NL8403008A - PROCESS FOR PREPARING DIETHYLENE TRIAMINE. - Google Patents

PROCESS FOR PREPARING DIETHYLENE TRIAMINE. Download PDF

Info

Publication number
NL8403008A
NL8403008A NL8403008A NL8403008A NL8403008A NL 8403008 A NL8403008 A NL 8403008A NL 8403008 A NL8403008 A NL 8403008A NL 8403008 A NL8403008 A NL 8403008A NL 8403008 A NL8403008 A NL 8403008A
Authority
NL
Netherlands
Prior art keywords
phosphate
monoethanolamine
ethylenediamine
reaction
ammonia
Prior art date
Application number
NL8403008A
Other languages
Dutch (nl)
Other versions
NL189347B (en
NL189347C (en
Original Assignee
Mitsui Toatsu Chemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals filed Critical Mitsui Toatsu Chemicals
Publication of NL8403008A publication Critical patent/NL8403008A/en
Publication of NL189347B publication Critical patent/NL189347B/en
Application granted granted Critical
Publication of NL189347C publication Critical patent/NL189347C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/14Amines containing amino groups bound to at least two aminoalkyl groups, e.g. diethylenetriamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • C07C211/10Diaminoethanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

ί - 1 - -! " * · ϊ"ί - 1 - -! "* · Ϊ"

Werkwijze voor het bereiden van diethyleentriamine.Process for preparing diethylenetriamine.

De uitvinding heeft betrekking op een werkwijze voor het bereiden van diethyleentriamine door ammonolyse van mono-5 ethanolamine.The invention relates to a process for the preparation of diethylene triamine by ammonolysis of mono-ethanolamine.

Technisch bereidt men diethyleentriamine slechts als een bijprodukt bij de bereiding van ethyleendiamine door reaktie van 1,2-diehloorethaan met ammoniak of door reaktie van monoethanolamine met ammoniak. Bij de eerstgenoemde werk-10 wijze wordt heel wat natriumchloride, tot tweemaal de molaire hoeveelheid ethyleendiamine, als bijprodukt gevormd en wordt ook vinylchloride als bijprodukt gevormd. Aldus wordt de werkwijze duur wegens het opwerken van afvalstoffen, en heeft het nadeel dat de apparatuur door chlorideionen ernstig gecorrodeerd 15 wordt. Verder hangt in beide werkwijzen de bereiding van diethyleentriamine af van de vraag naar ethyleendiamine.Technically, diethylene triamine is prepared as a by-product in the preparation of ethylenediamine by reacting 1,2-dichloroethane with ammonia or by reacting monoethanolamine with ammonia. In the former process, a lot of sodium chloride, up to twice the molar amount of ethylenediamine, is formed as a by-product, and vinyl chloride is also formed as a by-product. Thus, the process becomes expensive due to waste processing, and has the drawback that the equipment is severely corroded by chloride ions. Furthermore, in both processes, the preparation of diethylenetriamine depends on the demand for ethylenediamine.

Er is voor het bereiden van diethyleentriamine ook een werkwijze beschreven waarbij men monoethanolamine laat reageren met ethyleendiamine met een fosforverbinding zoals fos-20 forzuur als katalysator (Japans octrooischrift no. 6982/1981) en een werkwijze waarbij men monoethanolamine laat reageren met ethyleendiamine in de vloeibare fase met een anorganische verbinding die aluminiumoxyde of siliciumdioxyde als hoofdbestanddeel bevat als katalysator (ter visie gelegde 25 Japanse octrooiaanvrage no. 38329/1980). Maar deze werkwijzen hebben nog niet de gewenste selektiviteit en produktiviteit bereikt omdat, naast het feit dat ethyleendiamine betrekkelijk duur is, de omzetting van ethyleendiamine en de selektiviteit voor diethyleentriamine beide klein zijn.A method of reacting monoethanolamine with ethylene diamine with a phosphorus compound such as phosphoric acid catalyst (Japanese Patent No. 6982/1981) and reacting monoethanolamine with ethylene diamine in the liquid has also been described for preparing diethylene triamine phase with an inorganic compound containing alumina or silicon dioxide as the major constituent as the catalyst (Japanese Patent Application Laid-open No. 38329/1980). However, these processes have not yet achieved the desired selectivity and productivity because, in addition to the fact that ethylenediamine is relatively expensive, the conversion of ethylenediamine and the selectivity to diethylene triamine are both small.

30 De in de ter visie gelegde Japanse octrooiaanvrage no. 52322/1983 beschreven werkwijze verbetert de boven in het Japanse octrooischrift no. 6982/1981 beschreven werkwijze en levert niet cyclische aminen in een goede opbrengst terwijl tegelijkertijd de vorming van cyclische aminen geregeld wordt 35 door een hoeveelheid ammoniak toe te voegen die 0,5-10 keer de 8403008 ί··· % - 2 - molaire hoeveelheid monoethanolamina bedraagt bij de reaktie van monoethanolamine met ethyleendiamine met een fosforverbinding zoals fosforzuur als katalysator. Bij deze werkwijze is echter de selektiviteit voor diethyleentriamine niet voldoende en mono-5 ethanolamine, ethyleendiamine en ammoniak worden verbruikt voor het bereiden van diethyleentriamine waarbij het dure ethyleendiamine als uitgangsstof gebruikt wordt.The process described in Japanese Patent Application Laid-open No. 52322/1983 improves the process described in Japanese Patent No. 6982/1981 above and yields non-cyclic amines in good yield while simultaneously controlling the formation of cyclic amines by adding an amount of ammonia that is 0.5-10 times the 8403008% - 2% molar amount of monoethanolamine in the reaction of monoethanolamine with ethylenediamine with a phosphorus compound such as phosphoric acid as a catalyst. However, in this method, the selectivity for diethylene triamine is not sufficient and monoethanolamine, ethylenediamine and ammonia are consumed to prepare diethylene triamine using the expensive ethylene diamine as a starting material.

Er werd ontdekt dat diethyleentriamine opmerkelijk selektief geproduceerd kon worden door ammoniak en monoethanol-10 amine te laten reageren in aanwezigheid van een. fosforverbinding en ethyleendiamine onder bepaalde omstandigheden.It was discovered that diethylene triamine could be produced remarkably selectively by reacting ammonia and monoethanol-10 amine in the presence of a. phosphorus compound and ethylenediamine under certain conditions.

De werkwijze van de uitvinding heeft betrekking op de bereiding van diethyleentriamine door reaktie van ammoniak met monoethanolamine in aanwezigheid van een fosforverhinding 15 en ethyleendiamine in een molverhouding van ammoniak tot monoethanolamine van tenminste 11:1.The process of the invention relates to the preparation of diethylene triamine by reaction of ammonia with monoethanolamine in the presence of a phosphorus compound 15 and ethylenediamine in a molar ratio of ammonia to monoethanolamine of at least 11: 1.

De bij de uitvinding te gebruiken fosforverbindingen zijn bijvoorbeeld verschillende zouten van fosforzuur, pyro-fosfaten, verbindingen van fosforzuur of anhydriden ervan, fos-20 forig-zuur of anhydriden ervan, alkyl- of arylesters van fosforzuur of fosforig-zuur, en alkyl- of arylfosforzuur of fosforig-zuur. Men kan deze stof alleen of in een mengsel gebruiken.The phosphorus compounds to be used in the invention are, for example, various salts of phosphoric acid, pyrophosphates, compounds of phosphoric acid or anhydrides thereof, phosphorous or anhydrides thereof, alkyl or aryl esters of phosphoric acid or phosphorous acid, and alkyl or aryl phosphoric acid or phosphorous acid. This substance can be used alone or in a mixture.

Van de verschillende zouten van fosforzuur hebben diwaterstoffosfaten of daaruit door dehydratatie verkregen 25 pyrofosfaten de voorkeur. Te gebruiken diwaterstoffosfaten zijn bijvoorbeeld: ammoniumdiwaterstoffosfaat, lithiumdiwaterstof-fosfaat, natriumdiwaterstoffosfkat, kaliumdiwaterstoffosfaat, ruhidiumdiwaterstoffosfaat, cesiumdiwaterstoffosfaat, beryllium-diwaterstoffosfaat, magnesiumdiwaterstoffosfaat, calciumdiwater-30 stoffosfaat, strontiumdiwaterstoffosfaat, bariumdiwaterstof fosfaat, en bet reaktieprodukt van een zeldzame aardverbinding met fosforzuur, welke verbinding een atoomverhouding heeft van fosfor, tot zeldzaam aardelement van 3:1, zoals het reaktieprodukt van fosforzuur met het hydroxyde of oxyde van elementen als 35 scandium, yttrium, lanthanium, cerium, praseodymium, neodymium, 8403008 ^ * - 3 - promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, en lutetium. Te gebruiken zijn ook mangaandiwaterstoffosfaat, ijzerdiwaterstoffosfaat, kobalt-diwaterstoffosfaat, zinkdiwaterstoffosfaat, eadmiumdiwaterstof-5 fosfaat, aluminiumdiwaterstoffosfaat, thalliumdiwaterstoffosfaat, tindiwaterstoffosfaat, looddiwaterstoffosfaat en het reaktieprodukt van een chroom-, gallium-, indium-, antimonium- of bismuthverbinding met fosforzuur, welk produkt een atoomverhouding heeft van fosfor tot metaal van 3:1, zoals het reaktieprodukt van fosforzuur 10 met het hydroxyde of oxyde van genoemd metaal. Andere voorbeelden zijn het reaktieprodukt van een nikkel- of koperverbinding met fosforzuur, welk produkt een atoomverhouding van fosfor tot metaal heeft van 2:1, zoals het reaktieprodukt van fosforzuur met het hydroxyde of oxyde van genoemd metaal.Of the various salts of phosphoric acid, dihydrogen phosphates or pyrophosphates obtained therefrom are preferred. To be used dihydrogen phosphates are for instance: ammonium, lithiumdiwaterstof-phosphate, natriumdiwaterstoffosfkat, potassium dihydrogen phosphate, ruhidiumdiwaterstoffosfaat, cesiumdiwaterstoffosfaat, beryllium-dihydrogen phosphate, magnesium dihydrogen phosphates, calciumdiwater-30 phosphate, strontiumdiwaterstoffosfaat, bariumdiwaterstof phosphate, and bet reaction product of a rare earth compound with phosphoric acid, said compound being an atomic ratio of has from phosphorus, to rare earth element of 3: 1, such as the reaction product of phosphoric acid with the hydroxide or oxide of elements such as scandium, yttrium, lanthanium, cerium, praseodymium, neodymium, 8403008 ^ * - 3 - promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Also to be used are manganese dihydrogen phosphate, iron dihydrogen phosphate, cobalt dihydrogen phosphate, zinc dihydrogen phosphate, admium dihydrogen phosphate, aluminum dihydrogen phosphate, thallium dihydrogen phosphate, tin dihydrogen phosphate, lead dihydrogen phosphate, and lead dihydrogen phosphate, lead dihydrogen phosphate, and lead dihydrogen phosphate, has an atomic ratio of phosphorus to metal of 3: 1, such as the reaction product of phosphoric acid 10 with the hydroxide or oxide of said metal. Other examples are the reaction product of a nickel or copper compound with phosphoric acid, which product has an atomic ratio of phosphorus to metal of 2: 1, such as the reaction product of phosphoric acid with the hydroxide or oxide of said metal.

15 Ook kan men zure pyrofosfaten gebruiken, verkregen door dehydratatie van de bovenvermelde diwaterstoffosfaten of equivalente verbindingen. Verder kan men het reaktieprodukt gebruiken van fosforzuur met een verbinding van een metaal uit de iVa of Va groep ‘van het periodiek systeem, bijvoorbeeld een 20 produkt met een atoomverhouding van P/Ti=2, P/Zr=2, P/Hf=2, P/V=2, P/Nb=3, of P/Ta=3, zoals titanyldiwaterstoffosfaat of zirconyIdiwaterstoffosfaat.Acid pyrophosphates obtained by dehydration of the above dihydrogen phosphates or equivalent compounds can also be used. Furthermore, one can use the reaction product of phosphoric acid with a compound of a metal of the iVa or Va group of the periodic table, for example a product with an atomic ratio of P / Ti = 2, P / Zr = 2, P / Hf = 2, P / V = 2, P / Nb = 3, or P / Ta = 3, such as titanyl dihydrogen phosphate or zircony dihydrogen phosphate.

Verder kan men ook monowaterstoffosfaten gebruiken. Voorbeelden van monowaterstoffosfaten zijn diammoniumwaterstof-25 fosfaat, berylliumwaterstoffosfaat, magnesiumwaterstoffosfaat, calciumwaterstoffosfaat, strontiumwaterstoffosfaat, bariumwater-stoffosfaat, scandiumwaterstoffosfaat, yttriumwaterstoffosfaat, lanthaniumwaterstoffosfaat, ceriumwaterstoffosfaat, praseodymiumwaterstoffosfaat, neodymiumwaterstoffosfaat, pro-30 methiumwaterstoffosfaat, samariumwaterstoffosfaat, europium- waters tof fosfaat, gadoliniumwaterstoffosfaat, terbiumwaterstof-fosfaat, dysprosiumwaterstoffosfaat, holmiumwaterstoffostaat, erbiumwaterstoffosfaat, thuliumwaterstoffosfaat, ytterbium-waters toffos faat, lutetiumwaters toffosfaat, chroomwaterstoffos-35 faat, mangaanwaterstoffosfaat, ijzerwaterstoffosfaat, kobalt- 8403008 ύ* » - 4 - waterstoffosfaat, nikkelwaterstoffosfaat, koperwaterstoffosfaat, zilverwaterstoffosfaat, zinkwaterstoffosfaat, cadmiumwaterstoffos-faat, kwikwaterstoffosfaat, aluminiumwaterstoffosfaat, gallium-waters tof fosfaat, indiumwaterstoffosfaat, thalliumwaterstoffos-5 faat, tinwaterstoffosfaat, loodwaterstoffosfaat, antimonium-waterstoffosfaat en bismutwaterstoffosfaat. Ook kan men het reaktieprodukt van fosforzuur met een verbinding van een metaal uit de IVa of Va groep van het periodiek systeem gebruiken, bijvoorbeeld een produkt met een atooraverhouding van P/Ti=l, 10 P/Zr=l, P/Hf=l, P/V=l, P/Nb=l,5 of P/Ta=l,5.Monohydrogen phosphates can also be used. Examples of mono-hydrogen phosphates are diammoniumwaterstof-25 phosphate, berylliumwaterstoffosfaat, magnesium hydrogen phosphate, calcium hydrogen phosphate, strontium hydrogen phosphate, barium hydrogen phosphate, scandiumwaterstoffosfaat, yttriumwaterstoffosfaat, lanthaniumwaterstoffosfaat, ceriumwaterstoffosfaat, praseodymiumwaterstoffosfaat, neodymium dihydrogen phosphate, pro-30 methiumwaterstoffosfaat, samariumwaterstoffosfaat, europium water tof phosphate, gadoliniumwaterstoffosfaat, terbiumwaterstof- phosphate, dysprosiumwaterstoffosfaat, holmiumwaterstoffostaat, erbiumwaterstoffosfaat, thuliumwaterstoffosfaat, ytterbium-waters toffos phosphate, lutetiumwaters toffosfaat, chroomwaterstoffos-35 phosphate, manganese hydrogen phosphate, iron hydrogen phosphate, cobalt 8,403,008 ύ * »- 4 - hydrogen phosphate, nickel hydrogen phosphate, copper hydrogen phosphate, silver hydrogen phosphate, zinc hydrogen phosphate, cadmiumwaterstoffos phosphate , mercury hydrogen phosphate, aluminum hydrogen phosphate, gallium hydrogen phosphate, indium hydrogen osphate, thallium hydrogen phosphate, tin hydrogen phosphate, lead hydrogen phosphate, antimony hydrogen phosphate and bismuth hydrogen phosphate. It is also possible to use the reaction product of phosphoric acid with a compound of a metal of the IVa or Va group of the periodic table, for example a product with an atomic ratio of P / Ti = 1.10 P / Zr = 1, P / Hf = 1 , P / V = 1.5, P / Nb = 1.5 or P / Ta = 1.5.

Bovendien kan men gewone zouten van fosforzuur gebruiken, bijvoorbeeld boriumfosfaat, scandiumfosfaat, yttrium-fosfaat, lanthanumfosfaat, ceriumfosfaat, praseodymiumfosfaat, neodymiumfosfaat, promethiumfosfaat, samariumfosfaat, europium-15 fosfaat, gadoliniumfosfaat, terbiumfosfaat, dysprosiumfosfaat, holmiumfosfaat, erbiumfosfaat, thuliumfosfaat, ytterbiumfosfaat, lutetiumfosfaat, ehroomfosfaat, ijzerfosfaat, aluminiumfosfaat en bismutfosfaat.Moreover, one can use normal salts of phosphoric acid, for example, boron phosphate, scandiumfosfaat, yttrium phosphate, lanthanumfosfaat, cerium phosphate, praseodymiumfosfaat, neodymium phosphate, promethiumfosfaat, samariumfosfaat, europium-15 phosphate, gadolinium phosphate, terbiumfosfaat, dysprosiumfosfaat, holmiumfosfaat, erbiumfosfaat, thuliumfosfaat, ytterbiumfosfaat, lutetiumfosfaat , chromium phosphate, iron phosphate, aluminum phosphate and bismuth phosphate.

De volgende fosforzuurderivaten kunnen gebruikt 20 worden; orthofosforzuur, pyrofosforzuur, metafosforzuur en gecondenseerde fosforzuren zoals polyfosforzuur.The following phosphoric acid derivatives can be used; orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid and condensed phosphoric acids such as polyphosphoric acid.

Als fosforig-zuurverbinding gebruikt men met name orthofosforig-zuur zelf. Verder kan men mono-, di-, trialkyΙοί arylesters van fosforzuur of fosforig-zuur gebruiken als 25 katalysator van de uitvinding, waarbij de alkylgroepen bij voorkeur 1-8 koolstofatomen hebben en de arylgroepen 6-20 koolstof atomen,. dat wil zeggen een fenyl- of een alkylfenylgroep.As the phosphorous acid compound, orthophosphorous acid itself is used in particular. Furthermore, mono-, di-, trialkylic aryl esters of phosphoric or phosphorous acid can be used as the catalyst of the invention, the alkyl groups preferably having 1-8 carbon atoms and the aryl groups having 6-20 carbon atoms. i.e. a phenyl or an alkylphenyl group.

Men kan bijvoorbeeld triethylfosfaat, triethylfosfiet, fenyl-fosfaat of fenylfosfiet gebruiken.For example, one can use triethyl phosphate, triethyl phosphite, phenyl phosphate or phenyl phosphite.

30 Als alkyl- of arylfosforzuur of fosforig-zuur, waar bij de alkyl- en arylgroepen bij voorkeur respektievelijk 1-8 koolstofatomen en 6-20 koolstofatomen hebben, kunnen als voorbeeld dienen fenylfosfinezuur, ethylfosfinezuur, fenylfosfonzuur en naftafosfonzuur.As alkyl or aryl phosphoric acid or phosphorous acid, where the alkyl and aryl groups preferably have 1-8 carbon atoms and 6-20 carbon atoms, for example, phenylphosphinic acid, ethylphosphinic acid, phenylphosphonic acid and naphthaphosphonic acid may be exemplified.

35 Van de bovengenoemde fosforverbindingen hebben di- 8403008 - 5 - waterstoffosfaten, fosfaten van vanadiumverbindingen en fosfaten van zeldzame aardverbindingen speciale voorkeur.Among the above phosphorus compounds, di-8403008-5 hydrogen phosphates, phosphates of vanadium compounds and phosphates of rare earth compounds are especially preferred.

De hoeveelheid van de bovengenoemde fosforverbinding die als katalysator gebruikt wordt, kan 0,01-1 mol bedragen ge-5 baseerd op het fosforgehalte per 1 mol monoethanolamine als uitgangsstof. Minder dan 0,01 mol geeft, niet voldoende aktivi-teit terwijl meer dan 1 mol onnodig is.The amount of the above phosphorus compound used as a catalyst may be 0.01-1 mole based on the phosphorus content per 1 mole of monoethanolamine as a starting material. Less than 0.01 mole does not provide sufficient activity while more than 1 mole is unnecessary.

Bij de uitvinding voegt men gebruikelijk een. hoeveelheid ethyleendiamine toe van 0,1-5 mol per 1 mol mono-10 ethanolamine.One usually adds one to the invention. amount of ethylenediamine of 0.1-5 mol per 1 mol of mono-ethanolamine.

Als men minder dan 0,1 mol ethyleendiamine toevoegt, wordt de selektiviteit voor diethyleentriamine slechter wegens de vorming van de bijprodukten ethyleendiamine, aminoethylethanol-amine, piperazine of aminoethylpiperazine. Als>men anderzijds 15 meer dan 5 mol ethyleendiamine toevoegt, neemt de selektiviteit voor diethyleentriamine niet belangrijk meer toe, terwijl het j volumerendement van de reaktor slechter wordt.If less than 0.1 mole of ethylenediamine is added, the selectivity to diethylenetriamine deteriorates due to the formation of the byproducts of ethylenediamine, aminoethylethanolamine, piperazine or aminoethylpiperazine. On the other hand, if more than 5 moles of ethylenediamine are added, the selectivity for diethylene triamine no longer increases significantly, while the volume efficiency of the reactor deteriorates.

Men voegt dan ook bij voorkeur 1-2 mol ethyleendiamine toe.It is therefore preferable to add 1-2 moles of ethylenediamine.

20 In de werkwijze van de uitvinding laat men ammoniak en monoethanolamine met elkaar reageren in een molverhouding van ammoniak tot monoethanolamine van tenminste 11:1. Als ze reageren in een kleinere verhouding dan 11:1 wordt een grote hoeveelheid ethyleendiamine verbruikt, waardoor de werkwijze 25 geen succes heeft. De molverhouding is bij voorkeur 11:1 - 30:1.In the process of the invention, ammonia and monoethanolamine are reacted with each other in a molar ratio of ammonia to monoethanolamine of at least 11: 1. If they react in a ratio less than 11: 1, a large amount of ethylenediamine is consumed, so the process is unsuccessful. The molar ratio is preferably 11: 1 - 30: 1.

Hoe groter de molverhouding, hoe beter de selektiviteit voor diethyleentriamine maar hoe slechter het volumerendement van de reaktor. De reaktietemperatuur wordt gewoonlijk ingesteld op 200-400° C. Beneden 200° C wordt de reaktiesnelheid kleiner, 30 terwijl boven 400° C de thermische ontleding van diethyleentriamine toeneemt. Bij voorkeur is de temperatuur 250-300° G.The greater the molar ratio, the better the selectivity for diethylene triamine, but the poorer the volume efficiency of the reactor. The reaction temperature is usually set at 200-400 ° C. Below 200 ° C, the reaction rate becomes slower, while above 400 ° C, the thermal decomposition of diethylene triamine increases. Preferably the temperature is 250-300 ° G.

Hoewel de reaktietijd afhangt van de gebruikte hoeveelheid katalysator en de reaktietemperatuur, is 30 minuten-8 uur gewoonlijk voldoende.Although the reaction time depends on the amount of catalyst used and the reaction temperature, 30 minutes-8 hours is usually sufficient.

35 Men kan de reaktie uitvoeren hetzij in de vloeistof- 8403008 - 6 - fase hetzij in de gasfase, maar bij voorkeur in de vloeistof- 2 fase waarbij de druk gewoonlijk op tenminste 200 kg/cm gehouden wordt. Aangezien cyclische verbindingen zoals piperazine en aminopiperazine in grote hoeveelheden in de gasfase geprodu-5 ceerd worden, heeft de reaktie in de vloeistoffase de voorkeur.The reaction can be carried out either in the liquid phase or in the gas phase, but preferably in the liquid phase, the pressure usually being kept at least 200 kg / cm. Since cyclic compounds such as piperazine and aminopiperazine are produced in large quantities in the gaseous phase, the reaction in the liquid phase is preferred.

Bij het uitvoeren van de werkwijze, werken zowel het ladingsgewijze systeem als het continue systeem aanvaardbaar, maar het continue systeem met een vast bed verdient de voorkeur met het oog op de afscheiding van de gebruikte kataly-10 sator. In dit geval gebruikt men een ruimtelijke doorstroomhoe- veelheid van de reagentia van 0,1-10 g totale hoeveelheid reagentia/ ml katalysatorvolume/uur, bij voorkeur 0,2-2.In carrying out the process, both the batch and continuous systems operate acceptable, but the fixed bed continuous system is preferred in view of the separation of the spent catalyst. In this case, a spatial flow rate of the reagents of 0.1-10 g total amount of reagents / ml catalyst volume / hour, preferably 0.2-2, is used.

De bovengenoemde katalysator kan op een drager zoals kiezelgoer, siliciumdioxyde of aluminiumoxyde gebracht worden.The above catalyst can be supported on a support such as kieselguhr, silicon dioxide or aluminum oxide.

15 Men kan het geproduceerde diethyleentriamine gemakkelijk scheiden van het mengsel bijvoorbeeld door destilleren.The diethylene triamine produced can be easily separated from the mixture, for example, by distillation.

Daar de werkwijze van de uitvinding een bereiding van diethyleen-triamine uit ammoniak en monoethanolamine mogelijk heeft gemaakt waarbij nagenoeg geen duur ethyleendiamine verbruikt 20 wordt, dat bij deze uitvinding toegevoegd maar: niet gebruikt wordt als uitgangsstof, heeft de werkwijze grote industriële waarde.Since the process of the invention has allowed a preparation of diethylene triamine from ammonia and monoethanolamine to consume substantially no expensive ethylenediamine, which is added in this invention but is not used as a raw material, the process has great industrial value.

Voorbeeld I 25Example I 25

Men bracht 18,3 g monoethanolamine (0,3 mol), 18,0 g ethyleendiamine (0,3 mol) en 3,18 g aluminiumdiwaterstoffosfaat (0,03 mol als P) in een autoclaaf met een capaciteit van 300 ml met een magnetische roerder. Nadat de lucht in de autoclaaf 30 vervangen was door stikstof, werd 56,2 g vloeibare ammoniak (3,3 mol) toegevoegd en werd het mengsel verhit tot 270° C en daarna gedurende 3 uur op die temperatuur gehouden, waarbij de 2 druk 280 kg/cm was. Het reaktiemengsel werd daarna afgekoeld tot kamertemperatuur, de druk verlaagd, en de verkregen oplossing 35 door gaschromatografie geanalyseerd.18.3 g of monoethanolamine (0.3 mole), 18.0 g of ethylenediamine (0.3 mole) and 3.18 g of aluminum dihydrogen phosphate (0.03 mole as P) were introduced into a 300 ml capacity autoclave with a magnetic stirrer. After the air in the autoclave 30 was replaced by nitrogen, 56.2 g of liquid ammonia (3.3 mol) was added and the mixture was heated to 270 ° C and then kept at that temperature for 3 hours, the pressure being 280 kg / cm. The reaction mixture was then cooled to room temperature, the pressure lowered, and the resulting solution analyzed by gas chromatography.

8403008 £ -¾ - 7 -8403008 £ -¾ - 7 -

Omzetting van monoethanolamine 81 ZConversion of monoethanolamine 81 Z

Selektiviteit voor diethyleen- triamine 70 % 5 Onder de bovenstaande omstandigheden (molverhouding van ammoniak tot monoethanolamine van 11:1) bleef ethyleendiamine in dezelfde hoeveelheid, 18,0 g, in het reaktiemengsel als toegevoegd was. Dit betekent dat diethyleentriamine gesynthetiseerd werd door de reaktie met slechts monoethanolamine en ammoniak 10 als uitgangsstoffen.Selectivity to diethylenetriamine 70% Under the above conditions (molar ratio of ammonia to monoethanolamine of 11: 1) ethylenediamine remained in the reaction mixture in the same amount, as added, 18.0 g. This means that diethylenetriamine was synthesized by the reaction with only monoethanolamine and ammonia as starting materials.

Voorbeeld IIExample II

De in voorbeeld I beschreven werkwijze werd herhaald 15 behalve dat de hoeveelheid vloeibare ammoniak 66,4 g (3,9 mol) was.The procedure described in Example I was repeated except that the amount of liquid ammonia was 66.4 g (3.9 mol).

Omzetting van monoethanolamine 76 %Conversion of monoethanolamine 76%

Selektiviteit voor diethyleen- triamine 74 % 20Selectivity to diethylenetriamine 74% 20

Selektiviteit voor ethyleendiamine 2 %Selectivity to ethylenediamine 2%

Onder de bovenstaande omstandigheden (molverhouding 25 van ammoniak tot monoethanolamine van 13:1) nam de hoeveelheid ethyleendiamine toe vergeleken met voor de reaktie. De toeneming van ethyleendiamine was 2,0 % gebaseerd op het omgezette monoethanolamine.Under the above conditions (molar ratio of ammonia to monoethanolamine of 13: 1), the amount of ethylenediamine increased compared to before the reaction. The ethylene diamine increase was 2.0% based on the converted monoethanolamine.

30 Voorbeeld IIIExample III

De in voorbeeld I beschreven werkwijze werd herhaald behalve dat de hoeveelheid vloeibare ammoniak 76,6 g (4,5 mol) j was.The procedure described in Example I was repeated except that the amount of liquid ammonia was 76.6 g (4.5 mol) j.

35 j 8403008 - 8 -35 y 8403008 - 8 -

Omzetting van monoethanolamine 72 %Conversion of monoethanolamine 72%

Selektiviteit voor diethyleen- tri amine 77 %Selectivity to diethylene tri amine 77%

Selektiviteit voor ethyleendi- amine· 4 % 5Selectivity to ethylenediamine · 4% 5

Controle IControl I

De in voorbeeld I beschreven werkwijze werd herhaald 10 behalve dat de hoeveelheid vloeibare ammoniak 46,0 g (2,7 mol) was.The procedure described in Example I was repeated except that the amount of liquid ammonia was 46.0 g (2.7 mol).

Omzetting van monoethanolamine 86 %Conversion of monoethanolamine 86%

Selektiviteit voor diethyleen- ,. tri amine 64 % 10Selectivity to diethylene,. tri amine 64% 10

Onder de bovenstaande omstandigheden (molverhouding van ammoniak tot monoethanolamine van 9:1), nam de hoeveelheid ethyleendiamine af vergeleken met voor de reaktie. De verbruikte 20 hoeveelheid ethyleendiamine was 2 % gebaseerd op het omgezette monoethanolamine.Under the above conditions (molar ratio of ammonia to monoethanolamine of 9: 1), the amount of ethylenediamine decreased compared to before the reaction. The amount of ethylenediamine consumed was 2% based on the converted monoethanolamine.

Voorbeelden IV-XXIVExamples IV-XXIV

25 De in voorbeeld I beschreven werkwijze werd herhaald behalve dat verschillende andere katalysatoren gebruikt werden, waarvan de hoeveelheid 0,03 mol berekend als P was. De resultaten worden getoond in tabel A. 1 8403008 - 9 - i c <u μ 0}The procedure described in Example I was repeated except that several other catalysts were used, the amount of which was 0.03 mole calculated as P. The results are shown in Table A. 1 8403008 - 9 - i c <u μ 0}

•H rH• H rH

Φ μ Λ , •η μ α) £ .μ cn co r> oo on σ> — ^ 2 S 2 - — UMÊ - - " ^ u a Φ . u Γμ ϋ μ « Sji co ο μ >Φ μ Λ, • η μ α) £ .μ cn co r> oo on σ> - ^ 2 S 2 - - UMÊ - - "^ u a Φ. U Γμ ϋ μ« Shi co ο μ>

-° L- ° L

•rl a <u a) μ <u• rl a <u a) μ <u

•pIHK• pIHK

. -Η Λ <U. -Η Λ <U

g 3^.5ο--^^~-~οο~σ°- h <u g 0 r-i μ to u φ ο ·μ cd co ο Ό co > >.g 3 ^ .5ο - ^^ ~ - ~ οο ~ σ ° - h <u g 0 r-i μ to u φ ο · μ cd co ο Ό co>>.

Γ—II — I

β , μ ι « β ,ϋ -1-1¾ •μ α) φ φ τ-4 -ο μ >, ε~ϊ β ή ύ φ > μ 2 ·μ Φ β d ^ ’-ö ‘s ^ 00 νο Γ-. co ο -<r ο Ο ^ 2 2 2 'cB^iïoS'or^r^vovor-.inr-.-^ρ^'β'β ο r-i μ ·μ co (U ο μ u co ο μ φ > < > Γ-ι μ <U S - •s 6 s ,β, μ ι «β, ϋ -1-1¾ • μ α) φ φ τ-4 -ο μ>, ε ~ ϊ β ή ύ φ> μ 2 · μ Φ β d ^ '-ö' s ^ 00 νο Γ-. co ο - <r ο Ο ^ 2 2 2 'cB ^ iïoS'or ^ r ^ vovor-.inr -.- ^ ρ ^' β'β ο ri μ · μ co (U ο μ u co ο μ φ> <> Γ-ι μ <US - • s 6 s,

cd Λ Icd Λ I

Ε-ι φ > -μ β ο •μ ω ö Β β β § ·μχκ 1 Jllsssasssisssssss β SOË Φ Ο Β β r-c »β μ φ «τ-Ι Τ3 _ cn ! S Μ m m £ > g 8 g λ Λ Ν °N °Ν « 't ^ g> s ,3 * ο- ο* ς* I s ? . ? ? ο- ? 1 I1 > > S' **. ο* g £, ο- % s 3 2 2 J ? δ ^ *„ ο- Β «Ν 5 %, δ 5Ε-ι φ> -μ β ο • μ ω ö Β β β § · μχκ 1 Jllsssasssisssssss β SOË Φ Ο Β β r-c »β μ φ« τ-Ι Τ3 _ cn! S Μ m m £> g 8 g λ Λ Ν ° N ° Ν «'t ^ g> s, 3 * ο- ο * ς * I s? . ? ? ο-? 1 I1>> S '**. ο * g £, ο-% s 3 2 2 J? δ ^ * „ο- Β« Ν 5%, δ 5

(¾ 5 n*iSÉ3£3io«<3>JI*«*'S(¾ 5 n * iSÉ3 £ 3io «<3> JI *« * S

ti r-c φ φ ιβ ι_ι Η ·“*ti r-c φ φ ιβ ι_ι Η · “*

Λ ι_1 WHt>MH_1 ι_1 WHt> MH

g Η>>>;>ΗΧΧΧΧ><ίΡ<>!><'!*! π« -> *"\ Λ ., . ϊ< Μ Η -10- \o on oo on o rs. ir> i— *— *—> CM *—» ο ο en ο ο ο on ο ο -ο· — ο ο ο (Η ^ΟΓ^,Γ^νΟΌΌΌ 4) ·« Η 60 Γ“ί Ο > Μ α) > 1-. en r*· ιΛ Ο Ό ο σ> οο γ« νο οο οο σ« ι—( 5-ι on 0) a /-s öo ag Η >>>;> ΗΧΧΧΧ> <ίΡ <>!> <'! *! π «-> *" \ Λ.,. ϊ <Μ Η -10- \ o on oo on o rs. ir> i— * - * -> CM * - »ο ο and ο ο ο on ο ο -ο · - ο ο ο (Η ^ ΟΓ ^, Γ ^ νΟΌΌΌ 4) · «Η 60 Γ“ ί Ο> Μ α)> 1-. And r * · ιΛ Ο Ό ο σ> οο γ «νο οο οο σ« ι— (5-ι on 0) a / -s öo a

S3 ¢8 NS3 ¢ 8 N

ο ο aο ο a

w CM ·ι-( Ow CM · ι- (O

a /'s r—t M-{ u st on «h raa / s r — t M- {u st on «h ra

I O <f r'- /-s ra OI O <f r'- / -s ra O

S3· PU O O on I M-f O CM CU CM o sr rH PU W CM PU PU O >·, on s^ ® uj w pu ö pc -Q r-ι cu .-t on ra m Pu H F=< <1 PC ‘t-iS3 · PU OO on I Mf O CM CU CM o sr rH PU W CM PU PU O> ·, on s ^ ® uj w pu ö pc -Q r-ι cu.-T on ra m Pu HF = <<1 PC 'ti

Η HΗ H

Η Η H >Η Η H>

Η ><ί Η Η Η HΗ> <ί Η Η Η H

a s s s s ö s 84 0 3 0 0 8 -11-a s s s sö s 84 0 3 0 0 8 -11-

Coatrole IICoatrole II

Mea bracht 18,3 g (0,3 mol) monoethanolamine, 18,0 g (0,3 mol) ethyleendiamine en 0,03 mol berekend als P 5 lanthaanfosforzuurkatalysator (de molverhouding P/La was 3:1) in een autoclaaf met een capaciteit van 300 ml met een magnetische ! roerder. Nadat de lucht in de autoclaaf vervangen was door stikstof, werd 25,5 g (1,5 mol) vloeibare ammoniak toegevoegd en werd j het mengsel verhit tot 270° C en daarna gedurende 3 uur op die 10 temperatuur gehouden. Het reaktiemengsel werd daarna afgekoeld tot kamertemperatuur, de druk verlaagd, en de verkregen oplossing door gasehromatografie geanalyseerd.Mea charged 18.3 g (0.3 mole) of monoethanolamine, 18.0 g (0.3 mole) ethylenediamine and 0.03 mole calculated as P 5 lanthanum phosphoric acid catalyst (the P / La mole ratio was 3: 1) in an autoclave with a capacity of 300 ml with a magnetic! stirrer. After the air in the autoclave was replaced with nitrogen, 25.5 g (1.5 mol) of liquid ammonia was added and the mixture was heated to 270 ° C and then kept at that temperature for 3 hours. The reaction mixture was then cooled to room temperature, the pressure lowered, and the resulting solution analyzed by gas chromatography.

Omzetting van monoethanolamine 100 % 15 Selektiviteit voor diethyleen- triamine 33 %Conversion of monoethanolamine 100% 15 Selectivity to diethylene triamine 33%

Selektiviteit "voor triethyleen- tetramine 8 %Selectivity "for triethylenetetramine 8%

Selektiviteit voor piperazine 14 %Selectivity for piperazine 14%

Selektiviteit voor aminoethylpiper-20 azine 17 %Selectivity for aminoethylpiper-20 azine 17%

Onder de bovenstaande omstandigheden (molverhouding van ammoniak tot monoethanolamine van 5:1) werd 22 % ethyleendiamine verbruikt gebaseerd op het omgezette monoethanolamine.Under the above conditions (molar ratio of ammonia to monoethanolamine of 5: 1), 22% ethylenediamine was consumed based on the converted monoethanolamine.

25 Verder werd de selektiviteit voor diethyleentriamine sterk verminderd en werden grote hoeveelheden cyclische verbindingen zoals piperazine en aminoethylpiperazine geproduceerd.Furthermore, the selectivity to diethylene triamine was greatly reduced and large amounts of cyclic compounds such as piperazine and aminoethylpiperazine were produced.

Controle IIIControl III

3° :3 °:

De in voorbeeld X beschreven werkwijze werd herhaald behalve dat geen ethyleendiamine toegevoegd werd.The procedure described in Example X was repeated except that no ethylenediamine was added.

Omzetting van monoethanolamine 65 % 35 Selektiviteit voor diethyleentri- .Conversion of monoethanolamine 65%. Selectivity for diethylene tri-.

amine J 32 * 8403008 -12-amine J 32 * 8403008 -12-

Selektiviteit voor ethyleen- diamine 44 %Selectivity to ethylene diamine 44%

In dit geval was de selektiviteit voor diethyleen-5 triamine eveneens laag, terwijl ethyleendiamine in een grote hoeveelheid geproduceerd werd.In this case, the selectivity for diethylene-5 triamine was also low, while ethylene diamine was produced in a large amount.

Voorbeeld XXVExample XXV

10 Bereiding van de katalysator.10 Preparation of the Catalyst.

112,8 g lanthaannitraathexahydraat werd in 300 ml water opgelost waaraan 168 g kiezelgoer toegevoegd werd. Terwijl de brij geroerd werd, voegde men 449,5 g van een 20 %-ige waterige 15 oplossing van ammoniumdiwaters tof fosfaat eraan toe. Nadat de oplossing verhit was en het water-verdampt, werd het bij 120° C gedurende 3 uur gedroogd en daarna gebakken bij 400° C gedurende 3 uur.112.8 g of lanthanum nitrate hexahydrate were dissolved in 300 ml of water to which 168 g of kieselguhr was added. While stirring the slurry, 449.5 g of a 20% aqueous solution of ammonium dihydrogen phosphate was added thereto. After the solution was heated and the water evaporated, it was dried at 120 ° C for 3 hours and then baked at 400 ° C for 3 hours.

20 Bereiding van djethyleentriamine.20 Preparation of Djethylenetriamine.

Van de aldus bereide katalysator, van 1,2-1,7 mm, atpomverhouding P/La van 3:1, en La^PO^)^ equivalent van 40 %, op kiezelgoer als drager, werd 150 ml gebruikt als vulling voor 25 een roestvrijstalen reaktor met een inwendige middellijn van 15 mm en een lengte van 1 m. Ammoniak, monoethanolamine en ethyleendiamine werden toegevoerd in molverhouding NH^/monoethanolamine 18:1 en ethyleendiamine/monoethanolamine 2:1 en bij een doorstroom- hoeveelheid van de gemengde voeding van 1 g/ral katalysator/uur.150 ml of the thus prepared catalyst, of 1.2-1.7 mm, atomic ratio P / La of 3: 1, and La ^ PO ^) ^ equivalent of 40%, on kieselguhr as carrier, were used as filling for 25 a stainless steel reactor with an internal diameter of 15 mm and a length of 1 m. Ammonia, monoethanolamine and ethylenediamine were fed in mol ratio NH 2 / monoethanolamine 18: 1 and ethylenediamine / monoethanolamine 2: 1 and at a flow rate of the mixed feed of 1 g / ral catalyst / hour.

o 2 30 Men hield de reaktor op 260 C en de reaktiedruk. op 320 kg/cm .The reactor was kept at 260 DEG C. and the reaction pressure. at 320 kg / cm.

Het reaktiemengsel werd geanalyseerd met de volgende resultaten:The reaction mixture was analyzed with the following results:

Omzetting van monoethanolamine 65 % 35 Selektiviteit voor diethyleentri- _ amzne -7 91 % 8403008 -13-Conversion of monoethanolamine 65% 35 Selectivity to diethylene triamines -7 91% 8403008 -13-

Selektiviteit voor triethyleen- tetramine 6 %Selectivity to Triethylenetetramine 6%

Selektiviteit voor ethyleendi- amine 2 % 5Selectivity to ethylenediamine 2% 5

Een combinatie van vastbed en continu systeem zoals in dit voorbeeld gebruikt, verdient de voorkeur voor de industriële produktie van diethyleentriamlne met behulp van de uitvinding.A combination of fixed bed and continuous system as used in this example is preferred for the industrial production of diethylene triamine using the invention.

10 Als men hogere polyaminen dan diethyleentriamlne’.10 If one has higher polyamines than diethylenetriamine.

wenst, kan men ze ook produceren in voldoende opbrengst door het aldus geproduceerde diethyleentriamine naar de reaktor terug te leiden.if desired, they can also be produced in sufficient yield by recycling the diethylene triamine thus produced to the reactor.

15 j15 y

-.·* 4 *4 ύ λ Q-. * 4 * 4 ύ λ Q

'J «.J V \J Q"J". J V \ J Q

Claims (7)

1. Werkwij ze voor het bereiden van diethyleentri-amine door reaktie van ammoniak met monoethanolamine met het kenmerk dat men de reaktie uitvoert bij een molverhouding van ammoniak tot monoethanolamine van tenminste 11:1 in aanwezigheid van een 5 fosforverbinding. en ethyleendiamine.1. Process for preparing diethylenetriamine by reaction of ammonia with monoethanolamine characterized in that the reaction is carried out at a molar ratio of ammonia to monoethanolamine of at least 11: 1 in the presence of a phosphorus compound. and ethylenediamine. 2. Werkwijze volgens conclusie 1 met het kenmerk dat de molverhouding 11:1-30:1 bedraagt.Process according to claim 1, characterized in that the mol ratio is 11: 1-30: 1. 3. Werkwijze volgens conclusie 1 met het kenmerk dat de reaktie uitgevoerd wordt in de vloeistoffase.Process according to claim 1, characterized in that the reaction is carried out in the liquid phase. 4. Werkwijze volgens conclusie 1-3 met het kenmerk dat de reaktie in een vast bed uitgevoerd wordt.Method according to claims 1-3, characterized in that the reaction is carried out in a fixed bed. 5. Werkwijze volgens conclusie 1-4 met het kenmerk dat de reaktie in een continu systeem uitgevoerd wordt.Method according to claims 1-4, characterized in that the reaction is carried out in a continuous system. 6. Werkwijze volgens conclusie 1-5 met het kenmerk 15 dat de fosforverbinding een diwaterstoffosfaat is.6. Method according to claims 1-5, characterized in that the phosphorus compound is a dihydrogen phosphate. 7. Werkwijze volgens conclusie 1-6 met het kenmerk dat de fosforverbinding een fosfaat van een zeldzaam aardmetaal is. 1 8403008A method according to claims 1-6, characterized in that the phosphorus compound is a rare earth metal phosphate. 1 8403008
NLAANVRAGE8403008,A 1983-10-06 1984-10-03 PROCESS FOR PREPARING DIETHYLENE TRIAMINE. NL189347C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18587183 1983-10-06
JP58185871A JPS6078945A (en) 1983-10-06 1983-10-06 Production of diethylenetriamine

Publications (3)

Publication Number Publication Date
NL8403008A true NL8403008A (en) 1985-05-01
NL189347B NL189347B (en) 1992-10-16
NL189347C NL189347C (en) 1993-03-16

Family

ID=16178333

Family Applications (1)

Application Number Title Priority Date Filing Date
NLAANVRAGE8403008,A NL189347C (en) 1983-10-06 1984-10-03 PROCESS FOR PREPARING DIETHYLENE TRIAMINE.

Country Status (9)

Country Link
JP (1) JPS6078945A (en)
BE (1) BE900759A (en)
DE (1) DE3436036A1 (en)
FR (1) FR2553089B1 (en)
GB (1) GB2147896B (en)
IT (1) IT1176876B (en)
NL (1) NL189347C (en)
SE (1) SE465125B (en)
ZA (1) ZA847588B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578517A (en) * 1983-09-16 1986-03-25 Air Products And Chemicals, Inc. Polyalkylene polyamines from alkanolamine and ammonia or amines using group IIIB metal acid phosphate catalysts
US4605770A (en) * 1983-12-22 1986-08-12 Air Products And Chemicals, Inc. Noncyclic polyalkylene polyamines by the reaction of an alkanolamine compound and an alkyleneamine compound in the presence of a Group IIA or Group IIIB metal acid phosphate catalyst
JPS6154241A (en) * 1984-08-21 1986-03-18 シ−ビ−エムエム・インタ−ナシヨナル・リミタ−ダ Water containing niobium oxide solid acid catalyst
US4617418A (en) * 1984-11-26 1986-10-14 Air Products And Chemicals, Inc. Polyalkylene polyamines via vapor phase reaction
US5202489A (en) * 1987-12-22 1993-04-13 Union Carbide Chemicals & Plastics Technology Corporation Amines catalysis
JP2764968B2 (en) * 1988-02-10 1998-06-11 東ソー株式会社 Method for producing alkyleneamines
US4927931A (en) * 1988-11-01 1990-05-22 The Dow Chemical Company Preparation of alkyl-extended, alcohol-extended or amine-extended piperazines
US4973569A (en) * 1988-11-01 1990-11-27 The Dow Chemical Company Preparation of group VB metal phosphate catalysts therefor
US4950690A (en) * 1988-11-28 1990-08-21 Air Products And Chemicals, Inc. Process for the animation of alcohols using activated phosphorus-containing catalysts
US5210307A (en) * 1988-12-20 1993-05-11 The Dow Chemical Company Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
US5166442A (en) * 1988-12-20 1992-11-24 The Dow Chemical Company Catalytic reforming of alkyleneamines
US4996363A (en) * 1988-12-20 1991-02-26 The Dow Chemical Company Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
US5011999A (en) * 1989-02-23 1991-04-30 The Dow Chemical Company Process of preparing non-cyclic polyalkylenepolyamines employing group VB metal catalysts
JP2764093B2 (en) * 1989-07-14 1998-06-11 三井化学株式会社 Preparation of acyclic ethyleneamines
JP2764078B2 (en) * 1989-07-14 1998-06-11 三井化学株式会社 Preparation of acyclic ethyleneamines
JPH0348643A (en) * 1989-07-18 1991-03-01 Mitsui Toatsu Chem Inc Production of non-cyclic ethyleneamines
US5082972A (en) * 1989-07-17 1992-01-21 Mitsui Toatsu Chemicals, Inc. Process for preparation of acyclic ethyleneamines
JP2938093B2 (en) * 1989-07-17 1999-08-23 三井化学株式会社 Method for producing acyclic ethyleneamines
JP2764094B2 (en) * 1989-07-18 1998-06-11 三井化学株式会社 Preparation of acyclic ethyleneamines
US5210306A (en) * 1989-08-08 1993-05-11 Union Carbide Chemicals & Plastics Technology Corporation Promoted amines catalysis
US5101074A (en) * 1989-08-08 1992-03-31 Union Carbide Chemicals & Plastics Technology Corporation Vicinal di(hetro) alkylene organometalates and processes for the production of amines therewith
US4983736A (en) * 1989-08-08 1991-01-08 Union Carbide Chemicals And Plastic Company Inc. Amines catalysis using metallic polyphosphate condensation catalysts having a condensed structure
US5202492A (en) * 1989-08-08 1993-04-13 Union Carbide Chemicals & Plastics Technology Corporation Amines catalysis using metallic phosphate condensation catalysts having a cyclic structure
US5225600A (en) * 1989-08-08 1993-07-06 Union Carbide Chemicals & Plastics Technology Corporation Amines catalysis using group VIB metal-containing condensation catalysts
DE69029825T2 (en) * 1989-08-08 1997-06-05 Union Carbide Chem Plastic Process for the preparation of polyalkylene polyamines
US5214213A (en) * 1990-03-30 1993-05-25 Union Carbide Chemicals & Plastics Technology Corporation Selective production of linear tetraethylenepentamine and hydroxyethyldiethylenetriamine
US5166415A (en) * 1990-03-30 1992-11-24 Union Carbide Chemicals & Plastics Technology Corporation Selective production of diethylenetriamine and aminoethylethanolamine
US5214215A (en) * 1990-03-30 1993-05-25 Union Carbide Chemicals & Plastics Technology Corporation Selective production of aminoethylethanolamine
US5225599A (en) * 1990-03-30 1993-07-06 Union Carbide Chemicals & Plastics Technology Corporation Selective production of linear triethylenetetramine and aminoethylethanolamine
US5231230A (en) * 1990-03-30 1993-07-27 Union Carbide Chemicals & Plastics Technology Corporation Selective production of diethylenetriamine
US5220071A (en) * 1990-03-30 1993-06-15 Union Carbide Chemicals & Plastics Technology Corporation Selective production of pentaethylenehexamine and hydroxyethyltriethylenetetramine
US5225598A (en) * 1990-03-30 1993-07-06 Union Carbide Chemicals & Plastics Technology Corporation Selective production of linear pentaethylenehexamine and hydroxyethyldiethylenetriamine
US5073635A (en) * 1990-06-22 1991-12-17 The Dow Chemical Company Process of preparing linearly-extended polyalkylenepolyamines employing metal silicate catalysts
DE10335991A1 (en) 2003-08-01 2005-02-24 Basf Ag Process for the preparation of ethylene amines
JP2006342745A (en) * 2005-06-09 2006-12-21 Nippon Sharyo Seizo Kaisha Ltd Engine working machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1514306A (en) * 1967-01-11 1968-02-23 P Barnier Ets Process for obtaining and applications of long chain hydrocarbon polyamine products
US3869527A (en) * 1971-08-17 1975-03-04 Leo Ab Secondary phosphate esters
GB1424513A (en) * 1972-06-13 1976-02-11 Ciba Geigy Ag Organic phosphates
US4036881A (en) * 1975-06-02 1977-07-19 Texaco Development Corporation Preparation of polyalkylene polyamines
US4324917A (en) * 1980-08-28 1982-04-13 Texaco Inc. Preparation of polyalkylene polyamines
US4394524A (en) * 1981-08-31 1983-07-19 Air Products And Chemicals, Inc. Preparation of polyalkylene polyamines from ammonia, alkyleneamine, and alkanolamine
CA1202328A (en) * 1981-09-30 1986-03-25 William B. Herdle Preparation of polyalkylene polyamines
US4463193A (en) * 1983-07-19 1984-07-31 Air Products And Chemicals, Inc. Production of noncyclic polyalkylene polyamines
JPH05232283A (en) * 1992-02-26 1993-09-07 Toshiba Corp Measuring equipment of radioactive substance released on accident of nuclear power plant
KR930020867A (en) * 1992-03-02 1993-10-20 빈센트 비.인그라시아 Remote Sensing Units and Drivers

Also Published As

Publication number Publication date
IT1176876B (en) 1987-08-18
IT8423028A0 (en) 1984-10-05
GB2147896B (en) 1987-04-08
NL189347B (en) 1992-10-16
GB2147896A (en) 1985-05-22
SE465125B (en) 1991-07-29
GB8425228D0 (en) 1984-11-14
FR2553089B1 (en) 1988-09-23
FR2553089A1 (en) 1985-04-12
BE900759A (en) 1985-02-01
IT8423028A1 (en) 1986-04-05
DE3436036C2 (en) 1989-11-09
JPH0445505B2 (en) 1992-07-27
SE8404920D0 (en) 1984-10-02
NL189347C (en) 1993-03-16
DE3436036A1 (en) 1985-05-02
SE8404920L (en) 1985-04-07
ZA847588B (en) 1985-06-26
JPS6078945A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
NL8403008A (en) PROCESS FOR PREPARING DIETHYLENE TRIAMINE.
US4617418A (en) Polyalkylene polyamines via vapor phase reaction
JPH0717581B2 (en) Method for producing diethylenetriamine
US4983736A (en) Amines catalysis using metallic polyphosphate condensation catalysts having a condensed structure
EP0412611A2 (en) Promoted amines catalysis
US5225599A (en) Selective production of linear triethylenetetramine and aminoethylethanolamine
JPS61236752A (en) Production of acyclic ethylene amine
JPS61183249A (en) Production of noncyclic ethyleneamine
AU2004267103A1 (en) Process for the preparation of N-phosphono-methylglycine and derivatives thereof
JPH04202163A (en) Production of ethyleneamines
US5202492A (en) Amines catalysis using metallic phosphate condensation catalysts having a cyclic structure
US5166415A (en) Selective production of diethylenetriamine and aminoethylethanolamine
US5214215A (en) Selective production of aminoethylethanolamine
US5225598A (en) Selective production of linear pentaethylenehexamine and hydroxyethyldiethylenetriamine
US5101074A (en) Vicinal di(hetro) alkylene organometalates and processes for the production of amines therewith
JP2815477B2 (en) Method for producing ethyleneamines
US5231230A (en) Selective production of diethylenetriamine
EP0449384A1 (en) Selecive production of higher polyalkylene polyamines and hydroxylcontaining polyalkylene polyamines
JP2764078B2 (en) Preparation of acyclic ethyleneamines
US5220071A (en) Selective production of pentaethylenehexamine and hydroxyethyltriethylenetetramine
JP2764093B2 (en) Preparation of acyclic ethyleneamines
JPH04173768A (en) Production of ethyleneamines
JPH04173769A (en) Production of ethyleneamines
JP2764094B2 (en) Preparation of acyclic ethyleneamines
CA2020993A1 (en) Process for preparation of acyclic ethyleneamines

Legal Events

Date Code Title Description
BA A request for search or an international-type search has been filed
BB A search report has been drawn up
BC A request for examination has been filed
V1 Lapsed because of non-payment of the annual fee

Effective date: 19960501