydroksyd, tetrametylammoni-umhydroksyd, trimetylammoniumhydroksyd o.l. Andre brukbare forbindelser inneholder nitro-genbaser, f. eks. salter av guanidin, pyridin, ki-nolin o.l. Representative compounds are hydrochloric acid, sulfuric acid, nitric acid and carbonic acid, as well as monocarboxylic, dicarboxylic and polycarboxylic acids which can be aliphatic, aromatic or cycloaliphatic in nature. Another class of compounds that can be used are inorganic and organic ammonium salts such as ammonium chloride, ammonium hydroxide, tetramethylammonium hydroxide, trimethylammonium hydroxide and the like. Other useful compounds contain nitrogenous bases, e.g. salts of guanidine, pyridine, quinoline, etc.

De aluminiumsilikater som behandles for å'danne de for utførelsen av fremgangsmåten anvendte katalysatorer omfatter en mengde forskjellige aluminiumsilikater, både naturlige og syntetiske, som har krystallinsk struktur. Disse aluminiumsilikater kan beskrives som et tre-dimensjonalt skjelett av Si04- og A104-tetraed-rer hvori tetraedrene er kryssforbundet ved de-ling av oksygenatomene, hvorved forholdet mellom det totale antall aluminium- og silisium-atomer og antallet oksygenatomer er 1 : 2. I hydrert form kan aluminiumsilikatene fremstil^les ved formelen The aluminosilicates which are treated to form the catalysts used for carrying out the method comprise a number of different aluminosilicates, both natural and synthetic, which have a crystalline structure. These aluminum silicates can be described as a three-dimensional skeleton of SiO4 and A104 tetrahedra in which the tetrahedra are cross-linked by sharing the oxygen atoms, whereby the ratio between the total number of aluminum and silicon atoms and the number of oxygen atoms is 1:2. In hydrated form, the aluminum silicates can be prepared by the formula

hvor M er et kation som utjevner tetraedrenes elektrovalens, n betyr kationets valens, w antall mol Si02og y mol H20. Kationet kan være hvil-ket som helst eller flere, av et antall metallioner, avhengig av om aluminiumsilikatet er synteti-sert eller forekommer naturlig. Typiske kationer er natrium, lithium, kalium, sølv, magnesium, kalsium, sink, barium, jern og mangan. Skjønt de relative mengder av uorganisk oksyd i sili-katene og deres ordning i rommet kan variere, hvorved bevirkes forskjellige egenskaper i aluminiumsilikatene, er de to hovedeiendommelig,-heter ved disse stoffer tilstedeværelsen i deres molekylære struktur av ,minst 0,5 ekvivalent av et ion med positiv valens pr. gramatom aluminium, og en evne til å unngå hydratisering uten at Si04- og A104-skjelettet blir vesentlig påvir-ket. I denne hensende er disse eiendommelig-heter vesentlige for oppnåelsen av katalysatorer med høy aktivitet for utførelse av fremgangsmåten ifølge oppfinnelsen. where M is a cation that balances the electrovalence of the tetrahedra, n means the valence of the cation, w the number of moles of SiO2 and y moles of H20. The cation can be any one or several of a number of metal ions, depending on whether the aluminum silicate is synthesized or occurs naturally. Typical cations are sodium, lithium, potassium, silver, magnesium, calcium, zinc, barium, iron and manganese. Although the relative amounts of inorganic oxide in the silicates and their arrangement in space can vary, thereby causing different properties in the aluminum silicates, the two main properties of these substances are the presence in their molecular structure of at least 0.5 equivalent of a ion with positive valence per gram atom aluminium, and an ability to avoid hydration without the SiO4 and AlO4 skeleton being significantly affected. In this respect, these characteristics are essential for the achievement of catalysts with high activity for carrying out the method according to the invention.

Representative eksempler på anvendbare, syntetiske krystallinske aluminiumsilikater gjenfinnes i følgende patentskrifter: Representative examples of usable synthetic crystalline aluminum silicates can be found in the following patent documents:

Blant de naturlige forekommende krystallinske aluminiumsilikater som kan brukes ifølge oppfinnelsen, er innbefattet levynitt, erionitt, faujasitt, analcitt, paulingitt, noselitt, ferrioritt, heulanditt, scolecitt, stilbitt, clinoptilolitt, har-motom, phillipsitt, brewsteritt, flakitt, datolitt, dachiarditt og aluminiumsilikater som kan an-skueliggjøres således: Among the naturally occurring crystalline aluminosilicates which can be used according to the invention are included levynite, erionite, faujasite, analcite, paulingite, noselite, ferriorite, heulandite, scolecite, stilbite, clinoptilolite, harmotom, phillipsite, brewsterite, flacite, datolite, dachiardite and aluminum silicates which can be visualized as follows:

Andre aluminiumsilikater som kan brukes, er kaustikkbehandlede leirer og konvensjonelle blandinger av kiselholdige geler med aluminiumoksyd. Other aluminosilicates that can be used are caustic treated clays and conventional mixtures of siliceous gels with alumina.

Av leirematerialene er montmorillonitt- og kaolinfamiliene representative typer som innbefatter subbentonittene, f. eks. bentonitt, og de kaoliner som i alminnelighet identifiseres som Dixie, McNamee-leire, Georgia- og Florida-leire, hvori den viktigste mineralske bestanddel er halloysitt, kaolinitt, dickitt, nakritt eller anau-xitt. Slike leirer kan brukes i rå tilstand som opprinnelig utvunnet, eller først underkastet kalsinering, sur behandling eller kjemisk omdannelse. I den hensikt å gjøre leirene egnet for bruk blir imidlertid ieirematerialet behandlet med natrium- eller kaliumhydroksyd, fortrinnsvis i blanding med kiselsyrekilder, f. eks. sand, kiseldioksydgel eller natriumsilikat, og kalsinert ved temperaturer i området fra 110 til 870°C. Etter kalsineringen blir det smeltede materiale knust, suspendert i vann og digerert i den resulterende alkalliske oppløsning. I løpet av dige-reringen blir stoffet med forskjellige grader av krystallinske egenskaper Utkrystallisert av opp-løsningen. Den faste substans blir skilt fra den alkaliske del og deretter vasket og tørket. Behandlingen kan gjennomføres ved å la blandinger innenfor følgende vektforhold reagere med hverandre: Of the clay materials, the montmorillonite and kaolin families are representative types which include the subbentonites, e.g. bentonite, and those kaolins commonly identified as Dixie, McNamee, Georgia, and Florida clays in which the principal mineral constituent is halloysite, kaolinite, dickite, nachrite, or anau-xite. Such clays can be used in their raw state as originally mined, or first subjected to calcination, acid treatment or chemical transformation. In order to make the clays suitable for use, however, the clay material is treated with sodium or potassium hydroxide, preferably in a mixture with silicic acid sources, e.g. sand, silica gel or sodium silicate, and calcined at temperatures in the range from 110 to 870°C. After the calcination, the molten material is crushed, suspended in water and digested in the resulting alkaline solution. During the digestion, the substance with different degrees of crystalline properties is crystallized from the solution. The solid substance is separated from the alkaline part and then washed and dried. The treatment can be carried out by allowing mixtures within the following weight ratios to react with each other:

Syntetiske kiselsyre-aluminiumoksyd-blandinger som kan brukes, er slike som fremstilles ved separat utfelling eller samtidig utfelling etter velkjente metoder. Foretrukne blandinger er de hvor alumihiumoksydinnholdet varierer fra omtrent 5—30 vektprosent og fortrinnsvis mellom 10 og 25 vektprosent. Synthetic silicic acid-alumina mixtures that can be used are those produced by separate precipitation or simultaneous precipitation according to well-known methods. Preferred mixtures are those in which the aluminum oxide content varies from approximately 5-30 percent by weight and preferably between 10 and 25 percent by weight.

Som tidligere bemerket er de aktive aluminiumsilikater i samsvar med oppfinnelsen ka- As previously noted, the active aluminum silicates in accordance with the invention can

rakterisert ved at de inneholder minst 0,5 ekvivalent av et ion med positiv valens pr. gramatom aluminium, bestemt ved baseutveksling med andre kationer ved hjelp av en anerkjent teknikk. Utgahgsmaterialer av aluminiumsilikat som ikke tilfredsstiller disse krav, kan imidlertid brukes forutsatt at de enten forbehåndles eller får de nødvendige egenskaper som resultat av en behandling med et flytende medium. Som eksempel på forbehandling kan nevnes at leire-materiåle som er bragt i kontakt med etsalkali— eller etsalkali-kiselsyre-blandinger, som ovenfor beskrevet, resulterer i dannelsen av i det minste delvis krystallinske aluminiumsilikater som inneholder i det minste 0,5 ekvivalent, i alminnelighet omtrent 1,0 ekvivalent, kation pr. gramatom aluminium. På lignende måte vil behandling av eri kiselsyre-aluminiumoksydf orbin-delse med et flytende medium som inneholder et ammoniumion som kan omdannes til et hydrogenion, f. eks. tetråmetylammoniumhyd-roksyd, også resultere i eh øking av kationkon-sentrasjonen pr. gramatom aluminium til ver-dier over 0,5 ekvivalent. characterized by the fact that they contain at least 0.5 equivalent of an ion with positive valence per gram atom of aluminium, determined by base exchange with other cations using a recognized technique. Aluminum silicate starting materials that do not satisfy these requirements can, however, be used provided that they are either pre-treated or acquire the required properties as a result of treatment with a liquid medium. As an example of pre-treatment, it can be mentioned that clay material which has been brought into contact with caustic alkali or caustic alkali-silicic acid mixtures, as described above, results in the formation of at least partially crystalline aluminum silicates containing at least 0.5 equivalent, in generality approximately 1.0 equivalent, cation per gram atom aluminum. In a similar way, treatment of eri silicic acid-alumina compound with a liquid medium containing an ammonium ion which can be converted into a hydrogen ion, e.g. tetramethylammonium hydroxide, also result in an increase in the cation concentration per gram atom aluminum to values above 0.5 equivalent.

De aluminiumsilikatkatalysatorer som eir fremstilt på den foran nevnte måte kan brukes som katalysator i og for seg eller som mellom-ledd ved fremstillingen av modifiserte kontakt-masser bestående av inerte og/eller katalytisk aktive stoffer som forøvrig tjener som basis, understøttelse, bærer, bindemiddel, matrix eller promotor for aluminiumsilikatet. Katalysatoren kan brukes i pulverisert, granulert eller støpt tilstand formet til kuler eller pellets av findelte partikler av størrelse 2 til 500 mesh. I tilfelle hvor katalysatoren er støpt, f. eks. ved ekstru-dering, kan aluminiumsilikatet ekstruderes før tørking, eller tørkes eller delvis tørkes og så ekstruderes. Katalysatorproduktet blir så fortrinnsvis forkalsinert i en inert atmosfære nær den påtenkte omsetningstemperatur, men kan også kalsineres først ved dens bruk i omset-ningsprosessen. I alminnelighet blir aluminiumsilikatet tørket mellem 65 og 320°C og deretter kalsinert i luft eller en atmosfære av nitrogen, hydrogen, helium, skorstensgass eller annen inert gass ved temperaturer fra omtrent 260 til 550°C, i tider fra 1 til 48 timer eller mer. The aluminosilicate catalysts that are produced in the above-mentioned manner can be used as a catalyst in and of themselves or as intermediates in the production of modified contact masses consisting of inert and/or catalytically active substances that otherwise serve as a base, support, carrier, binder , matrix or promoter for the aluminum silicate. The catalyst can be used in a powdered, granulated or cast state formed into balls or pellets of finely divided particles of size 2 to 500 mesh. In the case where the catalyst is cast, e.g. in the case of extrusion, the aluminum silicate can be extruded before drying, or dried or partially dried and then extruded. The catalyst product is then preferably calcined in an inert atmosphere close to the intended reaction temperature, but can also be calcined first when it is used in the reaction process. Generally, the aluminosilicate is dried between 65 and 320°C and then calcined in air or an atmosphere of nitrogen, hydrogen, helium, flue gas or other inert gas at temperatures from about 260 to 550°C, for times from 1 to 48 hours or more. .

En foretrukket utførelsesform av oppfinnelsen er bruken av de findelte aluminiumsili-katkatalysatorpartikler i en kiselsyreholdig gel-matrix, hvori katalysatoren er tilstede i slike, mengdeforhold at det resulterende produkt inneholder omtrent 2 til 95 vektprosent, fortrinnsvis omtrent 5 til 50 vektprosent, av aluminiumsilikatet i det endelige produkt. A preferred embodiment of the invention is the use of the finely divided aluminum silicate catalyst particles in a silicic acid-containing gel matrix, in which the catalyst is present in such quantities that the resulting product contains approximately 2 to 95 percent by weight, preferably approximately 5 to 50 percent by weight, of the aluminum silicate in the final product.

Blandingene bestående av aluminiumsilikat og kiselsyreholdig gel kan fremstilles ved forskjellige fremgangsmåter hvorved aluminiumsilikatet forbindes med kiselsyre når dette er i vannholdig form; f. eks. som hydrosol, hydrogel, vått gelatinert. bunnfall eller en blanding av disse. Således kan silikagel dannet ved hydro-lyse av en basisk oppløsning av alkalimetallsilikat med én syre, f. eks; saltsyre, svovelsyre etc, blandes direkte med findelt aluminiumsilikat som har en pårtikkelstørrelse mindre enn 40 mikron, fortrinnsvis mindre enn 2 til 7 mikron. Blandingen av de to komponenter kan utføres på hvilken som helst ønsket måte, f. eks. i en kulemølle eller andre typer knademøller. På lignende måte kan aluminiumsilikatet suspen-deres i en hydrosol fremkommet ved reaksjon mellom et alkalimetallsilikat og en syre eller et alkali-koaguleringsmiddel. Hydrosolen lar man så stivne til en hydrogel, som deretter tørkes og brytes i stykker av ønsket form eller spres gjennom et strålerør inn i et bad av olje eller et annet suspensjonsmedium som ikke er bland-bart med vann, for å få dannet sfæroidalt for-mede «perler» av katalysatoren. Den aluminiumsilikat-kiselsyreholdige gel som man således har fått, vaskes for oppløselige salter og blir deretter tørket og/eller kalsinert som ønsket. The mixtures consisting of aluminum silicate and silicic acid-containing gel can be prepared by various methods whereby the aluminum silicate is combined with silicic acid when this is in aqueous form; e.g. as hydrosol, hydrogel, wet gelatinized. sediment or a mixture of these. Thus, silica gel formed by hydrolysis of a basic solution of alkali metal silicate with one acid, e.g.; hydrochloric acid, sulfuric acid, etc., is mixed directly with finely divided aluminum silicate having a particle size of less than 40 microns, preferably less than 2 to 7 microns. The mixing of the two components can be carried out in any desired way, e.g. in a ball mill or other types of kneading mills. In a similar way, the aluminum silicate can be suspended in a hydrosol produced by reaction between an alkali metal silicate and an acid or an alkali coagulant. The hydrosol is then allowed to solidify into a hydrogel, which is then dried and broken into pieces of the desired shape or spread through a jet pipe into a bath of oil or another suspension medium that is not miscible with water, to form spheroidal also "beads" of the catalyst. The aluminosilicate-silicic acid-containing gel thus obtained is washed for soluble salts and is then dried and/or calcined as desired.

Den kiselsyreholdige gelmatrisen kan også bestå av en sammensatt gel inneholdende en fremherskende mengde kiselsyre med ett eller flere metaller eller metalloksyder utvalgt fra gruppe H, III, IV, V, VI, VII og VIII av det periodiske system. Et særlig fortrinn tillegges sammensatte geler av kiselsyre med metalloksyder fra gruppene IDA., UIB og IVA av det periodiske system, hvor metalloksydet er magnesia, aluminiumoksyd, zirkoniumoksyd, beryl-liumoksyd eller thoriumoksyd. Fremstillingen av sammensatte geler er vel kjent og inkluderer i alminnelighet enten separatpresipitasjons- eller kopresipitasjonsteknikk hvor et passende salt av metalloksyd blir tilsatt til et alkalimetallsilikat, og en syre eller base etter behov blir utsatt for å felle de tilsvarende oksyder. Kisel-syreinnholdet av den kiselsyreholdige gelmatrix som man har for øye, ligger i alminnelighet innen området 55 til 100 vektprosent, med me-talloksydinnholdet varierende fra 0 til 45 pro-sent. Mindre mengder av promotorer eller andre stoffer som kan være til stede i produktet, omfatter cerium, krom, kobolt, wolfram, uran, pla-tina, bly, sink, kalsium, magnesium, lithium, nikkel og deres forbindelser. The silicic acid-containing gel matrix can also consist of a composite gel containing a predominant amount of silicic acid with one or more metals or metal oxides selected from group H, III, IV, V, VI, VII and VIII of the periodic table. Compound gels of silicic acid with metal oxides from groups IDA., UIB and IVA of the periodic table are particularly preferred, where the metal oxide is magnesia, aluminum oxide, zirconium oxide, beryllium oxide or thorium oxide. The preparation of composite gels is well known and generally includes either separate precipitation or coprecipitation techniques where a suitable metal oxide salt is added to an alkali metal silicate, and an acid or base as needed is exposed to precipitate the corresponding oxides. The silicic acid content of the silicic acid-containing gel matrix that is in view is generally within the range of 55 to 100 percent by weight, with the metal oxide content varying from 0 to 45 percent. Smaller amounts of promoters or other substances that may be present in the product include cerium, chromium, cobalt, tungsten, uranium, platinum, lead, zinc, calcium, magnesium, lithium, nickel and their compounds.

Aluminiumsilikatkatalysatoren kan også bli opptatt i en alumihiumoksyd-gel-matrix fremstilt på konvensjonell måte ved å tilsette ammoniumhydroksyd, ammoniumkarbonat etc. til et salt av aluminium, f. eks. aluminiumklo-rid, aluminiumsulfat, aluminiumumnitrat etc, i slik mengde at det dannes aluminiumhydroksyd, som etter tørking omdannes til aluminiumoksyd. Aluminiumsilikatkatalysatoren kan blandes med det tørkede aluminiumoksyd,' eller den kan forbindes med aluminiumoksyd i form av et hydrosol, en hydrogel eller et vått gelatinøst bunnfall. The aluminum silicate catalyst can also be taken up in an aluminum oxide gel matrix prepared in a conventional manner by adding ammonium hydroxide, ammonium carbonate, etc. to a salt of aluminum, e.g. aluminum chloride, aluminum sulphate, aluminum nitrate, etc., in such a quantity that aluminum hydroxide is formed, which after drying is converted into aluminum oxide. The aluminosilicate catalyst may be mixed with the dried alumina, or it may be associated with alumina in the form of a hydrosol, a hydrogel or a wet gelatinous precipitate.

Det har videre vist seg at fremgangsmåten ifølge oppfinnelsen kan utføres med katalysatorer som har forbedret aktivitet og andre for-delaktige egenskaper ved omdannelse av hydrokarboner og som er oppnådd ved å utsette det behandlede aluminiumsilikatet for en moderat vanndampbehandling, som utføres ved forhøyet temperatur av 425—815°C og fortrinnvis 540— 705°C. Denne behandlingen kan utføres i en atmosfære med 100 % vanndamp eller i en atmosfære som består av vanndamp og en gass som er i det vesentlige inert likeoverfor aluminiumsilikatet. Vanndampbehandlingen tilveie-bringer en tydelig merkbar fordelaktig endring av aluminiumsilikatets egenskaper. It has also been shown that the method according to the invention can be carried out with catalysts which have improved activity and other beneficial properties when converting hydrocarbons and which are obtained by subjecting the treated aluminum silicate to a moderate steam treatment, which is carried out at an elevated temperature of 425- 815°C and preferably 540-705°C. This treatment can be carried out in an atmosphere with 100% water vapor or in an atmosphere consisting of water vapor and a gas which is essentially inert directly opposite the aluminum silicate. The water vapor treatment provides a clearly noticeable beneficial change in the properties of the aluminum silicate.

De høye katalytiske aktiviteter som oppnåes ved utførelse av fremgangsmåten ifølge oppfinnelsen, viser seg særlig ved krakning av en representativ hydrokarboncharge. I de etter-følgende eksempler refererer katalysator-aktiviteten seg til en måling av aluminiumsilikatets krakningsaktivitet for n-heksan. Ved denne prø-ve overførtes n-heksanomdannelsen til forholds-konstanter pr. volumenhet og sammenlignes med aktiviteten av en 42 AJ. kiselsyre-aluminiumoksyd-katalysator som er normalisert til en referansaktivitet av 1,0 ved 538°C. Aluminiumsilikatets katalysatoraktivitet uttrykkes deretter som multipler av denne aktivitet, dvs. i forhold til kiselsyre-aluminiumoksyd-standar-den. Den av kiselsyre og aluminiumoksyd bestående referenskatalysator inneholdt omtrent 10 vektprosent A1203og resten Si02. Fremgangsmåten for å bestemme aktivitetsindeksen (A.I.) er beskrevet i «National Petroleum News», 36, side P.R. 537 av 2. august 1944. The high catalytic activities that are achieved by carrying out the method according to the invention are particularly evident in the cracking of a representative hydrocarbon charge. In the following examples, the catalyst activity refers to a measurement of the aluminosilicate's cracking activity for n-hexane. In this test, the n-hexane conversion was transferred to ratio constants per volume unit and is compared to the activity of a 42 AJ. silica-alumina catalyst normalized to a reference activity of 1.0 at 538°C. The catalyst activity of the aluminum silicate is then expressed as multiples of this activity, i.e. in relation to the silica-alumina standard. The reference catalyst consisting of silicic acid and aluminum oxide contained approximately 10% by weight Al 2 O 3 and the rest SiO 2 . The procedure for determining the activity index (A.I.) is described in "National Petroleum News", 36, page P.R. 537 of 2 August 1944.

Katalysatorens krakkingsaktivitet kan videre illustreres ved dens evne til å katalysere omvandlingen av en Mid-Continent Gas Oil som koker i området 220°C til 500°C, til bensin med et sluttkokepunkt på 210°C. Damper av gass-oljen som passerer gjennom katalysatoren ved temperaturer på 470 eller 480°C, omtrent atmo-sfærisk trykk og en matehastighet på 1,5 til 16,0 volum flytende olje pr. volum katalysator pr. time i 10 minutter. Måten å måle den øye-blikkelige katalysatorvirkning besto i å sam-menligne de forskjellige produktutbytter som ble oppnådd med katalysatoren, med utbytter av de samme produkter oppnådd ved konvensjonelle kiselsyre-aluminiumoksydkatalysator av kuletypen ved samme omvandlingsnivå. Kiselsyre-aluminiumoksyd-katalysatoren inneholdt omtrent 10 vektprosent A1203og 90 vektprosent Si02. I noen tilfelle inneholdt den også spor av Cr203, dvs. omtrent 0,15 vektprosent. For-skjellene (A -verdiene) som er vist i det føl-gende, representerer utbyttene som oppnåes ved fremgangsmåten ifølge oppfinnelsen, minus de utbytter som oppnåes ved den konvensjonelle katalysator. I noen tilfelle ble katalysatorene etter oppfinnelsen forkalsinert ved 540°C før deres egenskaper ble bedømt. The catalyst's cracking activity can be further illustrated by its ability to catalyze the conversion of a Mid-Continent Gas Oil boiling in the range of 220°C to 500°C to gasoline with a final boiling point of 210°C. Vapors of the gas oil passing through the catalyst at temperatures of 470 or 480°C, approximately atmospheric pressure and a feed rate of 1.5 to 16.0 volumes of liquid oil per volume of catalyst per hour for 10 minutes. The way to measure the instantaneous catalyst action was to compare the different product yields obtained with the catalyst with yields of the same products obtained with conventional silica-alumina ball-type catalysts at the same conversion level. The silica-alumina catalyst contained approximately 10 weight percent Al 2 O 3 and 90 weight percent SiO 2 . In some cases it also contained traces of Cr 2 O 3 , i.e. about 0.15 percent by weight. The differences (A values) shown in the following represent the yields obtained by the method according to the invention, minus the yields obtained with the conventional catalyst. In some cases, the catalysts of the invention were calcined at 540°C before their properties were assessed.

Følgende eksempler tjener til å belyse de for tiden kjente beste måter å utføre fremgangsmåten ifølge oppfinnelsen. The following examples serve to illustrate the currently known best ways of carrying out the method according to the invention.

EKSEMPEL 1.EXAMPLE 1.

Mordenitt, et naturlig forekommende aluminiumsilikat, ble malt til en partikkelstørrelse på omtrent 5 mikron. 10 ml av dette materiale ble underkastet to 15 minutters behandlinger med 125 ml 0,1 N saltsyre og en 15 minutters behandling med 100 ml 1,2 N saltsyre. Aluminiumsilikatet ble vasket, fikk stå natten over og ble så vasket igjen med 100 ml 1,2 N saltsyre. Etter filtrering, vasking med vann til nøytral reaksjon og tørking natten over fikk man en katalysator som hadde en relativ krakningsaktivitet for normal heksan på 2500. Mordenite, a naturally occurring aluminum silicate, was ground to a particle size of approximately 5 microns. 10 ml of this material was subjected to two 15 minute treatments with 125 ml of 0.1 N hydrochloric acid and one 15 minute treatment with 100 ml of 1.2 N hydrochloric acid. The aluminum silicate was washed, allowed to stand overnight and then washed again with 100 ml of 1.2 N hydrochloric acid. After filtration, washing with water to a neutral reaction and drying overnight, a catalyst was obtained which had a relative cracking activity for normal hexane of 2500.

EKSEMPEL 2. EXAMPLE 2.

Zeolitt «T», et krystallinsk aluminiumsilikat, som har en porestørrelse på 5 Ångstrom og et forhold silisium og aluminium av 7 : 1 og som er beskrevet i US-patent 2 950 952, ble behandlet med en vandig oppløsning av saltsyre så lenge at avløpet praktisk talt ikke inneholder metalliske kationer. Den resulterende katalysator ga en begynnelses n-heksan-omsetning på 26 % ved 355°C og 5 sekunders kontakttid, mens ubehandlet zeolitt «T» ved temperaturer så høye som 500°C ga praktisk talt ingen omsetning av n-heksan. Zeolite "T", a crystalline aluminum silicate, which has a pore size of 5 Angstroms and a silicon to aluminum ratio of 7:1 and which is described in US Patent 2,950,952, was treated with an aqueous solution of hydrochloric acid until the effluent practically does not contain metallic cations. The resulting catalyst gave an initial n-hexane conversion of 26% at 355°C and 5 second contact time, while untreated zeolite "T" at temperatures as high as 500°C gave virtually no conversion of n-hexane.

EKSEMPEL 3. EXAMPLE 3.

Den i eksempel 1 angitte katalysator ble anvendt ved disproporsjonering av toluen (i henhold til reaksjonsformelen 2MePh — Me2Ph + pH); toluenet ble fortynnet med helium til partialtrykket 150 mm Hg og ble deretter ført over katalysatoren ved temperaturen 300°C. Følgende omdannelsesforhold ble oppnådd: The catalyst specified in example 1 was used in the disproportionation of toluene (according to the reaction formula 2MePh — Me2Ph + pH); the toluene was diluted with helium to a partial pressure of 150 mm Hg and was then passed over the catalyst at a temperature of 300°C. The following conversion ratios were obtained:

Omvandlingen (vektforholdet mellom i re-aksjonen inngått råmateriale og totalt tilført råmateriale) var således høy og produktgassene bestod nesten helt av benzen og xylener. Når toluen ved samme forhold ble ført over amorft kiselsyrealuminiumoksyd, var omvandlingen nesten ikke eksisterende og selv ved en så høy temperatur som 546°C var omvandlingen bare 2%. The conversion (the weight ratio between raw material included in the reaction and total raw material supplied) was thus high and the product gases consisted almost entirely of benzene and xylenes. When toluene at the same ratio was passed over amorphous silica alumina, the conversion was almost non-existent and even at a temperature as high as 546°C the conversion was only 2%.

Claims (1)

Fremgangsmåte for omdannelse av hydrokarboner, særlig for krakking av gassolje for å fremstille produkter som koker i bensinområdet, og hvor hydrokarbonene bringes i kontakt med en krystallinsk aluminiumsilikatkatalysator under krakkingsbetingelser egnet for omdannelsen, karakterisert ved at krakkingen utføres under anvendelsen av et krystallinsk aluminiumsilikat som inneholder minst 0,5 ekvivalent hydrogenioner pr. gramatom aluminium innført ved ionveksling på i og for seg kjent måte, som det eneste kation, bortsett fra den mulige tilstedeværelse av opp til 0,25 ekvivalent alkalimetallioner pr. gramatom aluminium som forurensning, og at aluminiumsilikatet er suspendert eller fordelt i en porøs grunnmasse.Process for the conversion of hydrocarbons, in particular for the cracking of gas oil to produce products boiling in the petrol range, and where the hydrocarbons are brought into contact with a crystalline aluminosilicate catalyst under cracking conditions suitable for the conversion, characterized in that the cracking is carried out using a crystalline aluminosilicate containing at least 0.5 equivalent hydrogen ions per gram atom aluminum introduced by ion exchange in a manner known per se, as the only cation, apart from the possible presence of up to 0.25 equivalent alkali metal ions per gram atom aluminum as a contaminant, and that the aluminum silicate is suspended or distributed in a porous base mass.
NO14278462A 1961-12-21 1962-01-08 NO115180B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16123961A 1961-12-21 1961-12-21

Publications (1)

Publication Number Publication Date
NO115180B true NO115180B (en) 1968-08-19

Family

ID=22580407

Family Applications (1)

Application Number Title Priority Date Filing Date
NO14278462A NO115180B (en) 1961-12-21 1962-01-08

Country Status (8)

Country Link
JP (1) JPS5138321B1 (en)
AT (1) AT256296B (en)
BE (1) BE612552A (en)
DE (1) DE1442833A1 (en)
ES (1) ES273559A1 (en)
GB (1) GB998262A (en)
NL (1) NL273444A (en)
NO (1) NO115180B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143825U (en) * 1976-04-27 1977-10-31
DE2805546A1 (en) * 1978-02-10 1979-08-16 Kali Chemie Ag PROCESS FOR THE PRODUCTION OF GRANULATES CONTAINING MOLECULAR SCREEN OF GOOD MECHANICAL STRENGTH
JPS56135013U (en) * 1981-02-16 1981-10-13
GB2159168B (en) * 1984-05-25 1989-05-10 Gulf Research Development Co Process for cracking high metals content feedstocks using a cracking catalyst mixture containing antimony and/or tin
CN112236230B (en) * 2018-05-14 2024-03-19 优美科股份公司及两合公司 Stabilized small pore zeolite

Also Published As

Publication number Publication date
DE1442833A1 (en) 1969-05-14
JPS5138321B1 (en) 1976-10-21
AT256296B (en) 1967-08-10
BE612552A (en)
ES273559A1 (en) 1962-07-01
GB998262A (en) 1965-07-14
NL273444A (en)

Similar Documents

Publication Publication Date Title
US4021502A (en) Converting low molecular weight olefins over zeolites
US3972983A (en) Crystalline zeolite ZSM-20 and method of preparing same
US3140252A (en) Hydrocarbon conversion with crystalline acid-metal aluminosilicates
US3923641A (en) Hydrocracking naphthas using zeolite beta
US4467133A (en) Conversion of alcohols and ethers to distillate range hydrocarbons
US4357265A (en) Catalytic cracking catalyst
CA1272471A (en) Highly active and highly selective aromatization catalyst
AU610674B2 (en) Method for suppressing hydrogenolysis of noble metal/low acidity zeolites
NL8501731A (en) SYNTHESIS AND USE OF PRE-MOLDED ZEOLITES.
NO115115B (en)
US3264208A (en) Catalytic hydrocarbon conversion with the use of a crystalline zeolite containing manganese ions
US3669903A (en) Catalytic cracking process
US3247099A (en) Catalytic reforming
GB2085861A (en) Thermally-stabilised/aluminium- exchanged type Y zeolite
Bajpai et al. Synthesis of mordenite type zeolites
US4430516A (en) Conversion of olefins to low pour point distillates and lubes
NO115180B (en)
JPS5953213B2 (en) Process for producing ZSM↓-5 type zeolite in the absence of alkali metals
JP5071175B2 (en) Ethylene production method
NO142784B (en) COMPOUND FOR THE PREPARATION OF N-SUBSTITUTED PROSTAGLANDIN CARBOXAMIDES
US3533939A (en) Reforming with a crystalline aluminosilicate free of hydrogenation activity
Velichkina et al. Physicochemical and catalytic properties of iron-and indium-containing zeolites
US3475345A (en) Catalyst for paraffin isomerization
US2972643A (en) Preparation of aromatics from aliphatic olefinic hydrocarbons containing from 2 to 7 carbon atoms per molecule
JPH04211023A (en) Method for isomerization of positive paraffin in presence of at least one catalyst based on specific omegazeolite