NL9000879A - Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load - Google Patents

Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load Download PDF

Info

Publication number
NL9000879A
NL9000879A NL9000879A NL9000879A NL9000879A NL 9000879 A NL9000879 A NL 9000879A NL 9000879 A NL9000879 A NL 9000879A NL 9000879 A NL9000879 A NL 9000879A NL 9000879 A NL9000879 A NL 9000879A
Authority
NL
Netherlands
Prior art keywords
sulphide
sludge
reactor
load
oxidising
Prior art date
Application number
NL9000879A
Other languages
Dutch (nl)
Original Assignee
Pacques Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacques Bv filed Critical Pacques Bv
Priority to NL9000879A priority Critical patent/NL9000879A/en
Priority to EP91907891A priority patent/EP0477338B1/en
Priority to DK91907891T priority patent/DK0477338T3/en
Priority to AU76837/91A priority patent/AU639561B2/en
Priority to BR9105710A priority patent/BR9105710A/en
Priority to CA 2057861 priority patent/CA2057861C/en
Priority to HU913895A priority patent/HU213847B/en
Priority to ES91907891T priority patent/ES2056647T3/en
Priority to DE69102848T priority patent/DE69102848T2/en
Priority to PCT/NL1991/000059 priority patent/WO1991016269A1/en
Priority to PL91307639A priority patent/PL169170B1/en
Priority to US07/775,991 priority patent/US5366633A/en
Priority to SU915010587A priority patent/RU2079450C1/en
Priority to AT91907891T priority patent/ATE108422T1/en
Priority to PL91293028A priority patent/PL168378B1/en
Priority to PL91307638A priority patent/PL169127B1/en
Priority to JP3507727A priority patent/JP2603392B2/en
Priority to KR1019910701830A priority patent/KR100196556B1/en
Priority to RO148928A priority patent/RO108674B1/en
Priority to YU66891A priority patent/YU66891A/en
Priority to CS911039A priority patent/CZ284751B6/en
Priority to SI9110668A priority patent/SI9110668B/en
Priority to SK1039-91A priority patent/SK280745B6/en
Priority to TW80102900A priority patent/TW239111B/zh
Publication of NL9000879A publication Critical patent/NL9000879A/en
Priority to FI915681A priority patent/FI101290B/en
Priority to NO914804A priority patent/NO302942B1/en
Priority to BG95615A priority patent/BG61072B1/en
Priority to LVP-93-710A priority patent/LV11024B/en
Priority to BY1319A priority patent/BY2005C1/xx
Priority to US08/166,840 priority patent/US5449460A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/06Preparation of sulfur; Purification from non-gaseous sulfides or materials containing such sulfides, e.g. ores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

Water contg. sulphides is purified by oxidising in a reactor using sludge contg. aerobic bacteria. The sludge load (w.r.t. the sulphide oxidising part of the sludge) is at least 10 mg sulphide per Mg N in the sludge per hr.. Pref. the sludge load is at least 20 mg (at least 35 mg) sulphide per mg N. The sludge is in the form of biofilms bound to a carrier. The O2 concn. in the reactor is 0.1-9.0 (4) mg/l. The sulphide concn. in the effluent is kept at 0.5-30 mg/l. The sulphide surface load is at least 10 g/sq. m. The sulphide load is at least 50 (at least 100) mg S/l.h. In a two-stage process sulphide is (partially) oxidised to S and then, in a second reactor S and remaining sulphide oxidised to sulphate. The first oxidn. pref. uses a sulphide load of at least 26 mg S/l.h. (at least 50) (100-1000) mg S/l.h. S cpds. may first be anaerobically reduced to sulphide. The S cpds. are esp. sulphates, sulphites or thiosulphate. Purified water may be recycled to keep the S content below 800 (below 350) mg/l during anaerobic treatment.

Description

Werkwijze voor de zuivering van sulfidehoudend afvalwater.Method for the purification of waste water containing sulphide.

De uitvinding heeft betrekking op een werkwijze voor de zuivering van sulfidehoudend en eventueel organische stof bevattend afvalwater, waarbij in een reactor het sulfide met behulp van aerobe bacteriën bevattend slib (biomassa) wordt geoxydeerd tot elementaire zwavel.The invention relates to a process for the purification of waste water containing sulphide and optionally organic material, wherein the sulphide is oxidized in a reactor with sludge (biomass) containing aerobic bacteria, to elemental sulfur.

Een dergelijke werkwijze is bekend uit de Nederlandse octrooiaanvrage 88.Ol.OO9. Daarbij wordt aangegeven, dat de vorming van zwavel gestimuleerd kan door een lagere zuurstoftoevoer toe te passen dan stoichiometrisch nodig zal zijn voor sulfaatvorming. Gebleken is echter, dat volgens deze bekende werkwijze weliswaar een aanzienlijke vorming van zwavel optreedt, maar dat deze nog verbeterd zou kunnen worden.Such a method is known from the Dutch patent application 88.10.10. It is also stated that the formation of sulfur can be stimulated by applying a lower oxygen supply than will be required stoichiometrically for sulfate formation. It has been found, however, that while this known process does produce a considerable amount of sulfur, it could still be improved.

De aanwezigheid van zwavelverbindingen zoals sulfide in afvalwater heeft vele nadelige gevolgen, zoals: - corrosieverwerking op beton en staal, - hoge zuurstof vraag (COD), waardoor na lozing van het afvalwater in het ontvangende water zuurstofgebrek ontstaat, met als gevolg verontreiniging van het milieu en/of hoge milieuheffingen, - vergiftigende werking op mens en dier, - ernstige stankvorming.The presence of sulfur compounds such as sulfide in wastewater has many adverse consequences, such as: - corrosion processing on concrete and steel, - high oxygen demand (COD), which results in oxygen deficiency after discharge of the wastewater into the receiving water, resulting in pollution of the environment and / or high environmental taxes, - poisoning to humans and animals, - serious odors.

Hoewel sulfide uit afvalwater kan worden verwijderd door chemische oxydatie, strippen en precipitatie, vinden biologische zuiveringsmetho-den thans opgang. Zo kan de biologische sulfideverwijdering plaatsvinden met behulp van fototrofe zwavelbateriën (ook met zwavelvorming) en met behulp van denitrificerende bacteriën. Ook met zuurstofverbruikende bacteriën in actief slib kan men sulfide omzetten in sulfaat (vergelijk bovengenoemde Nederlandse octrooiaanvrage). Zwavelvorming met behulp van zuurstof verbruikende bacteriën heeft voordelen boven de toepassing van fototrofe bacteriën omdat de aerobe omzetting veel sneller gaat dan de anaerobe (fototrofe) omzetting en het inbrengen van licht in een troebele zwavelreactor niet eenvoudig is, terwijl in een aerobe reactor zuurstof zonder problemen op eenvoudige wijze kan worden toegevoerd. In het geval van denitrificerende bacteriën is nitraat nodig.Although sulfide can be removed from wastewater by chemical oxidation, stripping and precipitation, biological purification methods are now emerging. For example, the biological sulphide removal can take place with the help of phototrophic sulfur materials (also with sulfur formation) and with the help of denitrifying bacteria. Sulphide can also be converted into sulphate with oxygen-consuming bacteria in activated sludge (compare the above-mentioned Dutch patent application). Sulfurization using oxygen-consuming bacteria has advantages over the use of phototrophic bacteria because the aerobic conversion is much faster than the anaerobic (phototrophic) conversion and the introduction of light into a turbid sulfur reactor is not easy, while in an aerobic reactor oxygen is no problem can be supplied in a simple manner. In the case of denitrifying bacteria, nitrate is required.

De voordelen van de omzetting van sulfide in zwavel in plaats van sulfaat zijn onder andere: - veel minder zuurstof dus minder energie vereist, - het proces gaat veel sneller, - er wordt minder biologisch slib gevormd, - er wordt geen sulfaat of thiosulfaat meer geloosd, - er ontstaat de mogelijkheid tot hergebruik van de zwavel.The advantages of the conversion of sulfide into sulfur instead of sulfate include: - much less oxygen, so less energy required, - the process goes much faster, - less biological sludge is formed, - no more sulfate or thiosulfate is discharged , - the possibility of reusing the sulfur arises.

Gevonden werd nu dat de zwavelvorming gestimuleerd kan worden bij een werkwijze als in de aanhef genoemd, die is gekenmerkt, doordat men in de reactor een slibbelasting van ten minste 10 mg sulfide, bij voorkeur ten minste 35 mg sulfide per mg van de in het slib aanwezige stikstof per uur toepast, waarbij de slibbelasting betrokken is op het sulfide-oxiderende deel van de biomassa.It has now been found that the sulfur formation can be stimulated in a method as mentioned in the opening paragraph, characterized in that a sludge load of at least 10 mg of sulfide, preferably at least 35 mg of sulfide per mg of the sludge contained in the sludge, is introduced into the reactor. uses available nitrogen per hour, whereby the sludge load is related to the sulphide-oxidizing part of the biomass.

Gebleken is, dat bij de werkwijze volgens de uitvinding de zuurstof concent rat ie niet kritisch is. Deze kan dan ook binnen ruime grenzen variëren en zal bij voorkeur liggen in het gebied van 0,1-9.0 mg O2 per liter van het in de reactor aanwezige materiaal.It has been found that in the method according to the invention the oxygen concentration is not critical. It can therefore vary within wide limits and will preferably be in the range of 0.1-9.0 mg O2 per liter of the material present in the reactor.

De slibbelasting bij de werkwijze volgens de uitvinding is onverwacht hoog in vergelijking met bekende werkwijzen.The sludge load in the method according to the invention is unexpectedly high compared to known methods.

In tabel A wordt dit geïllustreerdThis is illustrated in Table A.

Tabel ATable A

Sulfide-slibbelasting Percentage zwavelvorming (mg S/mg-N.h) (%) 0-10 0 10-20 0-75 20 - 30 75 - 95 30 - 35 95 - 100 > 35 100Sulfide sludge load Percentage of sulfur formation (mg S / mg-N.h) (%) 0-10 0 10-20 0-75 20 - 30 75 - 95 30 - 35 95 - 100> 35 100

In tabel A is de hoeveelheid slib (biomassa) uitgedrukt in het stikstofgehalte, waaruit de bacteriën bestaan. Om hieruit het droge stofgehalte te bereken, moet dit getal met een factor 8,3 vermenigvuldigd worden. Uit tabel A blijkt duidelijk, dat het mogelijk is om alle sulfide in zwavel om te zetten door een slibbelasting boven 35 mg S/mg-N.h toe te passen.In table A the amount of sludge (biomass) is expressed in the nitrogen content of which the bacteria consist. To calculate the dry matter content, this number must be multiplied by a factor of 8.3. Table A clearly shows that it is possible to convert all sulfide to sulfur by applying a sludge load above 35 mg S / mg-N.h.

Bij de werkwijze volgens de uitvinding wordt bij voorkeur zodanig uitgevoerd, dat men in de reactor een biomassa toepast, die aanwezig is in de vorm van biofilms, die op een dragermateriaal gehecht zijn.The process according to the invention is preferably carried out in such a way that in the reactor a biomass is used, which is present in the form of biofilms, which are adhered to a carrier material.

De waarden genoemd bij Tabel A gelden alleen bij afvalwaterstromen die geen organische stof bevatten. In het geval dat er organische stof aanwezig is in het afvalwater, zal er ook een niet-sulfide-oxyderende biomassa gaan groeien, waardoor het stikstofgehalte van de totale biomassa relatief hoger wordt dan waarmee in Tabel A gerekend is. In het geval dat er organische stoffen in het afvalwater aanwezig zijn, zal gebruik gemaakt worden van de sulfide-oppervlaktebelasting (hierbij wordt het oppervlak van de biofilm bedoeld) als bepalende parameter voor het al of niet omzetten van sulfide in elementaire zwavel. Deze waarden zijn weergegeven in Tabel B.The values listed in Table A only apply to waste water flows that do not contain any organic matter. In the event that organic matter is present in the wastewater, a non-sulphide oxidizing biomass will also grow, so that the nitrogen content of the total biomass will be relatively higher than that calculated in Table A. In the event that organic substances are present in the wastewater, use will be made of the sulphide surface load (this refers to the surface of the biofilm) as a determining parameter for whether or not to convert sulphide into elemental sulfur. These values are shown in Table B.

Tabel BTable B

sulfide-oppervlaktebelasting Percentage zwavelvorming (g S/m2.dag) (%) 0-10 0-80 10 - 20 80 - 95 20 - 25 95 - 100 > 25 100sulfide surface load Percentage sulfur formation (g S / m2.day) (%) 0-10 0-80 10 - 20 80 - 95 20 - 25 95 - 100> 25 100

De werkwijze volgens de uitvinding wordt derhalve bij voorkeur uitgevoerd bij een sulfide-oppervlaktebelasting van tenminste 10 g S/m2.dag en bij voorkeur tussen de 20 en 25 g S/m2.dag. Wanneer er geen organische stof aanwezig is kunnen de getallen genoemd in Tabel A gebruikt worden.The method according to the invention is therefore preferably carried out at a sulfide surface load of at least 10 g S / m2.day and preferably between 20 and 25 g S / m2.day. When no organic matter is present, the numbers listed in Table A can be used.

Bij de werkwijze volgens de uitvinding blijkt, dat de pH in de reactor niet boven de 9.0 mag zijn. De ondergrens van de pH is niet kritisch, deze zal echter ver beneden 5 zijn, daar er sulfide-oxyderende bacteriën bekend zijn die groeien bij een pH van 0,5.In the process according to the invention it appears that the pH in the reactor may not be above 9.0. The lower limit of the pH is not critical, however it will be well below 5 as there are known sulfide oxidizing bacteria growing at a pH of 0.5.

Claims (4)

1. Werkwijze voor de zuivering van sulfidehoudend en eventueel organische stof bevattend afvalwater, waarbij in een reactor het sulfide met behulp van aerobe bacteriën bevattend slib (biomassa) wordt geoxy-deerd tot elementaire zwavel, met het kenmerk, dat men in de reactor een slibbelasting van ten minste 10 mg sulfide, bij voorkeur ten minste 35 mg sulfide per mg van de in het slib aanwezige stikstof per uur toepast, waarbij de slibbelasting betrokken is op het sulfide-oxyderende deel van de biomassa.A process for the purification of waste water containing sulphide and optionally organic material, in which the sulphide is oxidized in a reactor by means of sludge (biomass) containing aerobic bacteria, to elemental sulfur, characterized in that a sludge load is applied in the reactor of at least 10 mg of sulfide, preferably at least 35 mg of sulfide per mg of the nitrogen contained in the sludge per hour, the sludge load being related to the sulfide oxidizing portion of the biomass. 2. Werkwijze volgens conclusie 1, met het kenmerk, dat men in de reactor een biomassa toepast, die aanwezig is in de vorm van biofilms, die op een dragermateriaal gehecht zijn.2. Process according to claim 1, characterized in that a biomass which is present in the form of biofilms, which are adhered to a support material, is used in the reactor. 3· Werkwijze volgens conclusie 1 of 2, met het kenmerk, dat men de zuurstofconcentratie in de reactor instelt op een waarde in het gebied van 0,1-9,0 mg/1.Process according to claim 1 or 2, characterized in that the oxygen concentration in the reactor is adjusted to a value in the range of 0.1-9.0 mg / l. 4. Werkwijze volgens een of meer der voorgaande conclusies, met het kenmerk, dat men een sulfide-oppervlaktebelasting van ten minste 10 g/m^.dag toepast.4. Process according to one or more of the preceding claims, characterized in that a sulphide surface load of at least 10 g / m 2 / day is used.
NL9000879A 1990-04-12 1990-04-12 Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load NL9000879A (en)

Priority Applications (30)

Application Number Priority Date Filing Date Title
NL9000879A NL9000879A (en) 1990-04-12 1990-04-12 Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load
PL91307638A PL169127B1 (en) 1990-04-12 1991-04-11 Method of oxygen-free treating sewage of high sulphur compounds content
JP3507727A JP2603392B2 (en) 1990-04-12 1991-04-11 Treatment method for sulfur compound-containing water
DK91907891T DK0477338T3 (en) 1990-04-12 1991-04-11 Process for treating water containing sulfur compounds
BR9105710A BR9105710A (en) 1990-04-12 1991-04-11 PROCESSES FOR PURIFICATION OF WATER CONTAINING SULPHIDE, FOR THE AEROBIC TREATMENT OF SEWAGE WATER AND FOR THE REMOVAL OF HEAVY METAL IONS OF WATER
CA 2057861 CA2057861C (en) 1990-04-12 1991-04-11 Process for the treatment of water containing sulphur compounds
HU913895A HU213847B (en) 1990-04-12 1991-04-11 Processes for the treatment of water containing sulphur compounds
ES91907891T ES2056647T3 (en) 1990-04-12 1991-04-11 PROCEDURE FOR THE TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS.
DE69102848T DE69102848T2 (en) 1990-04-12 1991-04-11 METHOD FOR THE TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS.
PCT/NL1991/000059 WO1991016269A1 (en) 1990-04-12 1991-04-11 Process for the treatment of water containing sulphur compounds
PL91307639A PL169170B1 (en) 1990-04-12 1991-04-11 Method of removing heavy metal ions from water containing sulphur compounds
US07/775,991 US5366633A (en) 1990-04-12 1991-04-11 Process for the treatment of water containing sulphur compounds
SU915010587A RU2079450C1 (en) 1990-04-12 1991-04-11 Method of processing water containing sulfur compounds
AT91907891T ATE108422T1 (en) 1990-04-12 1991-04-11 PROCESSES FOR TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS.
PL91293028A PL168378B1 (en) 1990-04-12 1991-04-11 Method of purifying water containing sulfur compounds
EP91907891A EP0477338B1 (en) 1990-04-12 1991-04-11 Process for the treatment of water containing sulphur compounds
AU76837/91A AU639561B2 (en) 1990-04-12 1991-04-11 Process for the treatment of water containing sulphur compounds
KR1019910701830A KR100196556B1 (en) 1990-04-12 1991-04-11 Process for the treatment of water containing sulphur compounds
RO148928A RO108674B1 (en) 1990-04-12 1991-04-11 Waters treatment processes which contain sulphur compounds
YU66891A YU66891A (en) 1990-04-12 1991-04-12 PROCEDURE FOR TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS
CS911039A CZ284751B6 (en) 1990-04-12 1991-04-12 Process for treating waste water containing sulfides
SI9110668A SI9110668B (en) 1990-04-12 1991-04-12 Process for treatment of water containing sulphur compounds
SK1039-91A SK280745B6 (en) 1990-04-12 1991-04-12 Process for the treatment of wastewater containing sulphur compounds
TW80102900A TW239111B (en) 1990-04-12 1991-04-15
FI915681A FI101290B (en) 1990-04-12 1991-12-02 Process for treating water containing sulfur compounds
NO914804A NO302942B1 (en) 1990-04-12 1991-12-06 Process for treating water containing sulfur compounds
BG95615A BG61072B1 (en) 1990-04-12 1991-12-11 Method for the treatment of sulphur compound containing water
LVP-93-710A LV11024B (en) 1990-04-12 1993-06-28 Process for the treatment of water containing sulphur compounds
BY1319A BY2005C1 (en) 1990-04-12 1993-11-18
US08/166,840 US5449460A (en) 1990-04-12 1993-12-15 Process for the treatment of water containing sulphur compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL9000879 1990-04-12
NL9000879A NL9000879A (en) 1990-04-12 1990-04-12 Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load

Publications (1)

Publication Number Publication Date
NL9000879A true NL9000879A (en) 1991-11-01

Family

ID=19856927

Family Applications (1)

Application Number Title Priority Date Filing Date
NL9000879A NL9000879A (en) 1990-04-12 1990-04-12 Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load

Country Status (1)

Country Link
NL (1) NL9000879A (en)

Similar Documents

Publication Publication Date Title
FI101290B (en) Process for treating water containing sulfur compounds
JP2638721B2 (en) Biological deodorization method
NL9000879A (en) Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load
JP2799247B2 (en) How to remove sulfur compounds from water
Yavuz et al. Autotrophic removal of sulphide from industrial wastewaters using oxygen and nitrate as electron acceptors
JPH0425079B2 (en)
JP4865294B2 (en) Decomposition method of organic waste
JP4112549B2 (en) Organic waste treatment methods
Tsai et al. Biotoxicity of Coal Liquefaction Waste in the Activated Sludge Process
FR2712581A1 (en) Fixed bed process for wastewater treatment.
NL9000878A (en) Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load
DE4119144A1 (en) Biological, chemical and physical processing of contaminated water - involves pre-treatment with oxidising agents including hydrogen peroxide and catalysts
JP2603392B2 (en) Treatment method for sulfur compound-containing water
JP2509098B2 (en) Microorganisms for oxidizing or degrading reducing sulfur compounds and aromatic organic compounds having sulfone groups, method of breeding, and biological of wastewater containing reducing sulfur compounds and aromatic organic compounds having sulfone groups Processing method
JPH06106189A (en) Domestication and multiplication of sulfur oxidizing bacteria by addition of carbonate and biological treatment of waste water containing reducing sulfur compound
RU1787959C (en) Method of biological purification of sulfide containing sewage
LT3624B (en) Process for the treatment of water containing sulphur compounds
JP2000015291A (en) Method for treating flue gas desulfurization drainage
PL169170B1 (en) Method of removing heavy metal ions from water containing sulphur compounds
Buisman Process for the treatment of water containing sulphur compounds
NL8601262A (en) Microbiological purificn. of waste waters - using concomitant treatment with air in well-mixed reactor
NL8600026A (en) SIMULTANEOUS OXYDATION OF REDUCED S AND N COMPOUNDS.
NL9201268A (en) Method of removing sulphur compounds from water
JPH05269487A (en) Method for acclimating and propagating sulfur oxidizing bacteria and biological treatment of waste water containing reductive sulfur compound
UA66160A (en) A method for the purification of water from chrome (vi)

Legal Events

Date Code Title Description
A1B A search report has been drawn up
BV The patent application has lapsed