NL2033096B1 - An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus - Google Patents

An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus Download PDF

Info

Publication number
NL2033096B1
NL2033096B1 NL2033096A NL2033096A NL2033096B1 NL 2033096 B1 NL2033096 B1 NL 2033096B1 NL 2033096 A NL2033096 A NL 2033096A NL 2033096 A NL2033096 A NL 2033096A NL 2033096 B1 NL2033096 B1 NL 2033096B1
Authority
NL
Netherlands
Prior art keywords
electromagnetic radiation
bath
unit
surface level
powder material
Prior art date
Application number
NL2033096A
Other languages
Dutch (nl)
Inventor
Herman Else Vaes Mark
Boverhof Adrie
Original Assignee
Additive Ind Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Additive Ind Bv filed Critical Additive Ind Bv
Priority to NL2033096A priority Critical patent/NL2033096B1/en
Priority to PCT/NL2023/050472 priority patent/WO2024063641A1/en
Application granted granted Critical
Publication of NL2033096B1 publication Critical patent/NL2033096B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/31Calibration of process steps or apparatus settings, e.g. before or during manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Abstract

An apparatus for producing an object by means of additive manufacturing, the apparatus comprising: - a process chamber for receiving a bath of powdered material to produce the object; - a support for positioning the object in relation to a surface level of the bath of powdered material; - a solidifying device arranged for emitting a beam of electromagnetic radiation for melting a selective layer-part of the powdered material of the bath of powdered material; - a scanner device arranged for moving the beam of electromagnetic radiation along the surface level of the bath of powdered material; - an emitter unit arranged for emitting further electromagnetic radiation on the surface level of the bath of powdered material or the support; - a detection unit arranged for detecting a position of the further electromagnetic radiation at the surface level of the bath of powdered material or the support via the scanner device or arranged such that an optical path of the further electromagnetic radiation, between the bath of powdered material or the support and the detection unit, bypasses the scanner device for detecting the position of the further electromagnetic radiation. A method of calibrating an apparatus for producing an object by means of additive manufacturing.

Description

Title: An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus
Description:
According to the first aspect, the present disclosure relates to an apparatus for producing an object by means of additive manufacturing, the apparatus comprising: - a process chamber for receiving a bath of powdered material to produce the object; - a support for positioning the object in relation to a surface level of the bath of powdered material; - a solidifying device arranged for emitting a beam of electromagnetic radiation for melting a selective layer-part of the powdered material of the bath of powdered material; - a scanner device arranged for moving the beam of electromagnetic radiation along the surface level of the bath of powdered material.
According to the second aspect, the present disclosure relates to a method of calibrating an apparatus according to the first aspect of the present disclosure. 3D printing or additive manufacturing refers to any of various processes for manufacturing a three-dimensional object in which material is joined or solidified under computer control to create a three-dimensional object, with material being added together, typically layer by layer.
One of the challenges in the manufacturing of three dimensional objects, in particular in additive manufacturing of metal objects, is how to accurately solidify selective parts of the layer.
It is an object to provide an apparatus and a method that allows to realize a relative high accuracy of producing the object.
This object is achieved by the apparatus according to the present disclosure, wherein the apparatus comprises:
- an emitter unit arranged for emitting further electromagnetic radiation, preferably a beam of further electromagnetic radiation, on the surface level of the bath of powdered material or the support; - a detection unit arranged for detecting a position of the further electromagnetic radiation, preferably the beam of further electromagnetic radiation, at the surface level of the bath of powdered material or the support via the scanner device or arranged such that an optical path of the further electromagnetic radiation, preferably the beam of further electromagnetic radiation, between the bath of powdered material or the support and the detection unit, bypasses the scanner device for detecting the position of the further electromagnetic radiation, preferably the beam of further electromagnetic radiation, at the surface level of the bath of powdered material or the support.
The present disclosure relies at least partly on the insight that for the manufacturing of three-dimensional objects, in particular in additive manufacturing of metal objects, the manufacturing of the object may require the apparatus for manufacturing the object to run for a relative long time period. During this period it is beneficial if the beam of electromagnetic radiation for melting a selective layer-part of the powdered material of the bath of powdered material is moved such that it operates within a defined accuracy of a defined coordinate system. If the apparatus or a component thereof such as the scanner device, the process chamber and/or the solidifying device drift during the period of manufacturing relative to the defined coordinate system the geometrical accuracy of the object may be negatively affected.
It is noted that within the context of the present disclosure, drift may relate a uniform drift of the beam of electromagnetic radiation along the surface level of the bath of powdered material relative to the defined coordinate system or a reference coordinate system relating to a corresponding position of the beam of electromagnetic radiation at a previous instance, such as before the start of the manufacturing of the object or during manufacturing of the object. This uniform drift may be due to a drift of the scanner device and/or the solidifying device that is independent on the position of the beam of electromagnetic radiation at the surface level. In other words, the uniform drift causes a shift that is equal at the whole surface level.
Alternative, or in addition to the drift related to the uniform drift, the drift within the context of the present disclosure may also relate to a position dependent drift that is dependent on the position of the beam of electromagnetic radiation along the surface level of the bath of powdered material relative to the defined coordinate system or the reference coordinate system relating to the corresponding position of the beam of electromagnetic radiation at the previous instance, such as before the start of the manufacturing of the object or during manufacturing of the object. This position dependent drift may due to a drift of the scanner device that is dependent on the position of the beam of electromagnetic radiation at the surface level. In other words, the position dependent drift causes a shift that varies along the surface level.
Within the context of the present disclosure, the drift of the process chamber may for instance be caused by thermal expansion of elements of the process chamber.
In a method known from US 5,832,415 calibration of the apparatus is done only before starting manufacturing of the object or after manufacturing of the object is completed. By providing the apparatus with the emitter unit and the detection unit, a drift of the scanning device may be detected during manufacturing of the object, thereby allowing notification of drift and either correcting for the drift or stopping manufacturing of the object.
Preferably, the emitter unit is arranged for emitting a further electromagnetic radiation having a wavelength that is different from the wavelength of the beam of electromagnetic radiation for melting the selective layer-part of the powdered material of the bath of powdered material. This is beneficial for realizing an apparatus wherein detection, by the detection unit, is independent from the operating conditions of the solidifying device, the process parameters of the apparatus and/or the process conditions in the process chamber.
Drift of the scanner device relative to the defined coordinate system or the reference coordinate system may for instance be detected, by the detection unit, by determining the position of the further electromagnetic radiation before start of the production and subsequently, during manufacturing, detecting, by the detection unit,
that a shift of the further electromagnetic radiation has occurred when the further electromagnetic radiation is emitted again.
In a first embodiment of the apparatus according to the present disclosure, the detection unit is arranged for detecting the further electromagnetic radiation at the surface level of the bath of powdered material or the support via the scanner device.
This allows to arrive at an apparatus wherein the optical path of the detection unit and the solidifying device are at least partly identical, and preferably stationary relative to each other during manufacturing of the object.
In a further embodiment of the apparatus according to the present disclosure, the detection unit is arranged such that an optical path of the further electromagnetic radiation, between the bath of powdered material or the support and the detection unit, bypasses the scanner device for detecting the further electromagnetic radiation.
In an embodiment of the apparatus according to the present disclosure, the emitter unit comprises a further solidifying device arranged for emitting the beam of further electromagnetic radiation, wherein the beam of further electromagnetic radiation is further arranged for melting a further selective layer-part of the powdered material of the bath of powdered material. This is beneficial for allowing correction of drift of the solidifying device and the further solidifying device relative to each other.
In this regard, it is beneficial if the apparatus according to the present disclosure further comprises a further scanner device arranged for moving the beam of further electromagnetic radiation along the surface level of the bath of powdered material.
This is beneficial for allowing correction of drift of the scanner device relative to the further scanner device.
Preferably, the detection unit is arranged for detecting a wavelength in a range comprising the wavelength of the further electromagnetic radiation and excluding the wavelength of the beam of electromagnetic radiation. This is beneficial for realising a relative high signal to noise ratio for the detection unit. In this regard it is noticed that any radiation of the beam of electromagnetic radiation and/or radiation originating from the solidification process is considered noise. A relative high signal to noise ratio is beneficial for allowing the detection unit to receive a relative strong signal of the further electromagnetic radiation and allowing the apparatus to notify relatively accurately drift and either correct for the drift of stop manufacturing of the object. 5
It is advantageous, if the solidifying device comprises the emitter unit, preferably wherein the solidifying device comprises a laser source arranged for emitting the further electromagnetic radiation.
In an embodiment, the scanner device is arranged for moving the beam of the further electromagnetic radiation along the surface level or the support in a predetermined pattern and wherein the detection unit is arranged for detecting the predetermined pattern. This allows to arrive at an apparatus wherein the optical path of the beam of the further electromagnetic radiation and the beam of electromagnetic radiation are at least partly identical, and preferably stationary relative to each other during manufacturing of the object.
In this regard, it is beneficial if the scanner device is arranged for moving a beam of the further electromagnetic radiation along the surface level or the support in a predetermined pattern and the detection unit is arranged such that the optical path of the further electromagnetic radiation, between the bath of powdered material or the support and the detection unit, bypasses the scanner device for detecting the further electromagnetic radiation. This allows to arrive at an apparatus wherein the optical path of the emitter unit and the solidifying device are at least partly identical, and preferably stationary relative to each other during manufacturing of the object while the detection unit is not affected by drift of the scanner device.
Preferably, the detection unit is arranged such that the optical path of the further electromagnetic radiation, between the bath of powdered material or the support and the detection unit, bypasses any scanner device of the apparatus for detecting the further electromagnetic radiation.
In another embodiment, the emitter unit is arranged such that a further optical path of the further electromagnetic radiation, between the bath of powdered material or the support and the emitter unit, bypasses the scanner device for providing a predetermined pattern of the further electromagnetic radiation on the surface level or the support and wherein the scanner device is arranged for moving a detection area of the detection unit along the surface level or the support for detecting, by the detection unit, the predetermined pattern.
In this regard, it is beneficial if the emitter unit is arranged such that the optical path of the further electromagnetic radiation, between the bath of powdered material or the support and the emitter unit, bypasses the scanner device and the detection unit is arranged for detecting the further electromagnetic radiation at the surface level of the bath of powdered material or the support via the scanner device. This allows to arrive at an apparatus wherein the optical path of the detection unit and the solidifying device are at least partly identical, and preferably stationary relative to each other during manufacturing of the object while the emitter unit is not affected by drift of the scanner device.
Preferably, the optical path of the further electromagnetic radiation, between the bath of powdered material or the support and the emitter unit, bypasses any scanner device comprises by the apparatus.
Drift of the scanner device relative to the coordinate system may for instance be detected, by the detection unit, by determining the position of the predetermined pattern, an element or a plurality of elements thereof before start of the production and subsequently, during manufacturing, detecting, by the detection unit, that a shift of the predetermined pattern or an element of the predetermined pattern has occurred when the predetermined pattern is emitted again.
The position dependent drift may for instance be determined by determining mutual positions of elements of the plurality of elements, i.e. a distance between elements, preferably neighbouring elements of the plurality of elements.
Preferably, the position of the detection unit and/or the emitter unit is fixed relative to the process chamber. This is beneficial for allowing to realize a relative accurate determination of drift of the scanner device, thereby allowing a relative accurate calibration.
Preferably, the apparatus further comprises: - a determining unit, communicatively coupled to the scanner device and the detection unit, arranged for determining that an actual position of an element of the predetermined pattern differs from an expected position of the element of the predetermined pattern; - a calibration unit, communicatively coupled to the determining unit, arranged for generating updated calibration data taking into account the difference, determined by the determining unit, between the actual position and the expected position, such that an updated actual position of the element of the predetermined pattern corresponds to the expected position of the element of the predetermined pattern; and - a control unit, communicatively coupled to the scanner device and the calibration unit, arranged for controlling the scanner device according to the calibration data.
By providing the determining unit a drift of the scanner device may be determined, by the determining unit, through a comparison of the actual position and the expected position of the element of the predetermined pattern. In case the determining unit determines that the actual position of the element differs from the expected position, calibration of the scanner device is required as regards the element of the predetermined pattern.
Preferably, the determining unit is arranged for determining that the difference between the actual position of the element of the predetermined pattern and the expected position of the element of the predetermined pattern exceeds a predetermined distance.
In this regard, it is advantageous, if the calibration unit is arranged for generating the updated calibration data when the determining unit determines that the difference exceeds the predetermined distance and maintain current calibration data when the determining unit determines that the difference is less than the predetermined distance. This is beneficial for allowing to realize a relative high accuracy of producing the object while maintaining a relative short manufacturing time.
Preferably, the apparatus according to the first aspect of the present disclosure is further provided with a recoating device comprising: - a supply unit for supplying a layer of powdered material to the bath of powdered material; and - a levelling unit which is arranged to be displaced along the surface level of the bath of powdered material for levelling the surface level of the bath of powdered material.
In this regard, it is beneficial if - the emitter unit is arranged for emitting the further electromagnetic radiation on the surface level of the bath of powdered material or the support during or after the levelling, by the levelling unit, of the surface level, during production of the object and/or; - the detection unit is arranged for detecting the further electromagnetic radiation during or after the levelling, by the levelling unit, of the surface level, during production of the object and/or; - the determining unit is arranged for determining that the actual position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern during, before or after the levelling, by the levelling unit, of the surface level, during production of the object.
Preferably, the detection unit comprises a camera for detecting a position of the further electromagnetic radiation at the surface level of the bath of powdered material or the support. A camera is beneficial for allowing to detect the position of the further electromagnetic radiation and/or an element of the predetermined pattern in a relative accurate manner.
In addition, a camera allows to register a plurality of elements of the predetermined pattern. This is beneficial for realizing a relative fast and accurate calibration of the apparatus.
It is beneficial if at least one of the detection unit and the emitter unit is maintained in a predetermined position relative to the support and/or the surface level of the bath of powdered material. This is beneficial for realizing a relative accurate measure of the drift of the scanner device.
Preferably, the apparatus further comprises: - a yet further solidifying device arranged for emitting a yet further beam of electromagnetic radiation for melting a yet further selective layer-part of the powdered material of the bath of powdered material, - a yet further scanner device arranged for moving the yet further beam of electromagnetic radiation along the surface level of the bath of powdered material; wherein the detection unit is further arranged for detecting a position of the yet further electromagnetic radiation at the surface level of the bath of powdered material or the support via the yet further scanner device or arranged such that an optical path of the yet further beam of electromagnetic radiation, between the bath of powdered material or the support and the detection unit, bypasses the scanner device for detecting the position of the yet further beam of electromagnetic radiation at the surface level of the bath of powdered material or the support.
According to the second aspect, the present disclosure relates to a method of calibrating an apparatus for producing an object by means of additive manufacturing according to the first aspect of the present disclosure, the method comprising the steps of: - emitting, by the emitter unit, the further electromagnetic radiation on the surface level of the bath of powdered material or the support; - detecting, by the detection unit, a position of the emitted further electromagnetic radiation on the surface level of the bath of powdered material or the support.
Embodiments of the apparatus according to the first aspect correspond to or are similar to embodiments of the method according to the second aspect of the present disclosure.
Effects of the apparatus according to the first aspect correspond to or are similar to effects of the method according to the second aspect of the present disclosure.
Preferably, during the step of detecting, the position of the further electromagnetic radiation at the surface level of the bath of powdered material or the support is detected by the camera of the detection unit.
Preferably, during the step of emitting, the beam of the further electromagnetic radiation, is moved, by the scanner device, along the surface level or the support in a predetermined pattern and wherein, during the step of detecting, the detection unit detects the predetermined pattern. This allows to arrive at a method wherein the optical path of the beam of the further electromagnetic radiation and the beam of electromagnetic radiation are at least partly identical, and preferably stationary relative to each other during manufacturing of the object.
It is beneficial if, during the step of emitting, the emitter unit provides the predetermined pattern of the further electromagnetic radiation on the surface level or the support and wherein, during the step of detecting, the detection area of the detection unit is moved, by the scanner device, along the surface level or the support for detecting the predetermined pattern. This allows to arrive at a method wherein the optical path of the detection unit and the solidifying device are at least partly identical, and preferably stationary relative to each other during manufacturing of the object while the emitter unit is not affected by drift of the scanner device.
Preferably, the method further comprises the steps of: - determining, by the determining unit, that the actual position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern;
- generating, by the calibration unit, updated calibration data taking into account the difference, determined by the determining unit, between the actual position and the expected position, such that the updated actual position of the element of the predetermined pattern corresponds to the expected position of the element of the predetermined pattern; and - controlling, by the control unit, the scanner device according to the updated calibration data.
Preferably, the method further comprises the steps of: - supplying, by the supply unit, the layer of powdered material to the bath of powdered material; and - levelling, by the levelling unit, the surface level of the bath of powdered material.
In this regard, it is advantageous if the method further comprises the steps of: - emitting, by the emitter unit, the further electromagnetic radiation on the surface level of the bath of powdered material or the support during or after the step of levelling, by the levelling unit, of the surface level, during production of the object and/or; - detecting, by the detection unit, the further electromagnetic radiation during or after the levelling, by the levelling unit, of the surface level, during production of the object and/or; - determining, by the determining unit, that the actual position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern during or after the levelling, by the levelling unit, of the surface level, during production of the object.
Preferably, the method further comprises the step of: - generating, by the calibration unit, updated calibration data taking into account the difference, determined during the step of determining, between the actual position and the expected position during or after the levelling, by the levelling unit, of the surface level, during production of the object.
Preferably, the method further comprises the step of: - controlling, by the control unit, the scanner device according to the updated calibration data during or after the levelling, by the levelling unit, of the surface level, during production of the object.
In an embodiment of the method according to the second aspect of the present disclosure, the method further comprises the steps of: - receiving, by the process chamber, a bath of powdered material to produce the object; - positioning, by the support, the object in relation to a surface level of the bath of powdered material; - melting, by the solidifying device arranged for emitting a beam of electromagnetic radiation, a selective layer-part of the powdered material of the bath of powdered material; - moving, by the scanner device, the beam of electromagnetic radiation along the surface level of the bath of powdered material.
In an embodiment of the method according to the second disclosure, the apparatus is arranged for performing the steps of determining and/or generating before a predetermined step of levelling.
In this regard, it is beneficial if an interval between the predetermined step of levelling and a subsequent predetermined step of levelling is a predetermined interval.
Preferably the predetermined interval is larger than one step of levelling. This is beneficial for allowing to realize a relative high accuracy of producing the object while maintaining a relative short manufacturing time by avoiding determining the difference and/or generating calibration data before every step of levelling
In this regard, it is advantageous if the predetermined interval is a predetermined time period or a predetermined number of levelling steps. This is beneficial for allowing to realize a relative high accuracy of producing the object while maintaining a relative short manufacturing time by avoiding determining the difference and/or generating calibration data before every step of levelling.
The present disclosure will now be explained by means of a description of embodiments of an apparatus according to the present disclosure and a method according to the present disclosure, in which reference is made to the following schematic figures, in which:
Fig. 1: a side view of an apparatus according to the first aspect of the present disclosure is shown;
Fig. 2: a side view of another apparatus according to the first aspect of the present disclosure is shown;
Fig. 3: a side view of yet another apparatus according to the first aspect of the present disclosure is shown;
Fig. 4: a side view of a further apparatus according to the first aspect of the present disclosure is shown;
Fig. 5: a side view of yet a further apparatus according to the first aspect of the present disclosure is shown;
Fig. 6: a method of operating the apparatus according to Fig. 1, Fig. 2, Fig. 4 or Fig. 5 is shown;
Fig. 7: a method of operating the apparatus according to Fig. 3 is shown.
In Fig. 1 is shown a side view of an apparatus 1 according to the first aspect of the present disclosure. The apparatus 1 comprises a process chamber 5 for receiving a bath of powdered material 7 to produce an object 3, a support 9 for positioning the object 3 in relation to a surface level L of the bath of powdered material 7, a semi- transparent mirror 11, and a solidifying device 13 arranged for emitting a beam of electromagnetic radiation 15. The beam of electromagnetic radiation 15 is suitable for melting a selective layer-part of the powdered material in the bath of powdered material 7. The apparatus 1 also comprises a scanner device 17 arranged for moving the beam of electromagnetic radiation 15 along the surface level L of the bath of powdered material 7.
The apparatus 1 further comprises an emitter unit 19, a detection unit 23, comprising a camera 39. The emitter unit 19 is arranged for emitting a beam of further electromagnetic radiation 21 on the surface level L of the bath of powdered material 7 or the support 9. Preferably a wavelength of the beam of electromagnetic radiation 15 and a wavelength of the further beam of electromagnetic radiation 21 are different.
In Fig. 1, the scanner device 17 is arranged for moving the beam of the further electromagnetic radiation 21 along the surface level L or the support 9 in a predetermined pattern and the detection unit 23 is arranged such that the optical path of the further electromagnetic radiation 21, between the bath of powdered material 7 or the support 9 and the detection unit 23, bypasses the scanner device 17 for detecting the further electromagnetic radiation 21. The detection unit 23 is arranged such that it may detect the predetermined pattern or at least an element or further element of the predetermined pattern.
The apparatus 1 as shown in Fig. 1 further comprises a determining unit 27, a calibration unit 29, and a control unit 31. The determining unit 27 is communicatively coupled to the scanner device 17 and the detection unit 23 and is arranged for determining that an actual position of an element of the predetermined pattern differs from an expected position of the element of the predetermined pattern. The calibration unit 29 is coupled to the determining unit 27 and arranged for generating updated calibration data taking into account the difference, determined by the determining unit 27, between the actual position and the expected position, such that an updated actual position of the element of the predetermined pattern corresponds to the expected position of the element of the predetermined pattern. The control unit 31 is communicatively coupled to the scanner device 17 and the calibration unit 29 and arranged for controlling the scanner device 17 according to the updated calibration data.
As shown in Fig. 1, the apparatus 1 also comprises a recoating device 33, comprising a supply unit 35 for supplying a layer of powdered material 7 to the bath of powdered material 7, and a levelling unit 37 which is arranged to be displaced along the surface level L of the bath of powdered material 7 for levelling the surface level L of the bath of powdered material 7.
A side view of an apparatus 401 according to the first aspect of the present disclosure is shown in Fig. 2. Elements of apparatus 401 that are identical or similar to elements of apparatus 1 are provided with the same reference numerals. In apparatus 401 the solidifying device 13 comprises the emitter unit 19 and a laser source 25 such that the laser source 25 is arranged for emitting the further electromagnetic radiation 21 and the electromagnetic radiation 15.
In Fig. 3 is shown a side view of an apparatus 101 according to the first aspect of the present disclosure. Elements of apparatus 101 that are identical or similar to elements of apparatus 1 are provided with the same reference numerals.
In Fig. 3, the emitter unit 19 is arranged such that the optical path of the further electromagnetic radiation 21, between the bath of powdered material 7 or the support 9 and the emitter unit 19, bypasses the scanner device 17. The detection unit 23 is arranged for detecting the further electromagnetic radiation 21 at the surface level L of the bath of powdered material 7 or the support 9 via the scanner device 17. The scanner device 17 is arranged for moving a detection area of the detection unit 23 along the surface level L or the support 9 for detecting, by the detection unit 23, the predetermined pattern or at least an element or further element of the predetermined pattern.
A side view of an apparatus 501 according to the first aspect of the present disclosure is shown in Fig. 4. Elements of apparatus 501 that are identical or similar to elements of apparatus 1 and/or 401 are provided with the same reference numerals.
In apparatus 501 the emitter unit 19 comprises a further solidifying device 41 arranged for emitting the beam of further electromagnetic radiation 21, wherein the beam of further electromagnetic radiation 21 is further arranged for melting a further selective layer-part of the powdered material of the bath of powdered material 7. The apparatus 501 further comprises a further scanner device 43 arranged for moving the beam of further electromagnetic radiation 21 along the surface level L of the bath of powdered material 7.
Fig. 5 shows a side view of an apparatus 601 according to the present disclosure. Elements of apparatus 801 that are identical or similar to elements of apparatus 1, 401 and/or 501 are provided with the same reference numerals. The apparatus 601 comprises a yet further solidifying device 45 arranged for emitting a yet further beam of electromagnetic radiation 47 for melting a yet further selective layer- part of the powdered material of the bath of powdered material 7. The apparatus 601 further comprises a yet further scanner device 49 arranged for moving the yet further beam of electromagnetic radiation 47 along the surface level L of the bath of powdered material 7.
In Fig. 5, the detection unit 23 is further arranged such that an optical path of the yet further beam of electromagnetic radiation 47, between the bath of powdered material 7 or the support 9 and the detection unit 23, bypasses the yet further scanner device 49 for detecting the position of the yet further beam of electromagnetic radiation 47 at the surface level L of the bath of powdered material 7 or the support 9.
In a further embodiment, instead of arranging the detection unit 23 such that an optical path of the yet further beam of electromagnetic radiation 47, between the bath of powdered material 7 or the support 9 and the detection unit 23, bypasses the yet further scanner device 49 for detecting the position of the yet further beam of electromagnetic radiation 47 at the surface level L of the bath of powdered material 7 or the support 9, the detection unit 23 of the apparatus 601 may also be arranged for detecting a position of the yet further electromagnetic radiation 47 at the surface level
L of the bath of powdered material 7 or the support 9 via the yet further scanner device 49.
The apparatus 1 may be used during a method 201 for manufacturing the object 3. During a step of emitting 203 of method 201 as shown in Fig. 6, the beam of the further electromagnetic radiation 21 is moved, by the scanner device 17, along the surface level L or the support 9 in the predetermined pattern and during the step of detecting 205 of the method 201, and during a step of detecting 205 of the method 201, the detection unit 23 detects the predetermined pattern. In the method 201, a pattern of the emitted further electromagnetic radiation 21 on the surface level L of the bath of powdered material 7 or the support 9 the detected pattern may differ relative to the predetermined pattern that is expected to be detected by the detection unit 23 and this could be an indication that the scanner device 17 needs to be recalibrated.
The method 201 as shown in Fig. 6 further comprises the steps of determining 207 that the actual position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern, generating 209 updated calibration data taking into account the difference between the actual position and the expected position, such that the updated actual position of the element of the predetermined pattern corresponds to the expected position of the element of the predetermined pattern, controlling 211 the scanner device 17 according to the updated calibration data, supplying 213 the layer of powdered material 7 to the bath of powdered material 7, and levelling 215 the surface level L of the bath of powdered material 7.
In Fig. 6 the method 201 further comprises the steps of emitting 217 the further electromagnetic radiation 21 on the surface level L of the bath of powdered material 7 or the support 9 after the step of levelling 215 of the surface level L during production of the object 3, detecting 219 the further electromagnetic radiation 21 after the step of levelling 215 of the surface level L during production of the object 3, and determining 221 that the actual position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern after the step of levelling 215 of the surface level L during production of the object 3.
The method 201 as shown in Fig. 6 also comprises the steps of generating 223 updated calibration data taking into account the difference between the actual position and the expected position after the step of levelling 215 of the surface level L during production of the object 3, and controlling 225 the scanner device 17 according to the updated calibration data after the step of levelling 215 of the surface level L during production of the object 3.
The apparatus 101 may be used during a method 301 for manufacturing the object 3. During a step of emitting 303 of method 301 as shown in Fig. 7, the emitter unit 19 provides the predetermined pattern of the further electromagnetic radiation 21 on the surface level L or the support 9 and during the step of detecting 305 of the method 301, the detection area of the detection unit 23 is moved, by the scanner device 17, along the surface level L or the support 9 for detecting the predetermined pattern. In the method 301, the detector unit 23 may detect via the scanner device 17 a pattern of the further electromagnetic radiation 21 that is different relative to the predetermined pattern of the emitted further electromagnetic radiation 21, provided by the emitter unit 19, on the surface level L of the bath of powdered material 7 or the support 9 and this could be an indication that the scanner device 17 needs to be recalibrated.
Steps following after the step of detecting 205 of method 201 are identical or similar to steps following after the step of detecting 305 of method 301 and are provided with the same reference numerals increased by a hundred.

Claims (20)

CONCLUSIESCONCLUSIONS 1. Een apparaat (1, 101, 401, 501, 601) voor het produceren van een object (3) door middel van additieve vervaardiging, het apparaat (1, 101, 401, 501, 601) omvattende: - een proceskamer (5) voor het ontvangen van een bad poedermateriaal (7) voor het produceren van het object (3); - een ondersteuning (8) voor het positioneren van het object (3) ten opzichte van een oppervlakteniveau (L) van het bad poedermateriaal (7); - een stolinrichting (13) ingericht voor het uitzenden van een bundel elektromagnetische straling (15) voor het smelten van een selectief laagdeel van het poedermateriaal van het bad poedermateriaal (7); - een scannerinrichting (17) ingericht voor het verplaatsen van de bundel elektromagnetische straling (15) langs het oppervlakteniveau (L) van het bad poedermateriaal (7); - een uitzendeenheid (19) ingericht voor het uitzenden van verdere elektromagnetische straling (21), bij voorkeur een bundel van verdere elektromagnetische straling (21), aan het oppervlakteniveau (L) van het bad poedermateriaal (7) of de ondersteuning (9); - een detectie-eenheid (23) ingericht voor het detecteren van een positie van de verdere elektromagnetische straling (21) , bij voorkeur een bundel van verdere elektromagnetische straling (21), op het oppervlakteniveau {L) van het bad poedermateriaal (7) of de ondersteuning (9) via de scannerinrichting (17) of ingericht zodanig dat een optisch pad van de verdere elektromagnetische straling (21), tussen het bad poedermateriaal (7) of de ondersteuning (9) en de detectie-eenheid (23), de scannerinrichting (17) omzeilt voor het detecteren van de positie van de verdere elektromagnetische straling (21) op het oppervlakteniveau (L) van het bad poedermateriaal (7) of de ondersteuning (9).1. An apparatus (1, 101, 401, 501, 601) for producing an object (3) by means of additive manufacturing, the apparatus (1, 101, 401, 501, 601) comprising: - a process chamber (5 ) for receiving a bath of powder material (7) for producing the object (3); - a support (8) for positioning the object (3) relative to a surface level (L) of the bath of powder material (7); - a solidification device (13) designed to emit a beam of electromagnetic radiation (15) for melting a selective layer part of the powder material of the bath of powder material (7); - a scanner device (17) designed to move the beam of electromagnetic radiation (15) along the surface level (L) of the bath of powder material (7); - an emitting unit (19) adapted to emit further electromagnetic radiation (21), preferably a beam of further electromagnetic radiation (21), at the surface level (L) of the bath of powder material (7) or the support (9); - a detection unit (23) designed to detect a position of the further electromagnetic radiation (21), preferably a beam of further electromagnetic radiation (21), at the surface level {L) of the bath of powder material (7) or the support (9) via the scanner device (17) or arranged in such a way that an optical path of the further electromagnetic radiation (21), between the bath of powder material (7) or the support (9) and the detection unit (23), the scanner device (17) to detect the position of the further electromagnetic radiation (21) at the surface level (L) of the bath of powder material (7) or the support (9). 2. Het apparaat (401) volgens conclusie 1, waarbij de stolinrichting (13) de uitzendeenheid (19) omvat, bij voorkeur waarbij de stolinrichting (13) een laserbron (25) omvat ingericht voor het uitzenden van de verdere elektromagnetische straling (21).The apparatus (401) according to claim 1, wherein the solidification device (13) comprises the emitting unit (19), preferably wherein the solidification device (13) comprises a laser source (25) arranged to emit the further electromagnetic radiation (21) . 3. Het apparaat (1, 401, 501, 601) volgens conclusie 1 of 2, waarbij de scannerinrichting (17) is ingericht voor het verplaatsen van de bundel van de verdere elektromagnetische straling (21) langs het oppervlakteniveau (L) of de ondersteuning (9) in een vooraf bepaald patroon en waarbij de detectie-eenheid (23) is ingericht voor het detecteren van het vooraf bepaalde patroon. The apparatus (1, 401, 501, 601) according to claim 1 or 2, wherein the scanner device (17) is arranged to move the beam of the further electromagnetic radiation (21) along the surface level (L) or the support (9) in a predetermined pattern and wherein the detection unit (23) is adapted to detect the predetermined pattern. 4, Het apparaat (101) volgens conclusie 1, waarbij de uitzendeenheid (19) is ingericht zodat dat een verder optisch pad van de verdere elektromagnetische straling (21), tussen het bad poedermateriaal (7) of de ondersteuning (9) en de uitzendeenheid (19), de scannerinrichting (17) omzeilt voor het verschaffen van een vooraf bepaald patroon van de verdere elektromagnetische straling (21) aan het oppervlakteniveau (L) of de ondersteuning (9) en waarbij de scannerinrichting (17) is ingericht voor het verplaatsen van een detectiegebied van de detectie-eenheid (23) langs het oppervlakteniveau (L) of de ondersteuning (9) voor het detecteren, door de detectie- eenheid (23), van het vooraf bepaalde patroon.The apparatus (101) according to claim 1, wherein the emitting unit (19) is arranged to provide a further optical path of the further electromagnetic radiation (21), between the bath of powder material (7) or the support (9) and the emitting unit (19), bypasses the scanner device (17) to provide a predetermined pattern of the further electromagnetic radiation (21) to the surface level (L) or the support (9) and wherein the scanner device (17) is arranged to move of a detection area of the detection unit (23) along the surface level (L) or the support (9) for detecting, by the detection unit (23), the predetermined pattern. 5. Het apparaat (1, 101, 401, 501, 601) volgens conclusie 3 of 4, waarbij het apparaat (1, 101, 401, 501, 601) verder omvat: - een bepalingseenheid (27), communicatief gekoppeld aan de scannerinrichting (17) en de detectie-eenheid (23), ingericht voor het bepalen dat een actuele positie van een element van het vooraf bepaalde patroon verschilt van een verwachte positie van het element van het vooraf bepaalde patroon; - een kalibratie-eenheid (29), communicatief gekoppeld aan de bepalingseenheid (27), ingericht voor het genereren van bijgewerkte kalibratiegegevens met inachtneming van het verschil, bepaald door de bepalingseenheid (27), tussen de actuele positie en de verwachte positie, zodanig dat een bijgewerkte actuele positie van het element van het vooraf bepaalde patroon overeenkomt met de verwachte positie van het element van het vooraf bepaalde patroon; en - een aanstuureenheid (31), communicatief gekoppeld aan de scannerinrichting (17) en de kalibratie-eenheid (29), ingericht voor het controleren van de scannerinrichting (17) volgens de bijgewerkte kalibratiegegevens.The device (1, 101, 401, 501, 601) according to claim 3 or 4, wherein the device (1, 101, 401, 501, 601) further comprises: - a determination unit (27), communicatively coupled to the scanner device (17) and the detection unit (23), adapted to determine that a current position of an element of the predetermined pattern differs from an expected position of the element of the predetermined pattern; - a calibration unit (29), communicatively coupled to the determining unit (27), adapted to generate updated calibration data taking into account the difference, determined by the determining unit (27), between the actual position and the expected position, such that an updated current position of the element of the predetermined pattern corresponds to the expected position of the element of the predetermined pattern; and - a control unit (31), communicatively coupled to the scanner device (17) and the calibration unit (29), adapted to control the scanner device (17) according to the updated calibration data. 6. Het apparaat (1, 101, 401, 501, 601) volgens een van de voorgaande conclusies, waarbij het apparaat (1, 101, 401, 501, 801) verder is voorzien van een coatinginrichting (33) omvattende:The device (1, 101, 401, 501, 601) according to any of the preceding claims, wherein the device (1, 101, 401, 501, 801) further includes a coating device (33) comprising: - een aanlevereenheid (35) voor het aanleveren van een laag poedermateriaal aan het bad poedermateriaal (7); en - een nivelleringseenheid (37) welke is ingericht om te verplaatsen langs het oppervlakteniveau (L) van het bad poedermateriaal (7) voor het nivelleren van het opperviakteniveau (L) van het bad poedermateriaal (7).- a supply unit (35) for supplying a layer of powder material to the bath of powder material (7); and - a leveling unit (37) arranged to move along the surface level (L) of the bath of powder material (7) for leveling the surface level (L) of the bath of powder material (7). 7. Het apparaat (1, 101, 401, 501, 601) volgens conclusie 6, waarbij: - de uitzendeenheid (19) is ingericht voor het uitzenden van de verdere elektromagnetische straling (21) aan het oppervlakteniveau (L) van het bad poedermateriaal (7) of de ondersteuning (9) gedurende of na het nivelleren, door de nivelleringseenheid (37), van het oppervlakteniveau (L), gedurende productie van het object (3); en/of - de detectie-eenheid (23) is ingericht voor het detecteren van de verdere elektromagnetische straling (21) gedurende of na het nivelleren, door de nivelleringseenheid (37), van het oppervlakteniveau (L), gedurende productie van het object (3); en/of - de bepalingseenheid (27) is ingericht voor het bepalen dat de actuele positie van het element van het vooraf bepaalde patroon verschilt van de verwachte positie van het element van het vooraf bepaalde patroon gedurende of na het nivelleren, door de nivelleringseenheid (37), van het oppervlakteniveau (L), gedurende productie van het object (3).The device (1, 101, 401, 501, 601) according to claim 6, wherein: - the emitting unit (19) is arranged to emit the further electromagnetic radiation (21) at the surface level (L) of the bath of powder material (7) or the support (9) during or after leveling, by the leveling unit (37), of the surface level (L), during production of the object (3); and/or - the detection unit (23) is designed to detect further electromagnetic radiation (21) during or after leveling, by the leveling unit (37), of the surface level (L), during production of the object ( 3); and/or - the determination unit (27) is adapted to determine that the current position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern during or after leveling, by the leveling unit (37 ), from the surface level (L), during production of the object (3). 8. Het apparaat (1, 101, 401, 501, 601) volgens een van de voorgaande conclusies, waarbij de detectie-eenheid (23) een camera (39) omvat voor het detecteren van een positie van de verdere elektromagnetische straling (21) op het oppervlakteniveau (L) van het bad poedermateriaal (7) of de ondersteuning (9).The device (1, 101, 401, 501, 601) according to any one of the preceding claims, wherein the detection unit (23) comprises a camera (39) for detecting a position of the further electromagnetic radiation (21) at the surface level (L) of the powder material bath (7) or the support (9). 9. Het apparaat (1, 101, 401, 501, 601) volgens een van de voorgaande conclusies, waarbij ten minste een van de detectie-eenheid (23) en de uitzendeenheid (19) is gehouden in een vooraf bepaalde positie ten opzichte van het oppervlakteniveau (L) van het bad poedermateriaal (7), de ondersteuning (9) en/of de proceskamer (5).The device (1, 101, 401, 501, 601) according to any one of the preceding claims, wherein at least one of the detection unit (23) and the transmitting unit (19) is held in a predetermined position with respect to the surface level (L) of the bath of powder material (7), the support (9) and/or the process chamber (5). 10. Het apparaat (501, 601) volgens een van de voorgaande conclusies, waarbij de uitzendeenheid (19) een verdere stolinrichting (41) omvat ingericht voor het uitzenden van de bundel van verdere elektromagnetische straling (21), waarbij de bundel van verdere elektromagnetische straling (21) verder is ingericht voor het smelten van een verder selectief laagdeel van het poedermateriaal van het bad poedermateriaal (7) en waarbij het apparaat (1, 101, 401, 501, 601) verder een verdere scannerinrichting (43) omvat ingericht voor het bewegen van de bundel van verdere elektromagnetische straling (21) langs het oppervlak (L) van het bad poedermateriaalThe device (501, 601) according to any one of the preceding claims, wherein the emitting unit (19) comprises a further solidification device (41) adapted to emit the beam of further electromagnetic radiation (21), wherein the beam of further electromagnetic radiation radiation (21) is further adapted for melting a further selective layer part of the powder material of the powder material bath (7) and wherein the device (1, 101, 401, 501, 601) further comprises a further scanner device (43) adapted for moving the beam of further electromagnetic radiation (21) along the surface (L) of the bath of powder material (7).(7). 11. Het apparaat (601) volgens een van de voorgaande conclusies, waarbij het apparaat (601) verder omvat: - een nog verdere stolinrichting (45) ingericht voor het uitzenden van een nog verdere bundel elektromagnetische straling (47) voor het smelten van een nog verder selectief laagdeel van het poedermateriaal van het bad poedermateriaal (7); - een nog verdere scannerinrichting (49) ingericht voor het bewegen van de nog verdere bundel elektromagnetische straling (47) langs het oppervlak (L) van het bad poedermateriaal (7); waarbij de detectie-eenheid (23) verder is ingericht voor het detecteren van een positie van de nog verdere elektromagnetische straling (47) op het oppervlak (L) van het bad poedermateriaal (7) of de ondersteuning (9) via de nog verdere scannerinrichting (49) of ingericht zodanig dat een optisch pad van de nog verdere bundel elektromagnetische straling (47), tussen het bad poedermateriaal (7) of de ondersteuning (9) en de detectie-eenheid (23), de nog verdere scannerinrichting (49) omzeilt voor het detecteren van de positie van de nog verdere bundel van elektromagnetische straling (47) op het oppervlak (L) van het bad poedermateriaal (7) of de ondersteuning (9).The device (601) according to any one of the preceding claims, wherein the device (601) further comprises: - a still further solidification device (45) adapted to emit a still further beam of electromagnetic radiation (47) for melting a a further selective layer part of the powder material of the powder material bath (7); - a still further scanner device (49) designed for moving the still further beam of electromagnetic radiation (47) along the surface (L) of the bath of powder material (7); wherein the detection unit (23) is further adapted to detect a position of the still further electromagnetic radiation (47) on the surface (L) of the bath of powder material (7) or the support (9) via the still further scanner device (49) or arranged in such a way that an optical path of the still further beam of electromagnetic radiation (47), between the bath of powder material (7) or the support (9) and the detection unit (23), the still further scanner device (49) bypasses to detect the position of the still further beam of electromagnetic radiation (47) on the surface (L) of the bath of powder material (7) or the support (9). 12. Het apparaat (1, 101, 401, 501, 601) volgens een van de voorgaande conclusies, waarbij een golflengte van de bundel elektromagnetische straling (15) en een golflengte van de verdere elektromagnetische straling (21) verschillend zijn.The device (1, 101, 401, 501, 601) according to any one of the preceding claims, wherein a wavelength of the beam of electromagnetic radiation (15) and a wavelength of the further electromagnetic radiation (21) are different. 13. Een werkwijze (201, 301} voor het kalibreren van het apparaat (1, 101, 401, 501, 801) voor het produceren van een object (3) door middel van additieve vervaardiging volgens een van de voorgaande conclusies, de werkwijze (201, 301) omvattende de stappen van: - het uitzenden (203, 303), door de uitzendeenheid (19), van de verdere elektromagnetische straling (21) aan het oppervlak (L) van het bad poedermateriaal (7) of de ondersteuning (9);A method (201, 301} for calibrating the apparatus (1, 101, 401, 501, 801) for producing an object (3) by additive manufacturing according to any one of the preceding claims, the method ( 201, 301) comprising the steps of: - emitting (203, 303), through the emitting unit (19), the further electromagnetic radiation (21) at the surface (L) of the powder bath material (7) or the support ( 9); - het detecteren (205, 305), door de detectie-eenheid (23), van een positie van de uitgezonden verdere elektromagnetische straling (21) aan het oppervlakteniveau (L) van het bad poedermateriaal (7) of de ondersteuning (9).- detecting (205, 305), by the detection unit (23), a position of the emitted further electromagnetic radiation (21) at the surface level (L) of the bath of powder material (7) or the support (9). 14. De werkwijze (201 volgens conclusie 13 met gebruikmaking van het apparaat (1, 401, 501, 601) volgens conclusie 3, waarbij gedurende de stap van het uitzenden (203), de bundel van de verdere elektromagnetische straling (21) wordt verplaatst door de scannerinrichting (17), langs het oppervlakteniveau (L) of de ondersteuning (9) in een vooraf bepaald patroon en waarbij, gedurende de stap van het detecteren (205), de detectie-eenheid (23) het vooraf bepaalde patroon detecteert.The method (201 according to claim 13 using the apparatus (1, 401, 501, 601) according to claim 3, wherein during the step of transmitting (203), the beam of the further electromagnetic radiation (21) is displaced through the scanner device (17), along the surface level (L) or the support (9) in a predetermined pattern and wherein, during the detecting step (205), the detection unit (23) detects the predetermined pattern. 15. De werkwijze (301 volgens conclusie 13 met gebruikmaking van het apparaat (101) volgens conclusie 4, waarbij gedurende de stap van het uitzenden (303, de uitzendeenheid (19) het vooraf bepaalde patroon verschaft van de verdere elektromagnetische straling (21) aan het oppervlakteniveau (L) of de ondersteuning (9) en waarbij, gedurende de stap van het detecteren (305), het detectiegebied van de detectie-eenheid (23) wordt verplaatst, door de scannereenheid (17), langs het oppervlakteniveau (L) of de ondersteuning (9) voor het detecteren van het vooraf bepaalde patroon.The method (301) of claim 13 using the apparatus (101) of claim 4, wherein during the step of transmitting (303), the transmitting unit (19) provides the predetermined pattern of the further electromagnetic radiation (21) to the surface level (L) or the support (9) and wherein, during the detecting step (305), the detection area of the detection unit (23) is moved, by the scanner unit (17), along the surface level (L) or the support (9) for detecting the predetermined pattern. 16. De werkwijze (201, 301) volgens een van de conclusies 13 tot 15 met gebruikmaking van het apparaat (1, 101, 401, 501, 601) volgens conclusie 5, waarbij de werkwijze (201, 301) verder omvat de stappen van: - het bepalen (207, 307), door de bepalingseenheid (27), dat de actuele positie van het element van het vooraf bepaalde patroon verschilt van de verwachte positie van het element van het vooraf bepaalde patroon; - het genereren (209, 309), door de kalibratie-eenheid (29), van bijgewerkte kalibratiegegevens met inachtneming van het verschil, bepaald door de bepalingseenheid (27), tussen de actuele positie en de verwachte positie, zodanig dat de bijgewerkte actuele positie van het element van het vooraf bepaalde patroon overeenkomt met de verwachte positie van het element van het vooraf bepaalde patroon; en - het aansturen (211, 311), door de aanstuureenheid (31), van de scannerinrichting (17) volgens de bijgewerkte kalibratiegegevens.The method (201, 301) according to any one of claims 13 to 15 using the apparatus (1, 101, 401, 501, 601) according to claim 5, wherein the method (201, 301) further comprises the steps of : - determining (207, 307), by the determining unit (27), that the actual position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern; - generating (209, 309), by the calibration unit (29), updated calibration data taking into account the difference, determined by the determination unit (27), between the actual position and the expected position, such that the updated actual position of the element of the predetermined pattern corresponds to the expected position of the element of the predetermined pattern; and - controlling (211, 311), by the control unit (31), the scanner device (17) according to the updated calibration data. 17. De werkwijze (201, 301) volgens een van de conclusies 10 tot 13 met gebruikmaking van het apparaat (1, 101, 401, 501, 601) volgens conclusie 8, waarbij de werkwijze (201, 301) verder omvat de stappen van: - het verschaffen (213, 313), door de verschafeenheid (35), van de laag van poedermateriaal aan het bad poedermateriaal (7); en - het nivelleren (215, 315), door de nivelleringseenheid (37), van het oppervlakteniveau (L) van het bad poedermateriaal (7).The method (201, 301) according to any one of claims 10 to 13 using the apparatus (1, 101, 401, 501, 601) according to claim 8, wherein the method (201, 301) further comprises the steps of : - providing (213, 313), by the providing unit (35), the layer of powder material to the bath of powder material (7); and - leveling (215, 315), by the leveling unit (37), the surface level (L) of the bath of powder material (7). 18. De werkwijze (201, 301) volgens conclusie 17 met gebruikmaking van het apparaat (1, 101, 401, 501, 601) volgens conclusie 7, waarbij de werkwijze (201, 301) verder omvat de stappen van: - het uitzenden (217, 317), door de uitzendeenheid (19), van de verdere elektromagnetische straling (21) aan het oppervlakteniveau (L) van het bad poedermateriaal (7) of de ondersteuning (9) gedurende of na de stap van het nivelleren (215, 315), door de nivelleringseenheid (37), van het oppervlakteniveau {(L), gedurende productie van het object (3); en/of - het detecteren (219, 319), door de detectie-eenheid (23), van de verdere elektromagnetische straling 921) gedurende of na de stap van het nivelleren (215, 315), door de nivelleringseenheid (37), van het oppervlakteniveau (L), gedurende productie van het object (3); en/of - het bepalen (221, 321), door de bepalingseenheid (27), dat de actuele positie van het element van het vooraf bepaalde patroon verschilt van de verwachte positie van het element van het vooraf bepaalde patroon gedurende, voor of na de stap van het nivelleren (215, 315), door de nivelleringseenheid (37), van het oppervlakteniveau (L), gedurende productie van het object (3).The method (201, 301) of claim 17 using the apparatus (1, 101, 401, 501, 601) of claim 7, wherein the method (201, 301) further comprises the steps of: - transmitting ( 217, 317), through the emitting unit (19), of the further electromagnetic radiation (21) at the surface level (L) of the bath of powder material (7) or the support (9) during or after the leveling step (215, 315), by the leveling unit (37), of the surface level {(L), during production of the object (3); and/or - detecting (219, 319), by the detection unit (23), the further electromagnetic radiation (921) during or after the leveling step (215, 315), by the leveling unit (37), of the surface level (L), during production of the object (3); and/or - determining (221, 321), by the determining unit (27), that the actual position of the element of the predetermined pattern differs from the expected position of the element of the predetermined pattern during, before or after the step of leveling (215, 315), by the leveling unit (37), of the surface level (L), during production of the object (3). 19. De werkwijze (201, 301) volgens conclusie 15 met gebruikmaking van het apparaat (1, 101, 401, 501, 601) volgens conclusie 5, waarbij de werkwijze (201, 301) verder omvat de stap van: - het genereren (223, 323), door de kalibratie-eenheid (29), van bijgewerkte kalibratiegegevens met inachtneming van het verschil, bepaald gedurende de stap van het bepalen (221, 321), tussen de actuele positie en de verwachte positie gedurende of na de stap van het nivelleren (215, 315), door de nivelleringseenheid (37), van het oppervlakteniveau (L), gedurende productie van het object (3).The method (201, 301) according to claim 15 using the apparatus (1, 101, 401, 501, 601) according to claim 5, wherein the method (201, 301) further comprises the step of: - generating ( 223, 323), by the calibration unit (29), of updated calibration data taking into account the difference, determined during the determining step (221, 321), between the actual position and the expected position during or after the determining step the leveling (215, 315), by the leveling unit (37), of the surface level (L), during production of the object (3). 20. De werkwijze (201, 301) volgens conclusie 19 met gebruikmaking van het apparaat (1, 101, 401, 501, 601) volgens conclusie 5, waarbij de werkwijze (201, 301) verder omvat de stap van: - het aansturen (225, 325), door de aanstuureenheid (31), van de scannerinrichting (17) volgens de bijgewerkte kalibratiedata gedurende of na de stap van het nivelleren (215, 315), door de nivelleringseenheid (37), van het oppervlakteniveau (L), gedurende productie van het object (3).The method (201, 301) according to claim 19 using the apparatus (1, 101, 401, 501, 601) according to claim 5, wherein the method (201, 301) further comprises the step of: - controlling ( 225, 325), by the control unit (31), of the scanner device (17) according to the updated calibration data during or after the leveling step (215, 315), by the leveling unit (37), of the surface level (L), during production of the object (3).
NL2033096A 2022-09-21 2022-09-21 An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus NL2033096B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2033096A NL2033096B1 (en) 2022-09-21 2022-09-21 An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus
PCT/NL2023/050472 WO2024063641A1 (en) 2022-09-21 2023-09-13 An apparatus for producing an object by powder bed additive manufacturing and a method of calibrating the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2033096A NL2033096B1 (en) 2022-09-21 2022-09-21 An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus

Publications (1)

Publication Number Publication Date
NL2033096B1 true NL2033096B1 (en) 2024-03-26

Family

ID=83691670

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2033096A NL2033096B1 (en) 2022-09-21 2022-09-21 An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus

Country Status (2)

Country Link
NL (1) NL2033096B1 (en)
WO (1) WO2024063641A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832415A (en) 1994-10-18 1998-11-03 Eos Gmbh Electro Optical Systems Method and apparatus for calibrating a control apparatus for deflecting a laser beam
US20180281067A1 (en) * 2017-04-04 2018-10-04 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
US20180370146A1 (en) * 2016-01-05 2018-12-27 Eos Gmbh Electro Optical Systems Method for calibrating an apparatus for manufacturing a three-dimensional object
US20190118481A1 (en) * 2016-04-25 2019-04-25 Renishaw Plc Calibration method of plurality of scanners in an additive manufacturing apparatus
US20190270161A1 (en) * 2016-11-11 2019-09-05 Trumpf Laser- Und Systemtechnik Gmbh Calibrating a scanner device
EP3659726A1 (en) * 2018-11-27 2020-06-03 Additive Industries B.V. Method for calibrating an apparatus for producing an object by means of additive manufacturing, and apparatus for the method
US20220024122A1 (en) * 2018-11-12 2022-01-27 Aconity Gmbh Improved calibration method for a system for powder bed-based generating of three-dimensional components by means of electromagnetic radiation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832415A (en) 1994-10-18 1998-11-03 Eos Gmbh Electro Optical Systems Method and apparatus for calibrating a control apparatus for deflecting a laser beam
US20180370146A1 (en) * 2016-01-05 2018-12-27 Eos Gmbh Electro Optical Systems Method for calibrating an apparatus for manufacturing a three-dimensional object
US20190118481A1 (en) * 2016-04-25 2019-04-25 Renishaw Plc Calibration method of plurality of scanners in an additive manufacturing apparatus
US20190270161A1 (en) * 2016-11-11 2019-09-05 Trumpf Laser- Und Systemtechnik Gmbh Calibrating a scanner device
US20180281067A1 (en) * 2017-04-04 2018-10-04 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
US20220024122A1 (en) * 2018-11-12 2022-01-27 Aconity Gmbh Improved calibration method for a system for powder bed-based generating of three-dimensional components by means of electromagnetic radiation
EP3659726A1 (en) * 2018-11-27 2020-06-03 Additive Industries B.V. Method for calibrating an apparatus for producing an object by means of additive manufacturing, and apparatus for the method

Also Published As

Publication number Publication date
WO2024063641A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
EP3607389B1 (en) Optical fiducial generation for galvanometric scanner calibration
US10596803B2 (en) Calibration systems for calibrating recoater devices of additive manufacturing systems and related program products
EP3224025B1 (en) Apparatus for producing an object by means of additive manufacturing and method for calibrating an apparatus
EP4242762A2 (en) 3d printing apparatus and method
US20180361728A1 (en) Device and Method for Calibrating a Device for Generatively Manufacturing a Three-Dimensional Object
NL2019603B1 (en) Method for calibrating an apparatus for producing an object by means of additive manufacturing
KR100919622B1 (en) Distance sensor of paste dispenser
EP3560635A1 (en) Additive manufacturing system with moveable sensors
EP3587999B1 (en) Measuring device and fabricating apparatus
US11850792B2 (en) Method for calibrating an apparatus for producing an object by means of additive manufacturing, and apparatus for the method
NL2033096B1 (en) An apparatus for producing an object by means of additive manufacturing and a method of calibrating the apparatus
US20180347969A1 (en) Calibration systems for calibrating energy emitting devices of additive manufacturing systems and related program products
EP3424022A1 (en) An additive manufacturing method and system
US11518099B2 (en) Apparatus and method for producing an object by means of additive manufacturing
JP2009109355A (en) Apparatus and method for distance measurement, and apparatus for thickness measurement using distance measurement apparatus
NL2013861B1 (en) Apparatus for producing an object by means of additive manufacturing.
JP2002525620A (en) Depth measurement and depth control or automatic depth control of recesses formed by laser processing equipment
WO2013054445A1 (en) Laser processing control device and laser processing control method
JP6740319B2 (en) Method for determining position data for a device for additive manufacturing of three-dimensional objects
JP3531629B2 (en) Laser beam deflection control method in stereolithography system
NL2022840B1 (en) Method and apparatus for producing an object by means of additive manufacturing
EP3626437A1 (en) Method for calibrating an apparatus for additively manufacturing threedimensional objects
JP6392804B2 (en) Laser processing apparatus that performs gap sensor correction and reflected light profile measurement simultaneously, and correlation table generation method for laser processing apparatus
US20220080524A1 (en) Systems and methods for aligning lasers using sensor data
JP2003001713A (en) Method and apparatus for controlling deflection of laser beam in stereo lithography system