WO2013054445A1 - Laser processing control device and laser processing control method - Google Patents

Laser processing control device and laser processing control method Download PDF

Info

Publication number
WO2013054445A1
WO2013054445A1 PCT/JP2011/073694 JP2011073694W WO2013054445A1 WO 2013054445 A1 WO2013054445 A1 WO 2013054445A1 JP 2011073694 W JP2011073694 W JP 2011073694W WO 2013054445 A1 WO2013054445 A1 WO 2013054445A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
amount
correction amount
pulse laser
lens
Prior art date
Application number
PCT/JP2011/073694
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 健治
正史 成瀬
智彦 石塚
悌史 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/073694 priority Critical patent/WO2013054445A1/en
Priority to TW101105418A priority patent/TW201315562A/en
Publication of WO2013054445A1 publication Critical patent/WO2013054445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Definitions

  • the present invention relates to a laser processing control apparatus and a laser processing control method for controlling a laser beam irradiation position on a substrate to be processed.
  • a laser processing apparatus for drilling a printed wiring board is equipped with, for example, a galvano scanner and an f ⁇ lens.
  • a part of the f ⁇ lens is absorbed at the time of laser propagation, and the temperature of the f ⁇ lens rises. Since the refractive index of the f ⁇ lens changes as the temperature rises, the laser light is refracted by the f ⁇ lens, and the irradiation position of the laser light changes. Therefore, it is common to measure the temperature of the f ⁇ lens and correct the laser irradiation position by a galvano scanner based on the temperature.
  • a temperature sensor is installed on the side surface of the f ⁇ lens, and the laser light irradiation position is corrected by a galvano scanner based on the temperature measured by the temperature sensor.
  • the present invention has been made in view of the above, and an object thereof is to obtain a laser processing control apparatus and a laser processing control method capable of accurately correcting the irradiation position of a laser beam.
  • the present invention provides a pulse detector that detects the emission timing of a pulse laser emitted from a laser oscillator to the substrate to be processed, and the pulse emitted within a predetermined time.
  • An integration unit that integrates each energy amount of the laser to calculate an energy integration amount, and a correction that corrects the irradiation position of the pulse laser to a desired position when a positional deviation occurs in the pulse laser irradiated to the substrate to be processed
  • a correction amount calculation unit that calculates a positional deviation correction amount according to the energy integrated amount
  • a processing unit that processes the substrate to be processed using the pulse laser, based on the positional deviation correction amount
  • a control unit that controls to correct the irradiation position of the pulse laser.
  • the irradiation position of the pulse laser is corrected by the positional deviation correction amount according to the integrated energy amount of the pulse laser emitted within a predetermined time, it is possible to accurately correct the irradiation position of the laser beam. Has the effect of becoming.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the position correction amount calculation apparatus.
  • FIG. 3 is a flowchart showing a processing procedure of the laser processing according to the embodiment.
  • FIG. 4 is a diagram for explaining control of the galvano mechanism by the position correction amount calculation device.
  • FIG. 5 is a diagram illustrating the relationship between the rising temperature of the f ⁇ lens and the amount of displacement.
  • FIG. 6 is a diagram illustrating a relationship between a passing position of the laser light on the f ⁇ lens and a positional deviation correction amount.
  • FIG. 7 is a diagram for explaining misalignment and misalignment correction.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the position correction amount calculation apparatus.
  • FIG. 3 is a flowchart showing a processing procedure of the laser processing
  • FIG. 8 is a diagram illustrating a relationship between an actual temperature change of the f ⁇ lens and a temperature detected by the temperature detection unit.
  • FIG. 9 is a diagram for explaining a method of calculating the energy integration amount.
  • FIG. 10 is a diagram for explaining a change in the amount of misalignment when the waiting time is set short.
  • FIG. 11 is a diagram for explaining a change in the amount of misalignment when a long waiting time is set.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment.
  • the laser processing apparatus 100 is an apparatus that performs laser drilling on a substrate (workpiece) 4 that is a substrate to be processed by irradiating a laser beam L (pulse laser beam).
  • the laser processing apparatus 100 according to the present embodiment performs laser drilling on the substrate 4 while correcting the positional deviation of the laser light irradiation position caused by the temperature rise of the f ⁇ lens 34 or the like.
  • the laser processing apparatus 100 includes a laser oscillator 1 that oscillates a laser beam L, a laser processing unit 3 that performs laser processing on the substrate 4, and a laser processing control apparatus 2.
  • the laser oscillator 1 oscillates the laser beam L and sends it to the laser processing unit 3.
  • the laser processing unit 3 includes galvanometer mirrors 35X and 35Y, galvanometer scanners 36X and 36Y, an f ⁇ lens (condensing lens) 34, an XY table (processing table) 32, and a temperature detection unit (temperature sensor) 38.
  • the galvano scanners 36X and 36Y have a function of moving the irradiation position on the substrate 4 by changing the trajectory of the laser beam L, and the laser beam L is placed in each processing area (galvano area) set on the substrate 4. Scan two-dimensionally.
  • the galvano scanners 36X and 36Y rotate the galvanometer mirrors 35X and 35Y to a predetermined angle in order to scan the laser light L in the XY direction.
  • Galvano mirrors 35X and 35Y reflect the laser beam L and deflect it at a predetermined angle.
  • the galvanometer mirror 35X deflects the laser beam L in the X direction
  • the galvanometer mirror 35Y deflects the laser beam L in the Y direction.
  • the f ⁇ lens 34 is a lens having telecentricity.
  • the f ⁇ lens 34 deflects the laser light L in a direction perpendicular to the main surface of the substrate 4 and condenses (irradiates) the laser light L at a processing position (hole position Hx) of the substrate 4.
  • the substrate 4 is a processing object such as a printed wiring board, and drilling is performed at a plurality of locations.
  • the substrate 4 has, for example, a three-layer structure of copper foil (conductor layer), resin (insulating layer), and copper foil (conductor layer).
  • the XY table 32 places the substrate 4 and moves in the XY plane by driving a motor (not shown). As a result, the XY table 32 moves the substrate 4 in the in-plane direction.
  • the galvano area is a range (scannable area) in which laser processing is possible by the operation of the galvano mechanism (galvano scanners 36X and 36Y, galvano mirrors 35X and 35Y) without moving the XY table 32.
  • the galvano mechanism galvano scanners 36X and 36Y, galvano mirrors 35X and 35Y
  • the galvano mechanism operates so that each hole position Hx set in the galvano area becomes an irradiation position of the laser light L in order. Movement between the galvano areas by the XY table 32 and two-dimensional scanning of the laser light L in the galvano area by the galvano mechanism are sequentially performed in the substrate 4. Thereby, all hole positions Hx in the substrate 4 are laser processed.
  • the temperature detection unit 38 is disposed at the end (outer periphery) of the f ⁇ lens 34, measures the base temperature of the f ⁇ lens 34, and sends the measurement result to the position correction amount calculation device 20.
  • the temperature detection unit 38 may be either a contact type or a non-contact type.
  • the laser processing control device 2 is connected to the laser oscillator 1 and the laser processing unit 3 (not shown), and controls the laser oscillator 1 and the laser processing unit 3.
  • the laser processing control device 2 instructs the laser oscillator 1 and the laser processing unit 3 on the laser processing conditions set in the processing program.
  • the laser processing conditions here include the pulse emission timing of the laser beam L, the laser beam irradiation position (coordinate values on the substrate 4), and the like.
  • the laser processing control device 2 includes a position correction amount calculation device 20 and a control unit 30.
  • the position correction amount calculation device 20 calculates the correction amount (position shift correction amount) of the laser light irradiation position based on the energy amount (for example, the total value) of the laser light L applied to the substrate 4 within the latest predetermined time. It is a device to calculate.
  • the position correction amount calculation device 20 outputs instruction information (position shift correction amount) to the galvano mechanism to the control unit 30 so that the laser beam L is irradiated to a desired position on the substrate 4.
  • the control unit 30 controls the operation of the galvano mechanism and the like based on the machining program, and corrects the operation of the galvano mechanism based on the instruction information from the position correction amount calculation device 20.
  • the control unit 30 controls and corrects the laser light irradiation position by controlling and correcting the operation of the galvano mechanism.
  • the temperature of the f ⁇ lens 34 increases.
  • the laser beam irradiation position on the substrate 4 is shifted from the desired position.
  • a positional deviation correction amount corresponding to the temperature gradient of the f ⁇ lens 34 is calculated in advance, and the laser beam irradiation position is corrected using this positional deviation correction amount.
  • the temperature gradient of the f ⁇ lens 34 changes, for example, according to the energy integrated amount of the laser light L irradiated to the substrate 4 within a predetermined time. For this reason, the relationship (correction coefficient etc.) between the energy integrated amount and the positional deviation correction amount is derived in advance.
  • the position correction amount calculation device 20 calculates the integrated energy amount of the laser light L irradiated to the substrate 4 within a predetermined time. Further, the position correction amount calculation device 20 calculates a position shift correction amount using the correction coefficient and the calculated energy integration amount, and corrects the laser beam irradiation position using the position shift correction amount to the control unit 30. Let it be done.
  • the positional deviation of the irradiation position of the laser light L occurs due to a temperature gradient in the f ⁇ lens 34, but the correction coefficient may be set without measuring the temperature gradient in the f ⁇ lens 34.
  • an actual positional deviation amount corresponding to the energy integration amount is measured, and a correction coefficient is set based on the measurement result.
  • a relationship between the energy integration amount and the positional deviation amount is derived, and a correction coefficient is set based on the derived relationship.
  • the correction coefficient is set based on the temperature gradient in the f ⁇ lens 34
  • the temperature gradient in the f ⁇ lens 34 is actually measured during laser processing. Then, a relationship between the temperature gradient and the energy integration amount is derived, and a relationship between the temperature gradient and the actual positional deviation amount is derived. Based on these derivation results, a relationship between the positional deviation amount and the energy integration amount is derived, and a correction coefficient is set based on the derivation results.
  • correction is made for each combination of the base temperature of the f ⁇ lens 34 (hereinafter referred to as the lens temperature) and the irradiation position of the laser light L (coordinate values in the galvano area) (hereinafter referred to as the galvano coordinates). Set the coefficient.
  • the laser processing control device 2 is configured by a computer or the like, and controls the laser oscillator 1 and the laser processing unit 3 by NC (Numerical Control) control or the like.
  • the laser processing control device 2 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the CPU reads a processing program stored in the ROM by an input from an input unit (not shown) by the user.
  • Various processes are executed by expanding the program storage area in the RAM.
  • Various data generated during this processing is temporarily stored in a data storage area formed in the RAM. Thereby, the laser processing control device 2 controls the laser oscillator 1 and the laser processing unit 3.
  • the position correction amount calculation device 20 selects a correction coefficient used for position shift correction based on the lens temperature and galvano coordinates.
  • FIG. 2 is a block diagram showing the configuration of the position correction amount calculation apparatus.
  • the position correction amount calculation device 20 includes a pulse detection unit 21, a pulse storage unit 22, an integration unit 23, a correction coefficient storage unit 24, a correction amount calculation unit 25, an irradiation position input unit 26, a temperature input unit 27, and an output unit 28. ing.
  • the pulse detector 21 detects the laser beam L emitted from the laser oscillator 1 to the laser processing unit 3.
  • the pulse detection unit 21 stores the detected emission timing (time) of each laser beam L in the pulse storage unit 22.
  • the pulse storage unit 22 is a memory that stores the emission timing of each pulse.
  • the pulse storage unit 22 stores the emission timing of each pulse for a predetermined time (for example, 60 seconds), for example. Then, the pulse storage unit 22 deletes the stored emission timing when a predetermined time has elapsed. For example, the pulse storage unit 22 deletes the old emission timing by overwriting the new emission timing in the storage area of the emission timing that has become old after a predetermined time.
  • the integrating unit 23 calculates the integrated energy amount of the laser light L emitted from the laser oscillator 1 to the laser processing unit 3 during a predetermined time (for example, from 30 seconds before to the present time). For example, the integration unit 23 calculates the energy integration amount by multiplying the number of pulses of the laser light L emitted from the laser oscillator 1 during a predetermined time and the energy amount per pulse. The integration unit 23 calculates the energy integration amount on the assumption that the energy amount per pulse is a constant value.
  • the correction coefficient storage unit 24 is a memory that stores correction coefficients.
  • the correction coefficient storage unit 24 stores a correction coefficient for each combination of lens temperature and galvano coordinates.
  • the irradiation position input unit 26 extracts galvano coordinates from the machining program and sends them to the correction amount calculation unit 25.
  • the irradiation position input unit 26 extracts galvano coordinates from an irradiation position command (information indicating the position where the laser beam L is irradiated) sent from the laser processing control device 2 to the laser processing unit 3, and calculates a correction amount calculation unit 25. May be sent to
  • the temperature input unit 27 inputs the lens temperature detected by the temperature detection unit 38 and sends the lens temperature to the correction amount calculation unit 25.
  • the correction amount calculation unit 25 extracts a correction coefficient corresponding to the lens temperature and the galvano coordinates from the correction coefficient storage unit 24.
  • the correction amount calculation unit 25 calculates the positional deviation correction amount using the energy integration amount calculated by the integration unit 23 and the correction coefficient extracted from the correction coefficient storage unit 24.
  • the correction amount calculation unit 25 sends the calculated positional deviation correction amount to the output unit 28.
  • the output unit 28 sends the positional deviation correction amount to the control unit 30.
  • FIG. 3 is a flowchart showing a processing procedure of the laser processing according to the embodiment.
  • the laser processing control device 2 controls the laser oscillator 1 and the laser processing unit 3 in accordance with the processing program. Thereby, the emission of the laser beam L is started (step S10).
  • Laser light L is emitted from the laser oscillator 1 at a timing according to the machining program.
  • the galvano mechanism, the XY table 32, and the like operate so that the laser light L is irradiated to a position according to the processing program.
  • the temperature detector 38 detects the lens temperature.
  • the pulse detection unit 21 detects the laser beam L emitted from the laser oscillator 1 to the laser processing unit 3 and stores the detected emission timing of each laser beam L in the pulse storage unit 22 (step S20).
  • the irradiation position input unit 26 extracts the galvano coordinates from the machining program and sends them to the correction amount calculation unit 25. Further, the temperature input unit 27 sends the lens temperature detected by the temperature detection unit 38 to the correction amount calculation unit 25.
  • the integrating unit 23 calculates an energy integrated amount of the laser light L emitted from the laser oscillator 1 to the laser processing unit 3 during a predetermined time (for example, a time Tx described later) (step S30).
  • the correction amount calculation unit 25 extracts a correction coefficient corresponding to the lens temperature and galvano coordinates from the correction coefficient storage unit 24 (step S40).
  • the correction amount calculation unit 25 calculates the positional deviation correction amount by multiplying the energy integration amount calculated by the integration unit 23 and the correction coefficient extracted from the correction coefficient storage unit 24 (step S50).
  • the correction amount calculation unit 25 sends the positional deviation correction amount to the output unit 28.
  • the output unit 28 sends the positional deviation correction amount to the control unit 30.
  • the control unit 30 controls the galvano scanners 36X and 36Y so as to correct the positional deviation of the laser light irradiation position using the positional deviation correction amount (step S60).
  • the galvano scanners 36X and 36Y rotate the galvanometer mirrors 35X and 35Y so that the irradiation position of the laser beam L is corrected by the positional deviation correction amount.
  • FIG. 4 is a diagram for explaining the control of the galvano mechanism by the position correction amount calculation device.
  • the position correction amount calculation device 20 detects the laser light L emitted from the laser oscillator 1.
  • the lens temperature detected by the temperature detection unit 38 is input to the position correction amount calculation device 20.
  • the position correction amount calculation device 20 calculates a position shift correction amount based on the integrated amount of energy of the laser light L emitted from the laser oscillator 1 from a predetermined time before the current time, the lens temperature, and the galvano coordinates. To do. Then, the position correction amount calculation device 20 corrects the control of the galvano mirrors 35X and 35Y by the galvano scanners 36X and 36Y based on the position shift correction amount.
  • FIG. 5 is a diagram illustrating the relationship between the rising temperature of the f ⁇ lens and the amount of displacement.
  • the horizontal axis is the rising temperature of the f ⁇ lens 34
  • the vertical axis is the amount of positional deviation from the target position of the laser light irradiation position.
  • a characteristic 51 in FIG. 5 is an actual measurement value
  • a characteristic 52 is a simulation value.
  • the positional deviation correction of the laser light irradiation position is performed so that the positional deviation amount becomes zero.
  • the positional deviation amount of the laser light irradiation position differs depending on which position on the f ⁇ lens 34 the laser light L is irradiated on the substrate 4 (galvano coordinates). For this reason, in this embodiment, a misalignment correction amount is set according to the passing position of the laser light L on the f ⁇ lens 34. In other words, a correction coefficient corresponding to the galvano coordinates is selected, and the misalignment correction amount is calculated using the selected correction coefficient.
  • FIG. 6 is a diagram showing the relationship between the passing position of the laser beam on the f ⁇ lens and the positional deviation correction amount.
  • the horizontal axis is the distance from the center of the f ⁇ lens 34 (hereinafter referred to as the lens center) (the position through which the laser light L passes), and the vertical axis is the positional deviation correction amount.
  • FIG. 6 shows the amount of misalignment correction when the temperature of the f ⁇ lens 34 increases by 1 ° C.
  • the laser light L scanned by the f ⁇ lens 34 and the galvano scanners 36X and 36Y is displaced in the direction of expansion and contraction with respect to the center of the lens due to the temperature rise of the f ⁇ lens 34.
  • the positional deviation amount is substantially zero, and the positional deviation correction amount is also substantially zero.
  • the amount of misalignment increases and the amount of misalignment correction also increases.
  • the amount of misalignment correction is set larger as the end of the f ⁇ lens 34.
  • the correction coefficient is corrected so that the positional deviation correction amount increases toward the end of the f ⁇ lens 34.
  • Larger misalignment correction is performed. For example, as shown in FIG. 6, the misalignment correction amount is changed according to a linear function. As a result, the relationship between the distance from the lens center and the positional deviation correction amount is approximated by the first order, and the irradiation position of the laser light L is corrected.
  • the correction amount calculation unit 25 calculates the passing position (the distance from the lens center) of the laser light L on the f ⁇ lens 34 based on the galvano coordinates. Then, the correction amount calculation unit 25 extracts a correction coefficient corresponding to the passing position of the laser light L on the f ⁇ lens 34 from the correction coefficient storage unit 24. Thereby, the correction amount calculation unit 25 calculates the misalignment correction amount using the correction coefficient corresponding to the galvano coordinates.
  • the correction according to the linear function is an example, and the correction may be performed using another method (such as a complex approximate expression of a quadratic function or more).
  • the correction method is set according to the structure of the f ⁇ lens 34 and other structures (optical characteristics) in the laser processing apparatus 100.
  • FIG. 7 is a diagram for explaining misalignment and misalignment correction.
  • FIG. 7 shows galvano area states 40A to 40C in which the positional deviation correction is performed.
  • Each state 40A to 40C shows the relationship between the target irradiation position 41 of the laser beam L and the laser beam irradiation position 42.
  • State 40A is a state of the galvano area immediately after the start of laser processing.
  • the state 40B is a state of the galvano area when the positional accuracy is deteriorated with the temperature increase of the f ⁇ lens 34 (before the positional deviation correction).
  • the state 40C is a state of the galvano area after the positional deviation correction is performed when the temperature of the f ⁇ lens 34 rises.
  • state 40A immediately after the start of laser processing, there is no displacement between the target irradiation position 41 of the laser beam L and the laser beam irradiation position 42.
  • state 40B when the temperature of the f ⁇ lens 34 increases, a positional deviation occurs between the target irradiation position 41 of the laser light L and the laser light irradiation position 42.
  • state 40C by performing the positional deviation correction, the positional deviation between the target irradiation position 41 of the laser light L and the laser light irradiation position 42 is eliminated.
  • FIG. 8 is a diagram showing the relationship between the actual temperature change of the f ⁇ lens and the temperature detected by the temperature detector.
  • the horizontal axis represents time (elapsed time from laser processing), and the vertical axis represents the temperature of the f ⁇ lens 34.
  • a characteristic 45 shown in FIG. 8 is an actual temperature change of the f ⁇ lens 34, and a characteristic 46 is a temperature change detected by the temperature detection unit 38.
  • the temperature of the f ⁇ lens 34 is a constant value (temperature t1).
  • the actual temperature of the f ⁇ lens 34 gradually increases as indicated by the characteristic 45, and the temperature of the f ⁇ lens 34 is a constant value after the elapse of the predetermined time. (Temperature t2). This is because the temperature of the f ⁇ lens 34 rises when the laser light L passes through the f ⁇ lens 34, but the temperature of the f ⁇ lens 34 returns to the original temperature when a predetermined time elapses. In other words, the temperature of the f ⁇ lens 34 is raised only for a predetermined time after the laser light L passes through the f ⁇ lens 34.
  • the temperature of the f ⁇ lens 34 returns to the original temperature after the elapse of a predetermined time after the irradiation of the laser beam L is stopped.
  • the f ⁇ lens 34 maintains the temperature t2 after rising to the temperature t2.
  • the temperature detection unit 38 Since the temperature detection unit 38 is disposed at the end of the f ⁇ lens 34, it takes time until the temperature detection unit 38 detects the temperature increase of the f ⁇ lens 34 after the temperature of the f ⁇ lens 34 actually increases. Cost. For this reason, the actual temperature change (characteristic 45) of the f ⁇ lens 34 and the temperature change (characteristic 46) detected by the temperature detection unit 38 are different. Specifically, as shown in the characteristic 46, the detected temperature of the f ⁇ lens 34 gradually increases after a lapse of a time T2 after the time T1, and the temperature of the f ⁇ lens 34 is a constant value (after a predetermined time elapses). Temperature t2). For this reason, the temperature detection unit 38 detects that the f ⁇ lens 34 has reached the temperature t2 after the actual temperature of the f ⁇ lens 34 has reached the temperature t2.
  • the misalignment correction amount is calculated based on the integrated energy amount of the laser light L. Then, a correction coefficient corresponding to the detected temperature of the f ⁇ lens 34 is selected as necessary. For this reason, it is possible to calculate an accurate misregistration correction amount.
  • the correction amount calculation unit 25 may select a correction coefficient corresponding to the energy integration amount.
  • FIG. 9 is a diagram for explaining a method of calculating the energy integration amount.
  • the laser pulse Px indicates the x-th pulse (x is a natural number).
  • the integration unit 23 of the position correction amount calculation device 20 calculates the integrated amount of laser pulse energy during the time (integration section) Tx. In other words, the integration unit 23 calculates a moving average of the energy integration amount. For example, when the nth pulse (n is a natural number) of laser pulses Pn is irradiated, the energy amounts of the 1st to nth laser pulses P1 to Pn during the time Tx are integrated to calculate the integrated energy amount.
  • the energy amount of the laser pulse after the time Tx is subtracted from the integrated energy amount, and when a new laser pulse is emitted during the time Tx, a new laser pulse is generated. Is added to the integrated energy amount.
  • FIG. 9 shows a case where there is no laser pulse that has passed the time Tx when the (n + 1) th pulse of the laser pulse P (n + 1) is emitted. For this reason, there is no energy amount subtracted from energy integration amount.
  • the energy amount of the (n + 1) th pulse is added to the integrated energy amount.
  • the integrated energy amount when the (n + 1) th pulse of the laser pulse P (n + 1) is emitted is a value obtained by summing the energy amounts from the laser pulses P1 to P (n + 1).
  • the laser pulses that have passed the time Tx are laser pulses P1 to P (n-2). Therefore, when the laser pulse P (n + 2) of the (n + 2) th pulse is emitted, the energy amount of the laser pulses P1 to P (n-2) is subtracted from the integrated energy amount as the laser pulse after the time Tx. The On the other hand, since the (n + 2) th laser pulse P (n + 2) is emitted during the new time Tx, the energy amount of the (n + 2) th pulse is added to the integrated energy amount. As a result, the integrated energy amount when the (n + 2) -th laser pulse P (n + 2) is emitted is the sum of the energy amounts from the laser pulses P (n ⁇ 1) to P (n + 2). .
  • the time Tx which is the integration interval
  • the integration interval is optimized according to the actual structure and environment around the f ⁇ lens 34.
  • the energy integration amount is calculated on the assumption that all the laser pulses within the time Tx have the same energy amount.
  • the energy amount used for integration according to the time zone within the time Tx. May be changed.
  • the energy amount may be weighted at each laser pulse emission time.
  • a laser pulse irradiated in an old time zone within the time Tx has a small effect on the temperature rise of the f ⁇ lens 34.
  • a laser pulse irradiated in a new time zone within the time Tx has a large effect on the temperature rise of the f ⁇ lens 34.
  • the amount of energy corresponding to the elapsed time from the pulse irradiation may be set for the laser pulse irradiated within the time Tx.
  • a larger energy amount is set for a laser pulse having a shorter elapsed time from pulse irradiation, and a smaller energy amount is set for a laser pulse having a longer elapsed time from pulse irradiation.
  • “0” is set as the energy amount in the laser pulse that has passed the time Tx from the pulse irradiation.
  • FIG. 10 is a diagram for explaining a change in misalignment amount when the waiting time is set short
  • FIG. 11 is a diagram for explaining a change in misalignment amount when the waiting time is set long. is there.
  • FIGS. 10 and 11 the temporal change in the positional deviation amounts 61 and 62 and the f ⁇ lens calculated temperature (simulation value) 60 when the laser processing is performed at a constant speed of 2000 Hz with the energy per pulse being 10 mJ.
  • the horizontal axis in FIGS. 10 and 11 is time, the left side of the vertical axis is the amount of displacement, and the right side of the vertical axis is the f ⁇ lens calculated temperature.
  • the positional deviation amount when there is no positional deviation correction is the positional deviation amount 61
  • the positional deviation amount when there is positional deviation correction is the positional deviation amount 62.
  • the integration interval (time Tx) of the energy integration amount was 30 seconds.
  • FIG. 10 shows misregistration amounts 61 and 62 and f ⁇ lens calculated temperature 60 when laser light irradiation (processing) for 5 seconds and a waiting state for 15 seconds are repeated four times
  • FIG. 11 shows a laser for 5 seconds.
  • the positional deviation amounts 61 and 62 and the f ⁇ lens calculated temperature 60 when the light irradiation and the waiting state for 30 seconds are repeated four times are shown.
  • the f ⁇ lens calculated temperature 60 and the positional deviation amount 61 increase with the laser light L irradiation.
  • the f ⁇ lens calculated temperature 60 and the positional deviation amount 61 are reduced by a predetermined amount, but do not return to the initial values. For this reason, when the first processing to the fourth processing are performed, the f ⁇ lens calculated temperature 60 and the positional deviation amount 61 after each processing gradually increase.
  • the positional deviation correction is performed by an amount corresponding to the f ⁇ lens calculated temperature 60.
  • the value remains stable.
  • the positional offset amount 62 is stabilized with the low value.
  • the f ⁇ lens calculation temperature 60 and the positional deviation amount 61 increase with the laser light L irradiation. Then, after the waiting time (30 seconds) elapses, the f ⁇ lens calculated temperature 60 and the positional deviation amount 61 return to substantially initial values. For this reason, when the first processing to the fourth processing are performed, the f ⁇ lens calculated temperature and the positional deviation amount 61 after each processing reach a predetermined size, and after 30 seconds as a waiting time, The f ⁇ lens calculated temperature 60 and the positional deviation 61 return to substantially initial values. Even in this case, the amount of displacement increases during each processing.
  • the positional deviation correction is performed by an amount corresponding to the f ⁇ lens calculated temperature 60.
  • the value remains stable.
  • the positional offset amount 62 is stabilized with the low value.
  • the positional deviation correction is performed on the f ⁇ lens calculated temperature 60, it is understood that the positional deviation amount is constant (not increased) even if the temperature of the f ⁇ lens 34 is increased. Since the integration interval is 30 seconds, the f ⁇ lens calculated temperature 60 returns to the steady temperature with a waiting time of 30 seconds.
  • the base temperature of the f ⁇ lens 34 changes depending on the installation environment of the laser processing apparatus 100, the operating status of the laser processing apparatus 100, and the like. For this reason, when the base temperature changes to a predetermined value, the positional deviation may be corrected once by the galvano scanners 36X and 36Y at the base temperature. As a result, the misalignment amount is once reset. In this case, it is not necessary to change the correction coefficient according to the base temperature (lens temperature).
  • a positional deviation correction amount at each laser light irradiation position may be calculated in advance.
  • the integrating unit 23 calculates an energy integration amount for irradiating the laser beam irradiation position with the laser beam L with respect to each laser beam irradiation position in advance based on the machining program.
  • the correction amount calculation unit 25 calculates a positional deviation correction amount for each laser light irradiation position.
  • the output unit 28 stores the calculated misregistration correction amounts in a storage unit (not shown) in the laser processing control device 2 or the like.
  • the control unit 30 reads out the stored misregistration correction amount and performs misregistration correction using the misregistration correction amount for each laser light irradiation position.
  • the integrated energy amount corresponding to the temperature of the f ⁇ lens 34 is instantaneously calculated. For this reason, it is possible to accurately correct the misalignment of the irradiation position (processing position) of the laser light L based on the integrated energy amount without causing a time difference. Therefore, it is possible to perform laser processing with good position accuracy.
  • the laser processing control device and the laser processing control method according to the present invention are suitable for drilling a substrate to be processed.

Abstract

A laser processing control device equipped with: a pulse detection unit (21) that detects the emission timing of a pulse laser emitted from a laser oscillator toward a substrate to be processed; an integration unit (23) that calculates an integrated energy amount by integrating each energy amount of the pulse laser emitted within a prescribed period of time; a correction amount calculation unit (25) that calculates a positional deviation correction amount in accordance with the integrated energy value, as a correction amount for correcting the irradiation position of the pulse laser to the desired position, when a positional deviation occurs in the pulse laser emitted toward the substrate to be processed; and a control unit which, with respect to a processing unit that processes the substrate to be processed using the pulse laser, performs control so as to correct the irradiation position of the pulse laser on the basis of the positional deviation correction amount.

Description

レーザ加工制御装置およびレーザ加工制御方法Laser processing control apparatus and laser processing control method
 本発明は、被処理基板へのレーザ光照射位置を制御するレーザ加工制御装置およびレーザ加工制御方法に関する。 The present invention relates to a laser processing control apparatus and a laser processing control method for controlling a laser beam irradiation position on a substrate to be processed.
 プリント配線板に穴あけ加工を行うレーザ加工装置は、例えば、ガルバノスキャナとfθレンズを搭載している。このようなレーザ加工装置では、レーザ伝播時にfθレンズでその一部が吸収され、fθレンズの温度上昇が発生する。そして、温度上昇に伴ってfθレンズの屈折率が変化するので、レーザ光がfθレンズで屈折し、レーザ光の照射位置が変化する。そのため、fθレンズの温度を測定し、その温度に基づいてガルバノスキャナによりレーザ照射位置を補正するのが一般的である。 A laser processing apparatus for drilling a printed wiring board is equipped with, for example, a galvano scanner and an fθ lens. In such a laser processing apparatus, a part of the fθ lens is absorbed at the time of laser propagation, and the temperature of the fθ lens rises. Since the refractive index of the fθ lens changes as the temperature rises, the laser light is refracted by the fθ lens, and the irradiation position of the laser light changes. Therefore, it is common to measure the temperature of the fθ lens and correct the laser irradiation position by a galvano scanner based on the temperature.
 例えば、特許文献1のレーザ加工装置では、fθレンズの側面部に温度センサを設置し、温度センサによる測定温度に基づいて、ガルバノスキャナによりレーザ光照射位置を補正している。 For example, in the laser processing apparatus of Patent Document 1, a temperature sensor is installed on the side surface of the fθ lens, and the laser light irradiation position is corrected by a galvano scanner based on the temperature measured by the temperature sensor.
特開2003-290944号公報JP 2003-290944 A
 しかしながら、上記従来の技術では、温度センサによる測定位置がfθレンズの端部であるので、熱伝導などの影響によりfθレンズの中央部分の温度を瞬時かつ正確に測定することは困難である。これは、fθレンズ内で熱伝導があるため、測定温度に時間差が生じるからである。このため、fθレンズの端部における測定温度に基づいた照射位置の補正では、位置ずれの対策としては不十分であるという問題があった。 However, in the above conventional technique, since the measurement position by the temperature sensor is the end of the fθ lens, it is difficult to instantaneously and accurately measure the temperature of the central portion of the fθ lens due to the influence of heat conduction or the like. This is because there is a time difference in the measured temperature due to heat conduction in the fθ lens. For this reason, there has been a problem that the correction of the irradiation position based on the measured temperature at the end of the fθ lens is not sufficient as a countermeasure for the positional deviation.
 本発明は、上記に鑑みてなされたものであって、レーザ光の照射位置を正確に補正することができるレーザ加工制御装置およびレーザ加工制御方法を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a laser processing control apparatus and a laser processing control method capable of accurately correcting the irradiation position of a laser beam.
 上述した課題を解決し、目的を達成するために、本発明は、レーザ発振器が被処理基板側へ出射したパルスレーザの出射タイミングを検出するパルス検出部と、所定時間内に出射された前記パルスレーザの各エネルギー量を積算してエネルギー積算量を算出する積算部と、前記被処理基板へ照射されるパルスレーザに位置ずれが生じた際に前記パルスレーザの照射位置を所望位置に補正する補正量として、前記エネルギー積算量に応じた位置ずれ補正量を算出する補正量算出部と、前記パルスレーザを用いて前記被処理基板を加工する加工部に対し、前記位置ずれ補正量に基づいて、前記パルスレーザの照射位置を補正するよう制御する制御部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a pulse detector that detects the emission timing of a pulse laser emitted from a laser oscillator to the substrate to be processed, and the pulse emitted within a predetermined time. An integration unit that integrates each energy amount of the laser to calculate an energy integration amount, and a correction that corrects the irradiation position of the pulse laser to a desired position when a positional deviation occurs in the pulse laser irradiated to the substrate to be processed As a quantity, a correction amount calculation unit that calculates a positional deviation correction amount according to the energy integrated amount, and a processing unit that processes the substrate to be processed using the pulse laser, based on the positional deviation correction amount, And a control unit that controls to correct the irradiation position of the pulse laser.
 本発明によれば、所定時間内に出射されたパルスレーザのエネルギー積算量に応じた位置ずれ補正量でパルスレーザの照射位置を補正するので、レーザ光の照射位置を正確に補正することが可能になるという効果を奏する。 According to the present invention, since the irradiation position of the pulse laser is corrected by the positional deviation correction amount according to the integrated energy amount of the pulse laser emitted within a predetermined time, it is possible to accurately correct the irradiation position of the laser beam. Has the effect of becoming.
図1は、実施の形態に係るレーザ加工装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment. 図2は、位置補正量算出装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the position correction amount calculation apparatus. 図3は、実施の形態に係るレーザ加工処理の処理手順を示すフローチャートである。FIG. 3 is a flowchart showing a processing procedure of the laser processing according to the embodiment. 図4は、位置補正量算出装置によるガルバノ機構の制御を説明するための図である。FIG. 4 is a diagram for explaining control of the galvano mechanism by the position correction amount calculation device. 図5は、fθレンズの上昇温度と位置ずれ量との間の関係を示す図である。FIG. 5 is a diagram illustrating the relationship between the rising temperature of the fθ lens and the amount of displacement. 図6は、レーザ光のfθレンズ上の通過位置と位置ずれ補正量との間の関係を示す図である。FIG. 6 is a diagram illustrating a relationship between a passing position of the laser light on the fθ lens and a positional deviation correction amount. 図7は、位置ずれと位置ずれ補正を説明するための図である。FIG. 7 is a diagram for explaining misalignment and misalignment correction. 図8は、fθレンズの実際の温度変化と温度検出部による検出温度との間の関係を示す図である。FIG. 8 is a diagram illustrating a relationship between an actual temperature change of the fθ lens and a temperature detected by the temperature detection unit. 図9は、エネルギー積算量の算出方法を説明するための図である。FIG. 9 is a diagram for explaining a method of calculating the energy integration amount. 図10は、待ち時間を短く設定した場合の位置ずれ量の変化を説明するための図である。FIG. 10 is a diagram for explaining a change in the amount of misalignment when the waiting time is set short. 図11は、待ち時間を長く設定した場合の位置ずれ量の変化を説明するための図である。FIG. 11 is a diagram for explaining a change in the amount of misalignment when a long waiting time is set.
 以下に、本発明の実施の形態に係るレーザ加工制御装置およびレーザ加工制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser processing control device and a laser processing control method according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、実施の形態に係るレーザ加工装置の構成を示す図である。レーザ加工装置100は、レーザ光L(パルスレーザ光)を照射することによって被処理基板である基板(ワーク)4にレーザ穴あけ加工を行う装置である。本実施の形態のレーザ加工装置100は、fθレンズ34の温度上昇などに起因するレーザ光照射位置の位置ずれを補正しながら、基板4へのレーザ穴あけ加工を行う。
Embodiment.
FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment. The laser processing apparatus 100 is an apparatus that performs laser drilling on a substrate (workpiece) 4 that is a substrate to be processed by irradiating a laser beam L (pulse laser beam). The laser processing apparatus 100 according to the present embodiment performs laser drilling on the substrate 4 while correcting the positional deviation of the laser light irradiation position caused by the temperature rise of the fθ lens 34 or the like.
 レーザ加工装置100は、レーザ光Lを発振するレーザ発振器1と、基板4のレーザ加工を行うレーザ加工部3と、レーザ加工制御装置2と、を備えている。レーザ発振器1は、レーザ光Lを発振し、レーザ加工部3に送出する。 The laser processing apparatus 100 includes a laser oscillator 1 that oscillates a laser beam L, a laser processing unit 3 that performs laser processing on the substrate 4, and a laser processing control apparatus 2. The laser oscillator 1 oscillates the laser beam L and sends it to the laser processing unit 3.
 レーザ加工部3は、ガルバノミラー35X,35Y、ガルバノスキャナ36X,36Y、fθレンズ(集光レンズ)34、XYテーブル(加工テーブル)32、温度検出部(温度センサ)38を備えている。 The laser processing unit 3 includes galvanometer mirrors 35X and 35Y, galvanometer scanners 36X and 36Y, an fθ lens (condensing lens) 34, an XY table (processing table) 32, and a temperature detection unit (temperature sensor) 38.
 ガルバノスキャナ36X,36Yは、レーザ光Lの軌道を変化させて基板4への照射位置を移動させる機能を有しており、レーザ光Lを基板4に設定された各加工エリア(ガルバノエリア)内で2次元的に走査する。ガルバノスキャナ36X,36Yは、レーザ光LをX-Y方向に走査するために、ガルバノミラー35X,35Yを所定の角度に回転させる。 The galvano scanners 36X and 36Y have a function of moving the irradiation position on the substrate 4 by changing the trajectory of the laser beam L, and the laser beam L is placed in each processing area (galvano area) set on the substrate 4. Scan two-dimensionally. The galvano scanners 36X and 36Y rotate the galvanometer mirrors 35X and 35Y to a predetermined angle in order to scan the laser light L in the XY direction.
 ガルバノミラー35X,35Yは、レーザ光Lを反射して所定の角度に偏向させる。ガルバノミラー35Xは、レーザ光LをX方向に偏向させ、ガルバノミラー35Yは、レーザ光LをY方向に偏向させる。 Galvano mirrors 35X and 35Y reflect the laser beam L and deflect it at a predetermined angle. The galvanometer mirror 35X deflects the laser beam L in the X direction, and the galvanometer mirror 35Y deflects the laser beam L in the Y direction.
 fθレンズ34は、テレセントリック性を有したレンズである。fθレンズ34は、レーザ光Lを基板4の主面に対して垂直な方向に偏向させるとともに、レーザ光Lを基板4の加工位置(穴位置Hx)に集光(照射)させる。 The fθ lens 34 is a lens having telecentricity. The fθ lens 34 deflects the laser light L in a direction perpendicular to the main surface of the substrate 4 and condenses (irradiates) the laser light L at a processing position (hole position Hx) of the substrate 4.
 基板4は、プリント配線板などの加工対象物であり、複数個所に穴あけ加工が行なわれる。基板4は、例えば、銅箔(導体層)、樹脂(絶縁層)、銅箔(導体層)の3層構造をなしている。 The substrate 4 is a processing object such as a printed wiring board, and drilling is performed at a plurality of locations. The substrate 4 has, for example, a three-layer structure of copper foil (conductor layer), resin (insulating layer), and copper foil (conductor layer).
 XYテーブル32は、基板4を載置するとともに、図示しないモータの駆動によってXY平面内を移動する。これにより、XYテーブル32は、基板4を面内方向に移動させる。 The XY table 32 places the substrate 4 and moves in the XY plane by driving a motor (not shown). As a result, the XY table 32 moves the substrate 4 in the in-plane direction.
 XYテーブル32を移動させることなくガルバノ機構(ガルバノスキャナ36X,36Y、ガルバノミラー35X,35Y)の動作によってレーザ加工が可能な範囲(走査可能領域)がガルバノエリア(スキャンエリア)である。レーザ加工装置100では、XYテーブル32をXY平面内で移動させた後、ガルバノスキャナ36X,36Yによってレーザ光Lを2次元走査する。XYテーブル32は、各ガルバノエリアの中心がfθレンズ34の中心直下(ガルバノ原点)となるよう順番に移動していく。ガルバノ機構は、ガルバノエリア内に設定されている各穴位置Hxが順番にレーザ光Lの照射位置となるよう動作する。XYテーブル32によるガルバノエリア間の移動とガルバノ機構によるガルバノエリア内でのレーザ光Lの2次元走査とが、基板4内で順番に行なわれていく。これにより、基板4内の全ての穴位置Hxがレーザ加工される。 The galvano area (scan area) is a range (scannable area) in which laser processing is possible by the operation of the galvano mechanism ( galvano scanners 36X and 36Y, galvano mirrors 35X and 35Y) without moving the XY table 32. In the laser processing apparatus 100, after the XY table 32 is moved in the XY plane, the laser light L is two-dimensionally scanned by the galvano scanners 36X and 36Y. The XY table 32 moves in order so that the center of each galvano area is directly below the center of the fθ lens 34 (galvano origin). The galvano mechanism operates so that each hole position Hx set in the galvano area becomes an irradiation position of the laser light L in order. Movement between the galvano areas by the XY table 32 and two-dimensional scanning of the laser light L in the galvano area by the galvano mechanism are sequentially performed in the substrate 4. Thereby, all hole positions Hx in the substrate 4 are laser processed.
 温度検出部38は、fθレンズ34の端部(外周部)に配置されてfθレンズ34の基底温度を測定し、測定結果を位置補正量算出装置20に送る。温度検出部38は、接触式、非接触式の何れであってもよい。 The temperature detection unit 38 is disposed at the end (outer periphery) of the fθ lens 34, measures the base temperature of the fθ lens 34, and sends the measurement result to the position correction amount calculation device 20. The temperature detection unit 38 may be either a contact type or a non-contact type.
 レーザ加工制御装置2は、レーザ発振器1およびレーザ加工部3に接続されており(図示せず)、レーザ発振器1およびレーザ加工部3を制御する。レーザ加工制御装置2は、基板4をレーザ加工する際には、加工プログラムに設定されたレーザ加工条件をレーザ発振器1とレーザ加工部3に指示する。ここでのレーザ加工条件は、レーザ光Lのパルス出射タイミング、レーザ光照射位置(基板4上の座標値)などを含んでいる。 The laser processing control device 2 is connected to the laser oscillator 1 and the laser processing unit 3 (not shown), and controls the laser oscillator 1 and the laser processing unit 3. When laser processing the substrate 4, the laser processing control device 2 instructs the laser oscillator 1 and the laser processing unit 3 on the laser processing conditions set in the processing program. The laser processing conditions here include the pulse emission timing of the laser beam L, the laser beam irradiation position (coordinate values on the substrate 4), and the like.
 本実施の形態のレーザ加工制御装置2は、位置補正量算出装置20と制御部30を備えている。位置補正量算出装置20は、直近の所定時間内に基板4に照射されたレーザ光Lのエネルギー量(例えば、合計値)に基づいて、レーザ光照射位置の補正量(位置ずれ補正量)を算出する装置である。位置補正量算出装置20は、レーザ光Lが基板4上の所望位置に照射されるよう、ガルバノ機構への指示情報(位置ずれ補正量)を制御部30に出力する。 The laser processing control device 2 according to the present embodiment includes a position correction amount calculation device 20 and a control unit 30. The position correction amount calculation device 20 calculates the correction amount (position shift correction amount) of the laser light irradiation position based on the energy amount (for example, the total value) of the laser light L applied to the substrate 4 within the latest predetermined time. It is a device to calculate. The position correction amount calculation device 20 outputs instruction information (position shift correction amount) to the galvano mechanism to the control unit 30 so that the laser beam L is irradiated to a desired position on the substrate 4.
 制御部30は、加工プログラムに基づいてガルバノ機構などの動作を制御するとともに、位置補正量算出装置20からの指示情報に基づいてガルバノ機構の動作を補正する。制御部30は、ガルバノ機構の動作を制御、補正することにより、レーザ光照射位置を制御、補正する。 The control unit 30 controls the operation of the galvano mechanism and the like based on the machining program, and corrects the operation of the galvano mechanism based on the instruction information from the position correction amount calculation device 20. The control unit 30 controls and corrects the laser light irradiation position by controlling and correcting the operation of the galvano mechanism.
 レーザ加工装置100では、基板4へレーザ光Lを照射すると、fθレンズ34の温度が上昇する。そして、fθレンズ34内で温度勾配が発生すると、基板4上のレーザ光照射位置が所望位置からずれる。このため、本実施の形態では、予めfθレンズ34の温度勾配などに応じた位置ずれ補正量を算出しておき、この位置ずれ補正量を用いて、レーザ光照射位置を補正する。 In the laser processing apparatus 100, when the substrate 4 is irradiated with the laser light L, the temperature of the fθ lens 34 increases. When a temperature gradient is generated in the fθ lens 34, the laser beam irradiation position on the substrate 4 is shifted from the desired position. For this reason, in this embodiment, a positional deviation correction amount corresponding to the temperature gradient of the fθ lens 34 is calculated in advance, and the laser beam irradiation position is corrected using this positional deviation correction amount.
 fθレンズ34の温度勾配は、例えば、所定時間内に基板4へ照射されたレーザ光Lのエネルギー積算量に応じて変化する。このため、予めエネルギー積算量と位置ずれ補正量との関係(補正係数など)を導出しておく。そして、レーザ加工を行う際には、位置補正量算出装置20が、所定時間内に基板4へ照射されたレーザ光Lのエネルギー積算量を算出する。さらに、位置補正量算出装置20は、補正係数と、算出したエネルギー積算量と、を用いて位置ずれ補正量を算出し、位置ずれ補正量を用いたレーザ光照射位置の補正を制御部30に行わせる。 The temperature gradient of the fθ lens 34 changes, for example, according to the energy integrated amount of the laser light L irradiated to the substrate 4 within a predetermined time. For this reason, the relationship (correction coefficient etc.) between the energy integrated amount and the positional deviation correction amount is derived in advance. When performing laser processing, the position correction amount calculation device 20 calculates the integrated energy amount of the laser light L irradiated to the substrate 4 within a predetermined time. Further, the position correction amount calculation device 20 calculates a position shift correction amount using the correction coefficient and the calculated energy integration amount, and corrects the laser beam irradiation position using the position shift correction amount to the control unit 30. Let it be done.
 なお、レーザ光Lの照射位置の位置ずれは、fθレンズ34内の温度勾配などが原因で発生するが、fθレンズ34内の温度勾配を測定することなく補正係数を設定してもよい。この場合、エネルギー積算量に応じた実際の位置ずれ量を測定し、測定結果に基づいて補正係数を設定しておく。換言すると、エネルギー積算量と位置ずれ量との間の関係を導出し、導出した関係に基づいて補正係数を設定しておく。 The positional deviation of the irradiation position of the laser light L occurs due to a temperature gradient in the fθ lens 34, but the correction coefficient may be set without measuring the temperature gradient in the fθ lens 34. In this case, an actual positional deviation amount corresponding to the energy integration amount is measured, and a correction coefficient is set based on the measurement result. In other words, a relationship between the energy integration amount and the positional deviation amount is derived, and a correction coefficient is set based on the derived relationship.
 fθレンズ34内の温度勾配に基づいて補正係数を設定する場合は、fθレンズ34内の温度勾配をレーザ加工中に実測定する。そして、温度勾配とエネルギー積算量との間の関係を導出するとともに、温度勾配と実際の位置ずれ量との間の関係を導出する。これらの導出結果に基づいて、位置ずれ量とエネルギー積算量との間の関係を導出し、この導出結果に基づいて、補正係数を設定しておく。 When the correction coefficient is set based on the temperature gradient in the fθ lens 34, the temperature gradient in the fθ lens 34 is actually measured during laser processing. Then, a relationship between the temperature gradient and the energy integration amount is derived, and a relationship between the temperature gradient and the actual positional deviation amount is derived. Based on these derivation results, a relationship between the positional deviation amount and the energy integration amount is derived, and a correction coefficient is set based on the derivation results.
 なお、本実施の形態では、fθレンズ34の基底温度(以下、レンズ温度という)と、レーザ光Lの照射位置(ガルバノエリア内における座標値)(以下、ガルバノ座標という)との組み合わせ毎に補正係数を設定しておく。 In the present embodiment, correction is made for each combination of the base temperature of the fθ lens 34 (hereinafter referred to as the lens temperature) and the irradiation position of the laser light L (coordinate values in the galvano area) (hereinafter referred to as the galvano coordinates). Set the coefficient.
 レーザ加工制御装置2は、コンピュータなどによって構成されており、レーザ発振器1やレーザ加工部3をNC(Numerical Control)制御等によって制御する。レーザ加工制御装置2は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備えて構成されている。レーザ加工制御装置2がレーザ発振器1やレーザ加工部3を制御する際には、CPUが、ユーザによる入力部(図示せず)からの入力によって、ROM内に格納されている加工プログラムを読み出してRAM内のプログラム格納領域に展開して各種処理を実行する。この処理に際して生じる各種データは、RAM内に形成されるデータ格納領域に一時的に記憶される。これにより、レーザ加工制御装置2は、レーザ発振器1およびレーザ加工部3を制御する。 The laser processing control device 2 is configured by a computer or the like, and controls the laser oscillator 1 and the laser processing unit 3 by NC (Numerical Control) control or the like. The laser processing control device 2 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. When the laser processing control device 2 controls the laser oscillator 1 or the laser processing unit 3, the CPU reads a processing program stored in the ROM by an input from an input unit (not shown) by the user. Various processes are executed by expanding the program storage area in the RAM. Various data generated during this processing is temporarily stored in a data storage area formed in the RAM. Thereby, the laser processing control device 2 controls the laser oscillator 1 and the laser processing unit 3.
 つぎに、位置補正量算出装置20の構成について説明する。本実施の形態の位置補正量算出装置20は、レンズ温度とガルバノ座標とに基づいて、位置ずれ補正に用いる補正係数を選択する。 Next, the configuration of the position correction amount calculation device 20 will be described. The position correction amount calculation device 20 according to the present embodiment selects a correction coefficient used for position shift correction based on the lens temperature and galvano coordinates.
 図2は、位置補正量算出装置の構成を示すブロック図である。位置補正量算出装置20は、パルス検出部21、パルス記憶部22、積算部23、補正係数記憶部24、補正量算出部25、照射位置入力部26、温度入力部27、出力部28を備えている。 FIG. 2 is a block diagram showing the configuration of the position correction amount calculation apparatus. The position correction amount calculation device 20 includes a pulse detection unit 21, a pulse storage unit 22, an integration unit 23, a correction coefficient storage unit 24, a correction amount calculation unit 25, an irradiation position input unit 26, a temperature input unit 27, and an output unit 28. ing.
 パルス検出部21は、レーザ発振器1からレーザ加工部3に出射されたレーザ光Lを検出する。パルス検出部21は、検出した各レーザ光Lの出射タイミング(時刻)をパルス記憶部22に記憶させる。 The pulse detector 21 detects the laser beam L emitted from the laser oscillator 1 to the laser processing unit 3. The pulse detection unit 21 stores the detected emission timing (time) of each laser beam L in the pulse storage unit 22.
 パルス記憶部22は、各パルスの出射タイミングを記憶するメモリなどである。パルス記憶部22は、例えば所定時間(例えば60秒)の間、各パルスの出射タイミングを記憶しておく。そして、パルス記憶部22は、所定時間が経過すると記憶しておいた出射タイミングを消去する。例えば、パルス記憶部22は、所定時間が経過して古くなった出射タイミングの記憶エリアに新たな出射タイミングを上書きすることにより、古くなった出射タイミングを消去する。 The pulse storage unit 22 is a memory that stores the emission timing of each pulse. The pulse storage unit 22 stores the emission timing of each pulse for a predetermined time (for example, 60 seconds), for example. Then, the pulse storage unit 22 deletes the stored emission timing when a predetermined time has elapsed. For example, the pulse storage unit 22 deletes the old emission timing by overwriting the new emission timing in the storage area of the emission timing that has become old after a predetermined time.
 積算部23は、所定時間の間(例えば30秒前から現時点までの間)にレーザ発振器1からレーザ加工部3に出射されたレーザ光Lのエネルギー積算量を算出する。積算部23は、例えば、所定時間の間にレーザ発振器1から出射されたレーザ光Lのパルス数と、1パルス当たりのエネルギー量と、を掛け合わせることによって、エネルギー積算量を算出する。積算部23は、1パルス当たりのエネルギー量が一定値であると仮定して、エネルギー積算量を算出する。 The integrating unit 23 calculates the integrated energy amount of the laser light L emitted from the laser oscillator 1 to the laser processing unit 3 during a predetermined time (for example, from 30 seconds before to the present time). For example, the integration unit 23 calculates the energy integration amount by multiplying the number of pulses of the laser light L emitted from the laser oscillator 1 during a predetermined time and the energy amount per pulse. The integration unit 23 calculates the energy integration amount on the assumption that the energy amount per pulse is a constant value.
 補正係数記憶部24は、補正係数を記憶するメモリなどである。補正係数記憶部24は、レンズ温度とガルバノ座標との組み合わせ毎に補正係数を記憶する。照射位置入力部26は、加工プログラムからガルバノ座標を抽出し、補正量算出部25に送る。なお、照射位置入力部26は、レーザ加工制御装置2からレーザ加工部3に送られる照射位置指令(レーザ光Lを照射する位置を指示する情報)からガルバノ座標を抽出して補正量算出部25に送ってもよい。温度入力部27は、温度検出部38が検出したレンズ温度を入力し、補正量算出部25に送る。 The correction coefficient storage unit 24 is a memory that stores correction coefficients. The correction coefficient storage unit 24 stores a correction coefficient for each combination of lens temperature and galvano coordinates. The irradiation position input unit 26 extracts galvano coordinates from the machining program and sends them to the correction amount calculation unit 25. The irradiation position input unit 26 extracts galvano coordinates from an irradiation position command (information indicating the position where the laser beam L is irradiated) sent from the laser processing control device 2 to the laser processing unit 3, and calculates a correction amount calculation unit 25. May be sent to The temperature input unit 27 inputs the lens temperature detected by the temperature detection unit 38 and sends the lens temperature to the correction amount calculation unit 25.
 補正量算出部25は、レンズ温度およびガルバノ座標に応じた補正係数を補正係数記憶部24内から抽出する。補正量算出部25は、積算部23が算出したエネルギー積算量と、補正係数記憶部24内から抽出した補正係数と、を用いて、位置ずれ補正量を算出する。補正量算出部25は、算出した位置ずれ補正量を出力部28に送る。出力部28は、位置ずれ補正量を制御部30に送る。 The correction amount calculation unit 25 extracts a correction coefficient corresponding to the lens temperature and the galvano coordinates from the correction coefficient storage unit 24. The correction amount calculation unit 25 calculates the positional deviation correction amount using the energy integration amount calculated by the integration unit 23 and the correction coefficient extracted from the correction coefficient storage unit 24. The correction amount calculation unit 25 sends the calculated positional deviation correction amount to the output unit 28. The output unit 28 sends the positional deviation correction amount to the control unit 30.
 つぎに、レーザ加工装置100によるレーザ加工処理の処理手順について説明する。図3は、実施の形態に係るレーザ加工処理の処理手順を示すフローチャートである。レーザ加工装置100がレーザ加工を開始すると、レーザ加工制御装置2は、加工プログラムに従ってレーザ発振器1、レーザ加工部3を制御する。これにより、レーザ光Lの出射が開始される(ステップS10)。レーザ発振器1からは加工プログラムに従ったタイミングでレーザ光Lが出射される。また、レーザ加工部3では、加工プログラムに応じた位置にレーザ光Lが照射されるよう、ガルバノ機構、XYテーブル32などが動作する。また、温度検出部38は、レンズ温度を検出する。 Next, a processing procedure of laser processing by the laser processing apparatus 100 will be described. FIG. 3 is a flowchart showing a processing procedure of the laser processing according to the embodiment. When the laser processing device 100 starts laser processing, the laser processing control device 2 controls the laser oscillator 1 and the laser processing unit 3 in accordance with the processing program. Thereby, the emission of the laser beam L is started (step S10). Laser light L is emitted from the laser oscillator 1 at a timing according to the machining program. In the laser processing unit 3, the galvano mechanism, the XY table 32, and the like operate so that the laser light L is irradiated to a position according to the processing program. The temperature detector 38 detects the lens temperature.
 パルス検出部21は、レーザ発振器1からレーザ加工部3に出射されたレーザ光Lを検出し、検出した各レーザ光Lの出射タイミングをパルス記憶部22に記憶させる(ステップS20)。 The pulse detection unit 21 detects the laser beam L emitted from the laser oscillator 1 to the laser processing unit 3 and stores the detected emission timing of each laser beam L in the pulse storage unit 22 (step S20).
 照射位置入力部26は、加工プログラムなどからガルバノ座標を抽出し、補正量算出部25に送る。また、温度入力部27は、温度検出部38が検出したレンズ温度を補正量算出部25に送る。 The irradiation position input unit 26 extracts the galvano coordinates from the machining program and sends them to the correction amount calculation unit 25. Further, the temperature input unit 27 sends the lens temperature detected by the temperature detection unit 38 to the correction amount calculation unit 25.
 積算部23は、所定時間(例えば、後述の時間Tx)の間にレーザ発振器1からレーザ加工部3に出射されたレーザ光Lのエネルギー積算量を算出する(ステップS30)。補正量算出部25は、レンズ温度およびガルバノ座標に応じた補正係数を補正係数記憶部24内から抽出する(ステップS40)。補正量算出部25は、積算部23が算出したエネルギー積算量と、補正係数記憶部24内から抽出した補正係数と、を掛け合わせて位置ずれ補正量を算出する(ステップS50)。補正量算出部25は、位置ずれ補正量を出力部28に送る。 The integrating unit 23 calculates an energy integrated amount of the laser light L emitted from the laser oscillator 1 to the laser processing unit 3 during a predetermined time (for example, a time Tx described later) (step S30). The correction amount calculation unit 25 extracts a correction coefficient corresponding to the lens temperature and galvano coordinates from the correction coefficient storage unit 24 (step S40). The correction amount calculation unit 25 calculates the positional deviation correction amount by multiplying the energy integration amount calculated by the integration unit 23 and the correction coefficient extracted from the correction coefficient storage unit 24 (step S50). The correction amount calculation unit 25 sends the positional deviation correction amount to the output unit 28.
 出力部28は、位置ずれ補正量を制御部30に送る。これにより、制御部30は、レーザ光照射位置の位置ずれを位置ずれ補正量を用いて補正するよう、ガルバノスキャナ36X,36Yを制御する(ステップS60)。レーザ加工部3では、位置ずれ補正量だけレーザ光Lの照射位置が補正されるよう、ガルバノスキャナ36X,36Yがガルバノミラー35X,35Yを回転させる。 The output unit 28 sends the positional deviation correction amount to the control unit 30. Accordingly, the control unit 30 controls the galvano scanners 36X and 36Y so as to correct the positional deviation of the laser light irradiation position using the positional deviation correction amount (step S60). In the laser processing unit 3, the galvano scanners 36X and 36Y rotate the galvanometer mirrors 35X and 35Y so that the irradiation position of the laser beam L is corrected by the positional deviation correction amount.
 図4は、位置補正量算出装置によるガルバノ機構の制御を説明するための図である。位置補正量算出装置20は、レーザ発振器1から出射されたレーザ光Lを検出する。また、位置補正量算出装置20へは、温度検出部38が検出したレンズ温度が入力される。 FIG. 4 is a diagram for explaining the control of the galvano mechanism by the position correction amount calculation device. The position correction amount calculation device 20 detects the laser light L emitted from the laser oscillator 1. The lens temperature detected by the temperature detection unit 38 is input to the position correction amount calculation device 20.
 位置補正量算出装置20では、所定時間前から現時刻までにレーザ発振器1から出射されたレーザ光Lのエネルギー積算量と、レンズ温度と、ガルバノ座標と、に基づいて、位置ずれ補正量を算出する。そして、位置補正量算出装置20は、位置ずれ補正量に基づいて、ガルバノスキャナ36X,36Yによるガルバノミラー35X,35Yの制御を補正する。 The position correction amount calculation device 20 calculates a position shift correction amount based on the integrated amount of energy of the laser light L emitted from the laser oscillator 1 from a predetermined time before the current time, the lens temperature, and the galvano coordinates. To do. Then, the position correction amount calculation device 20 corrects the control of the galvano mirrors 35X and 35Y by the galvano scanners 36X and 36Y based on the position shift correction amount.
 ここで、fθレンズ34の上昇温度と、レーザ光照射位置の目標位置からの位置ずれ量と、の間の関係について説明する。図5は、fθレンズの上昇温度と位置ずれ量との間の関係を示す図である。図5では、横軸がfθレンズ34の上昇温度であり、縦軸がレーザ光照射位置の目標位置からの位置ずれ量である。図5における特性51が実測値であり、特性52がシミュレーション値である。 Here, the relationship between the rising temperature of the fθ lens 34 and the amount of positional deviation from the target position of the laser light irradiation position will be described. FIG. 5 is a diagram illustrating the relationship between the rising temperature of the fθ lens and the amount of displacement. In FIG. 5, the horizontal axis is the rising temperature of the fθ lens 34, and the vertical axis is the amount of positional deviation from the target position of the laser light irradiation position. A characteristic 51 in FIG. 5 is an actual measurement value, and a characteristic 52 is a simulation value.
 fθレンズ34の温度上昇に伴って、レーザ光照射位置の目標位置からの位置ずれ量が大きくなる。なお、ガルバノスキャナ36X,36Yの動特性があるので、上昇温度が0℃であっても、特性51に示すように位置ずれ量は0にならない。本実施の形態では、位置ずれ量が0になるようレーザ光照射位置の位置ずれ補正を行う。 As the temperature of the fθ lens 34 rises, the amount of positional deviation from the target position of the laser light irradiation position increases. Since the galvano scanners 36X and 36Y have dynamic characteristics, even if the rising temperature is 0 ° C., the positional deviation amount does not become zero as indicated by the characteristic 51. In this embodiment, the positional deviation correction of the laser light irradiation position is performed so that the positional deviation amount becomes zero.
 レーザ光照射位置の位置ずれ量は、レーザ光Lがfθレンズ34上の何れの位置を通過して基板4上に照射されるか(ガルバノ座標)によって異なるものである。このため、本実施の形態では、レーザ光Lのfθレンズ34上の通過位置に応じた位置ずれ補正量を設定する。別言すれば、ガルバノ座標に応じた補正係数を選択し、選択した補正係数を用いて位置ずれ補正量を算出する。 The positional deviation amount of the laser light irradiation position differs depending on which position on the fθ lens 34 the laser light L is irradiated on the substrate 4 (galvano coordinates). For this reason, in this embodiment, a misalignment correction amount is set according to the passing position of the laser light L on the fθ lens 34. In other words, a correction coefficient corresponding to the galvano coordinates is selected, and the misalignment correction amount is calculated using the selected correction coefficient.
 図6は、レーザ光のfθレンズ上の通過位置と位置ずれ補正量との間の関係を示す図である。図6では、横軸がfθレンズ34の中心(以下、レンズ中心という)からの距離(レーザ光Lが通過する位置)であり、縦軸が位置ずれ補正量である。なお、図6では、fθレンズ34の温度が1℃上昇した場合の位置ずれ補正量を示している。 FIG. 6 is a diagram showing the relationship between the passing position of the laser beam on the fθ lens and the positional deviation correction amount. In FIG. 6, the horizontal axis is the distance from the center of the fθ lens 34 (hereinafter referred to as the lens center) (the position through which the laser light L passes), and the vertical axis is the positional deviation correction amount. FIG. 6 shows the amount of misalignment correction when the temperature of the fθ lens 34 increases by 1 ° C.
 fθレンズ34とガルバノスキャナ36X,36Yにより走査されたレーザ光Lは、fθレンズ34の温度上昇により、レンズ中心に対して伸縮する方向に位置ずれする。レーザ光Lがレンズ中心を通過して基板4上に照射される場合には、位置ずれ量は略0であり、位置ずれ補正量も略0である。そして、レンズ中心からの距離が大きくなるに従って位置ずれ量も大きくなり、位置ずれ補正量も大きくなる。 The laser light L scanned by the fθ lens 34 and the galvano scanners 36X and 36Y is displaced in the direction of expansion and contraction with respect to the center of the lens due to the temperature rise of the fθ lens 34. When the laser light L passes through the center of the lens and is irradiated onto the substrate 4, the positional deviation amount is substantially zero, and the positional deviation correction amount is also substantially zero. As the distance from the lens center increases, the amount of misalignment increases and the amount of misalignment correction also increases.
 このように、fθレンズ34の端部ほど位置ずれ量が大きくなるので、fθレンズ34の端部ほど位置ずれ補正量も大きく設定しておく。換言すると、fθレンズ34の端部ほど位置ずれ補正量が大きくなるよう補正係数が補正される。これにより、fθレンズ34の中心近くを通過して基板4に照射されるレーザ光Lほど小さな位置ずれ補正が行われ、fθレンズ34の外周近くを通過して基板4に照射されるレーザ光Lほど大きな位置ずれ補正が行われる。例えば、図6に示すように、1次関数に従って位置ずれ補正量を変化させる。これにより、レンズ中心からの距離と位置ずれ補正量との間の関係が1次近似されて、レーザ光Lの照射位置が補正される。 As described above, since the amount of misalignment increases toward the end of the fθ lens 34, the amount of misalignment correction is set larger as the end of the fθ lens 34. In other words, the correction coefficient is corrected so that the positional deviation correction amount increases toward the end of the fθ lens 34. As a result, the smaller the laser beam L that irradiates the substrate 4 through the vicinity of the center of the fθ lens 34, the smaller the displacement correction is performed, and the laser beam L that irradiates the substrate 4 through the vicinity of the outer periphery of the fθ lens 34. Larger misalignment correction is performed. For example, as shown in FIG. 6, the misalignment correction amount is changed according to a linear function. As a result, the relationship between the distance from the lens center and the positional deviation correction amount is approximated by the first order, and the irradiation position of the laser light L is corrected.
 位置補正量算出装置20では、補正量算出部25が、ガルバノ座標に基づいて、レーザ光Lのfθレンズ34上の通過位置(レンズ中心からの距離)を算出する。そして、補正量算出部25が、レーザ光Lのfθレンズ34上の通過位置に応じた補正係数を補正係数記憶部24から抽出する。これにより、補正量算出部25は、ガルバノ座標に応じた補正係数を用いて位置ずれ補正量を算出する。 In the position correction amount calculation device 20, the correction amount calculation unit 25 calculates the passing position (the distance from the lens center) of the laser light L on the fθ lens 34 based on the galvano coordinates. Then, the correction amount calculation unit 25 extracts a correction coefficient corresponding to the passing position of the laser light L on the fθ lens 34 from the correction coefficient storage unit 24. Thereby, the correction amount calculation unit 25 calculates the misalignment correction amount using the correction coefficient corresponding to the galvano coordinates.
 なお、1次関数に従った補正は一例であり、他の方法(2次関数以上の複雑な近似式など)を用いて補正してもよい。例えば、fθレンズ34の構造やレーザ加工装置100内のその他の構造(光学特性)に応じて補正方法が設定される。 Note that the correction according to the linear function is an example, and the correction may be performed using another method (such as a complex approximate expression of a quadratic function or more). For example, the correction method is set according to the structure of the fθ lens 34 and other structures (optical characteristics) in the laser processing apparatus 100.
 図7は、位置ずれと位置ずれ補正を説明するための図である。図7では位置ずれ補正を行うガルバノエリアの状態40A~40Cを図示している。各状態40A~40Cでは、レーザ光Lの目標照射位置41とレーザ光照射位置42との間の関係を示している。 FIG. 7 is a diagram for explaining misalignment and misalignment correction. FIG. 7 shows galvano area states 40A to 40C in which the positional deviation correction is performed. Each state 40A to 40C shows the relationship between the target irradiation position 41 of the laser beam L and the laser beam irradiation position 42.
 状態40Aは、レーザ加工の開始直後におけるガルバノエリアの状態である。また、状態40Bは、fθレンズ34の温度上昇に伴って位置精度が悪化した場合(位置ずれ補正前)のガルバノエリアの状態である。また、状態40Cは、fθレンズ34が温度上昇した場合に位置ずれ補正を行った後のガルバノエリアの状態である。 State 40A is a state of the galvano area immediately after the start of laser processing. In addition, the state 40B is a state of the galvano area when the positional accuracy is deteriorated with the temperature increase of the fθ lens 34 (before the positional deviation correction). Further, the state 40C is a state of the galvano area after the positional deviation correction is performed when the temperature of the fθ lens 34 rises.
 状態40Aに示すように、レーザ加工の開始直後は、レーザ光Lの目標照射位置41とレーザ光照射位置42との間に位置ずれが生じていない。また、状態40Bに示すように、fθレンズ34の温度が上昇すると、レーザ光Lの目標照射位置41とレーザ光照射位置42との間に位置ずれが生じる。また、状態40Cに示すように、位置ずれ補正を行なうことにより、レーザ光Lの目標照射位置41とレーザ光照射位置42との間の位置ずれが解消される。 As shown in state 40A, immediately after the start of laser processing, there is no displacement between the target irradiation position 41 of the laser beam L and the laser beam irradiation position 42. Further, as shown in the state 40B, when the temperature of the fθ lens 34 increases, a positional deviation occurs between the target irradiation position 41 of the laser light L and the laser light irradiation position 42. Further, as shown in the state 40C, by performing the positional deviation correction, the positional deviation between the target irradiation position 41 of the laser light L and the laser light irradiation position 42 is eliminated.
 図8は、fθレンズの実際の温度変化と温度検出部による検出温度との間の関係を示す図である。図8では、横軸が時間(レーザ加工からの経過時間)であり、縦軸がfθレンズ34の温度である。図8に示す特性45がfθレンズ34の実際の温度変化であり、特性46が温度検出部38によって検出される温度変化である。 FIG. 8 is a diagram showing the relationship between the actual temperature change of the fθ lens and the temperature detected by the temperature detector. In FIG. 8, the horizontal axis represents time (elapsed time from laser processing), and the vertical axis represents the temperature of the fθ lens 34. A characteristic 45 shown in FIG. 8 is an actual temperature change of the fθ lens 34, and a characteristic 46 is a temperature change detected by the temperature detection unit 38.
 レーザ加工を開始する前は、fθレンズ34の温度は一定値(温度t1)である。時間T1の経過後に所定のパルス周期でレーザ加工が開始されると、特性45に示すように、fθレンズ34の実温度は少しずつ上昇し、所定時間の経過後にfθレンズ34の温度は一定値(温度t2)になる。これは、レーザ光Lがfθレンズ34を通過するとfθレンズ34の温度が上昇するが、所定時間が経過するとfθレンズ34の温度が元の温度に戻るからである。換言すると、レーザ光Lがfθレンズ34を通過してから所定時間の間だけfθレンズ34を温度上昇させる。このため、レーザ光Lを照射した後、レーザ光Lの照射を停止すると、レーザ光Lの照射停止後、所定時間の経過後には、fθレンズ34の温度が元の温度に戻ることとなる。図8に示す特性45では、レーザ光Lの照射を継続しているので、fθレンズ34は、温度t2まで上昇した後、温度t2を維持している。 Before the laser processing is started, the temperature of the fθ lens 34 is a constant value (temperature t1). When laser processing is started at a predetermined pulse period after the elapse of time T1, the actual temperature of the fθ lens 34 gradually increases as indicated by the characteristic 45, and the temperature of the fθ lens 34 is a constant value after the elapse of the predetermined time. (Temperature t2). This is because the temperature of the fθ lens 34 rises when the laser light L passes through the fθ lens 34, but the temperature of the fθ lens 34 returns to the original temperature when a predetermined time elapses. In other words, the temperature of the fθ lens 34 is raised only for a predetermined time after the laser light L passes through the fθ lens 34. For this reason, when the irradiation of the laser beam L is stopped after the irradiation of the laser beam L, the temperature of the fθ lens 34 returns to the original temperature after the elapse of a predetermined time after the irradiation of the laser beam L is stopped. In the characteristic 45 shown in FIG. 8, since the irradiation with the laser light L is continued, the fθ lens 34 maintains the temperature t2 after rising to the temperature t2.
 温度検出部38は、fθレンズ34の端部に配置されているので、実際にfθレンズ34の温度が上昇してから温度検出部38がfθレンズ34の温度上昇を検出するまでには時間を要する。このため、fθレンズ34の実際の温度変化(特性45)と、温度検出部38によって検出される温度変化(特性46)は、異なることとなる。具体的には、特性46に示すように、時間T1よりも後の時間T2の経過後に、fθレンズ34の検出温度は少しずつ上昇し、所定時間の経過後にfθレンズ34の温度は一定値(温度t2)になる。このため、fθレンズ34の実温度が温度t2になった時点よりも遅れて、温度検出部38は、fθレンズ34が温度t2になったことを検出する。 Since the temperature detection unit 38 is disposed at the end of the fθ lens 34, it takes time until the temperature detection unit 38 detects the temperature increase of the fθ lens 34 after the temperature of the fθ lens 34 actually increases. Cost. For this reason, the actual temperature change (characteristic 45) of the fθ lens 34 and the temperature change (characteristic 46) detected by the temperature detection unit 38 are different. Specifically, as shown in the characteristic 46, the detected temperature of the fθ lens 34 gradually increases after a lapse of a time T2 after the time T1, and the temperature of the fθ lens 34 is a constant value (after a predetermined time elapses). Temperature t2). For this reason, the temperature detection unit 38 detects that the fθ lens 34 has reached the temperature t2 after the actual temperature of the fθ lens 34 has reached the temperature t2.
 このため、本実施の形態では、レーザ光Lのエネルギー積算量に基づいて、位置ずれ補正量を算出している。そして、必要に応じてfθレンズ34の検出温度に応じた補正係数を選択している。このため、正確な位置ずれ補正量を算出することが可能となる。なお、補正量算出部25は、エネルギー積算量に応じた補正係数を選択してもよい。 For this reason, in the present embodiment, the misalignment correction amount is calculated based on the integrated energy amount of the laser light L. Then, a correction coefficient corresponding to the detected temperature of the fθ lens 34 is selected as necessary. For this reason, it is possible to calculate an accurate misregistration correction amount. The correction amount calculation unit 25 may select a correction coefficient corresponding to the energy integration amount.
 つぎに、エネルギー積算量の算出方法について説明する。図9は、エネルギー積算量の算出方法を説明するための図である。なお、図9では、xパルス目(xは自然数)のレーザパルスをレーザパルスPxで示している。 Next, a method for calculating the integrated energy amount will be described. FIG. 9 is a diagram for explaining a method of calculating the energy integration amount. In FIG. 9, the laser pulse Px indicates the x-th pulse (x is a natural number).
 位置補正量算出装置20の積算部23は、時間(積算区間)Txの間におけるレーザパルスのエネルギー積算量を算出する。換言すると、積算部23は、エネルギー積算量の移動平均を算出する。例えば、nパルス目(nは自然数)のレーザパルスPnが照射された場合、時間Txの間における1~nパルス目のレーザパルスP1~Pnの各エネルギー量が積算されてエネルギー積算量が算出される。 The integration unit 23 of the position correction amount calculation device 20 calculates the integrated amount of laser pulse energy during the time (integration section) Tx. In other words, the integration unit 23 calculates a moving average of the energy integration amount. For example, when the nth pulse (n is a natural number) of laser pulses Pn is irradiated, the energy amounts of the 1st to nth laser pulses P1 to Pn during the time Tx are integrated to calculate the integrated energy amount. The
 この後、レーザ加工が継続されると、時間Txを経過したレーザパルスのエネルギー量がエネルギー積算量から減算されるとともに、時間Txの間に新たなレーザパルスが出射されると、新たなレーザパルスのエネルギー量がエネルギー積算量に加算される。 Thereafter, when the laser processing is continued, the energy amount of the laser pulse after the time Tx is subtracted from the integrated energy amount, and when a new laser pulse is emitted during the time Tx, a new laser pulse is generated. Is added to the integrated energy amount.
 図9では、(n+1)パルス目のレーザパルスP(n+1)が出射された際に、時間Txを経過したレーザパルスが無い場合を示している。このため、エネルギー積算量から減算されるエネルギー量は無い。一方、新たな時間Txの間に(n+1)パルス目のレーザパルスPnが出射されているので、(n+1)パルス目のエネルギー量がエネルギー積算量に加算される。これにより、(n+1)パルス目のレーザパルスP(n+1)が出射された時点でのエネルギー積算量は、レーザパルスP1~P(n+1)までのエネルギー量を合計した値となる。 FIG. 9 shows a case where there is no laser pulse that has passed the time Tx when the (n + 1) th pulse of the laser pulse P (n + 1) is emitted. For this reason, there is no energy amount subtracted from energy integration amount. On the other hand, since the (n + 1) th laser pulse Pn is emitted during the new time Tx, the energy amount of the (n + 1) th pulse is added to the integrated energy amount. As a result, the integrated energy amount when the (n + 1) th pulse of the laser pulse P (n + 1) is emitted is a value obtained by summing the energy amounts from the laser pulses P1 to P (n + 1).
 また、図9では、(n+2)パルス目のレーザパルスP(n+2)が出射された際に、時間Txを経過したレーザパルスは、レーザパルスP1~P(n-2)である。このため、(n+2)パルス目のレーザパルスP(n+2)が出射された際に、時間Txを経過したレーザパルスとしてレーザパルスP1~P(n-2)のエネルギー量がエネルギー積算量から減算される。一方、新たな時間Txの間に(n+2)パルス目のレーザパルスP(n+2)が出射されているので、(n+2)パルス目のエネルギー量がエネルギー積算量に加算される。これにより、(n+2)パルス目のレーザパルスP(n+2)が出射された時点でのエネルギー積算量は、レーザパルスP(n-1)~P(n+2)までのエネルギー量を合計した値となる。 In FIG. 9, when the (n + 2) th laser pulse P (n + 2) is emitted, the laser pulses that have passed the time Tx are laser pulses P1 to P (n-2). Therefore, when the laser pulse P (n + 2) of the (n + 2) th pulse is emitted, the energy amount of the laser pulses P1 to P (n-2) is subtracted from the integrated energy amount as the laser pulse after the time Tx. The On the other hand, since the (n + 2) th laser pulse P (n + 2) is emitted during the new time Tx, the energy amount of the (n + 2) th pulse is added to the integrated energy amount. As a result, the integrated energy amount when the (n + 2) -th laser pulse P (n + 2) is emitted is the sum of the energy amounts from the laser pulses P (n−1) to P (n + 2). .
 なお、積算区間である時間Txは、fθレンズ34周辺の構造や環境(放熱状態)によって変化する。そのため、fθレンズ34周辺の実際の構造や環境に応じて積算区間は最適化される。 Note that the time Tx, which is the integration interval, varies depending on the structure around the fθ lens 34 and the environment (heat dissipation state). Therefore, the integration interval is optimized according to the actual structure and environment around the fθ lens 34.
 また、本実施の形態では、時間Tx内の各レーザパルスが、全て同じエネルギー量であると仮定してエネルギー積算量を算出したが、時間Tx内の時間帯に応じて、積算に用いるエネルギー量を変化させてもよい。換言すると、レーザパルスの出射時刻毎に、エネルギー量に重み付けを行なってもよい。 In the present embodiment, the energy integration amount is calculated on the assumption that all the laser pulses within the time Tx have the same energy amount. However, the energy amount used for integration according to the time zone within the time Tx. May be changed. In other words, the energy amount may be weighted at each laser pulse emission time.
 例えば、時間Tx内の古い時間帯に照射されたレーザパルス(パルス照射からの経過時間が長いもの)は、fθレンズ34の温度上昇に与える影響が小さくなっている。一方、時間Tx内の新しい時間帯に照射されたレーザパルス(パルス照射からの経過時間が短いもの)は、fθレンズ34の温度上昇に与える影響が大きい。このため、時間Tx内に照射されたレーザパルスに対し、パルス照射からの経過時間に応じたエネルギー量を設定してもよい。この場合、パルス照射からの経過時間が短いレーザパルスほど大きなエネルギー量が設定され、パルス照射からの経過時間が長いレーザパルスほど小さなエネルギー量が設定される。そして、パルス照射から時間Txを経過したレーザパルスには、エネルギー量として「0」が設定される。これにより、fθレンズ34の温度勾配に応じた正確な位置ずれ補正量を算出することが可能となる。 For example, a laser pulse irradiated in an old time zone within the time Tx (having a long elapsed time from pulse irradiation) has a small effect on the temperature rise of the fθ lens 34. On the other hand, a laser pulse irradiated in a new time zone within the time Tx (with a short elapsed time from pulse irradiation) has a large effect on the temperature rise of the fθ lens 34. For this reason, the amount of energy corresponding to the elapsed time from the pulse irradiation may be set for the laser pulse irradiated within the time Tx. In this case, a larger energy amount is set for a laser pulse having a shorter elapsed time from pulse irradiation, and a smaller energy amount is set for a laser pulse having a longer elapsed time from pulse irradiation. Then, “0” is set as the energy amount in the laser pulse that has passed the time Tx from the pulse irradiation. As a result, it is possible to calculate an accurate displacement correction amount corresponding to the temperature gradient of the fθ lens 34.
 つぎに、レーザ加工の処理例について説明する。レーザ加工を行う際には、例えば、レーザ光の照射と、所定の待ち状態と、が繰り返される。図10は、待ち時間を短く設定した場合の位置ずれ量の変化を説明するための図であり、図11は、待ち時間を長く設定した場合の位置ずれ量の変化を説明するための図である。 Next, an example of laser processing will be described. When performing laser processing, for example, laser light irradiation and a predetermined waiting state are repeated. FIG. 10 is a diagram for explaining a change in misalignment amount when the waiting time is set short, and FIG. 11 is a diagram for explaining a change in misalignment amount when the waiting time is set long. is there.
 図10および図11では、1パルス当りのエネルギーを10mJとし、2000Hzの一定速度でレーザ加工を行った場合の、位置ずれ量61,62、fθレンズ算出温度(シミュレーション値)60の時間的な変化を示している。図10および図11の横軸が時間であり、縦軸の左側が位置ずれ量であり、縦軸の右側がfθレンズ算出温度である。また、位置ずれ補正無しの場合の位置ずれ量が、位置ずれ量61であり、位置ずれ補正有りの場合の位置ずれ量が、位置ずれ量62である。なお、エネルギー積算量の積算区間(時間Tx)は30秒とした。 In FIGS. 10 and 11, the temporal change in the positional deviation amounts 61 and 62 and the fθ lens calculated temperature (simulation value) 60 when the laser processing is performed at a constant speed of 2000 Hz with the energy per pulse being 10 mJ. Is shown. The horizontal axis in FIGS. 10 and 11 is time, the left side of the vertical axis is the amount of displacement, and the right side of the vertical axis is the fθ lens calculated temperature. Further, the positional deviation amount when there is no positional deviation correction is the positional deviation amount 61, and the positional deviation amount when there is positional deviation correction is the positional deviation amount 62. Note that the integration interval (time Tx) of the energy integration amount was 30 seconds.
 図10では、5秒間のレーザ光照射(加工)と15秒間の待ち状態とを4回繰り返した場合の位置ずれ量61,62、fθレンズ算出温度60を示し、図11では、5秒間のレーザ光照射と30秒間の待ち状態とを4回繰り返した場合の位置ずれ量61,62、fθレンズ算出温度60を示している。 FIG. 10 shows misregistration amounts 61 and 62 and fθ lens calculated temperature 60 when laser light irradiation (processing) for 5 seconds and a waiting state for 15 seconds are repeated four times, and FIG. 11 shows a laser for 5 seconds. The positional deviation amounts 61 and 62 and the fθ lens calculated temperature 60 when the light irradiation and the waiting state for 30 seconds are repeated four times are shown.
 図10に示すように、2000Hzの一定速度で5秒間のレーザ光照射(10000穴の加工)を行うと、レーザ光Lの照射とともにfθレンズ算出温度60および位置ずれ量61が大きくなる。そして、待ち時間(15秒)の間に、fθレンズ算出温度60および位置ずれ量61は所定量だけ小さくなるものの初期値には戻らない。このため、1回目加工から4回目加工までが行なわれると、各回の加工後のfθレンズ算出温度60および位置ずれ量61は、徐々に大きくなっていく。 As shown in FIG. 10, when laser light irradiation (processing of 10,000 holes) is performed for 5 seconds at a constant speed of 2000 Hz, the fθ lens calculated temperature 60 and the positional deviation amount 61 increase with the laser light L irradiation. During the waiting time (15 seconds), the fθ lens calculated temperature 60 and the positional deviation amount 61 are reduced by a predetermined amount, but do not return to the initial values. For this reason, when the first processing to the fourth processing are performed, the fθ lens calculated temperature 60 and the positional deviation amount 61 after each processing gradually increase.
 一方、本実施の形態では、2000Hzの一定速度で5秒間のレーザ光照射を行なった場合であっても、fθレンズ算出温度60に応じた量だけ位置ずれ補正を行うので、位置ずれ量62は、低い値のまま安定している。そして、1回目加工から4回目加工までが行なわれた場合であっても、位置ずれ量62は、低い値のまま安定している。 On the other hand, in the present embodiment, even when laser light irradiation is performed at a constant speed of 2000 Hz for 5 seconds, the positional deviation correction is performed by an amount corresponding to the fθ lens calculated temperature 60. The value remains stable. And even if it is a case where 1st process to 4th process is performed, the positional offset amount 62 is stabilized with the low value.
 このように、fθレンズ34の温度上昇に対して位置ずれ補正無し(位置精度補正を無効)にした場合、fθレンズ34の温度上昇に伴い位置ずれ量が増加していることが分かる。一方、fθレンズ34の温度上昇に対して位置ずれ補正有り(位置精度補正を有効)にした場合、fθレンズ34の温度が上昇しても、位置ずれ量は一定である(増加していない)ことが分かる。 As described above, it is understood that when the position deviation correction is not performed with respect to the temperature rise of the fθ lens 34 (positional accuracy correction is disabled), the position deviation amount increases with the temperature rise of the fθ lens 34. On the other hand, when the positional deviation correction is performed with respect to the temperature rise of the fθ lens 34 (positional accuracy correction is enabled), the positional deviation amount is constant (not increased) even if the temperature of the fθ lens 34 rises. I understand that.
 また、図11に示すように、2000Hzの一定速度で5秒間のレーザ光照射(10000穴の加工)を行うと、レーザ光Lの照射とともにfθレンズ算出温度60および位置ずれ量61が大きくなる。そして、待ち時間(30秒)の経過後に、fθレンズ算出温度60および位置ずれ量61は略初期値に戻る。このため、1回目加工から4回目加工までが行なわれた場合、各回の加工後のfθレンズ算出温度および位置ずれ量61は所定の大きさまで到達し、待ち時間である30秒の経過後には、fθレンズ算出温度60および位置ずれ量61は略初期値に戻る。この場合であっても、各回の加工中は位置ずれ量が増大する。 As shown in FIG. 11, when laser light irradiation (processing of 10,000 holes) is performed for 5 seconds at a constant speed of 2000 Hz, the fθ lens calculation temperature 60 and the positional deviation amount 61 increase with the laser light L irradiation. Then, after the waiting time (30 seconds) elapses, the fθ lens calculated temperature 60 and the positional deviation amount 61 return to substantially initial values. For this reason, when the first processing to the fourth processing are performed, the fθ lens calculated temperature and the positional deviation amount 61 after each processing reach a predetermined size, and after 30 seconds as a waiting time, The fθ lens calculated temperature 60 and the positional deviation 61 return to substantially initial values. Even in this case, the amount of displacement increases during each processing.
 一方、本実施の形態では、2000Hzの一定速度で5秒間のレーザ光照射を行なった場合であっても、fθレンズ算出温度60に応じた量だけ位置ずれ補正を行うので、位置ずれ量62は、低い値のまま安定している。そして、1回目加工から4回目加工までが行なわれた場合であっても、位置ずれ量62は、低い値のまま安定している。 On the other hand, in the present embodiment, even when laser light irradiation is performed at a constant speed of 2000 Hz for 5 seconds, the positional deviation correction is performed by an amount corresponding to the fθ lens calculated temperature 60. The value remains stable. And even if it is a case where 1st process to 4th process is performed, the positional offset amount 62 is stabilized with the low value.
 このように、fθレンズ算出温度60に対して位置ずれ補正を行った場合、fθレンズ34の温度が上昇しても、位置ずれ量は一定である(増加していない)ことが分かる。そして、積算区間が30秒のため、30秒の待ち時間によりfθレンズ算出温度60は定常温度に戻っている。 As described above, when the positional deviation correction is performed on the fθ lens calculated temperature 60, it is understood that the positional deviation amount is constant (not increased) even if the temperature of the fθ lens 34 is increased. Since the integration interval is 30 seconds, the fθ lens calculated temperature 60 returns to the steady temperature with a waiting time of 30 seconds.
 なお、ここではレーザ加工処理とレーザ加工処理との間に待ち時間を設ける場合について説明したが、レーザ加工処理とレーザ加工処理との間に待ち時間を設けることなく連続してレーザ加工を行なってもよい。 Here, the case where a waiting time is provided between laser processings has been described, but laser processing is continuously performed without providing a waiting time between laser processings. Also good.
 ところで、fθレンズ34の基底温度は、レーザ加工装置100の設置環境やレーザ加工装置100の稼働状況などによって変化する。このため、基底温度が所定値まで変化した場合に、その基底温度において一度ガルバノスキャナ36X,36Yによる位置ずれの補正を実施してもよい。これにより、位置ずれ量は一旦リセットされる。この場合、基底温度(レンズ温度)に応じた補正係数の変更は不要となる。 Incidentally, the base temperature of the fθ lens 34 changes depending on the installation environment of the laser processing apparatus 100, the operating status of the laser processing apparatus 100, and the like. For this reason, when the base temperature changes to a predetermined value, the positional deviation may be corrected once by the galvano scanners 36X and 36Y at the base temperature. As a result, the misalignment amount is once reset. In this case, it is not necessary to change the correction coefficient according to the base temperature (lens temperature).
 なお、各レーザ光照射位置における位置ずれ補正量を予め算出しておいてもよい。この場合、積算部23は、予め加工プログラムに基づいて、レーザ光照射位置にレーザ光Lを照射する際のエネルギー積算量を、各レーザ光照射位置に対して算出しておく。そして、補正量算出部25は、レーザ光照射位置毎に位置ずれ補正量を算出する。出力部28は、算出された各位置ずれ補正量をレーザ加工制御装置2内の記憶部(図示せず)などに記憶させておく。レーザ加工が開始されると、制御部30は、記憶させておいた位置ずれ補正量を読み出して、レーザ光照射位置毎に位置ずれ補正量を用いた位置ずれ補正を行う。 It should be noted that a positional deviation correction amount at each laser light irradiation position may be calculated in advance. In this case, the integrating unit 23 calculates an energy integration amount for irradiating the laser beam irradiation position with the laser beam L with respect to each laser beam irradiation position in advance based on the machining program. Then, the correction amount calculation unit 25 calculates a positional deviation correction amount for each laser light irradiation position. The output unit 28 stores the calculated misregistration correction amounts in a storage unit (not shown) in the laser processing control device 2 or the like. When laser processing is started, the control unit 30 reads out the stored misregistration correction amount and performs misregistration correction using the misregistration correction amount for each laser light irradiation position.
 このように、実施の形態によれば、fθレンズ34の温度に対応するエネルギー積算量を瞬時に算出している。このため、時間差を生じさせることなく、エネルギー積算量に基づいて、レーザ光Lの照射位置(加工位置)を正確に位置ずれ補正することが可能になる。したがって、位置精度が良好なレーザ加工を行なうことが可能になる。 As described above, according to the embodiment, the integrated energy amount corresponding to the temperature of the fθ lens 34 is instantaneously calculated. For this reason, it is possible to accurately correct the misalignment of the irradiation position (processing position) of the laser light L based on the integrated energy amount without causing a time difference. Therefore, it is possible to perform laser processing with good position accuracy.
 以上のように、本発明に係るレーザ加工制御装置およびレーザ加工制御方法は、被処理基板への穴あけ加工に適している。 As described above, the laser processing control device and the laser processing control method according to the present invention are suitable for drilling a substrate to be processed.
 1 レーザ発振器
 2 レーザ加工制御装置
 3 レーザ加工部
 4 基板
 20 位置補正量算出装置
 21 パルス検出部
 23 積算部
 24 補正係数記憶部
 25 補正量算出部
 30 制御部
 34 fθレンズ
 36X,36Y ガルバノスキャナ
 38 温度検出部
 100 レーザ加工装置
 L レーザ光
 P1~P(n+2) レーザパルス
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Laser processing control apparatus 3 Laser processing part 4 Board | substrate 20 Position correction amount calculation apparatus 21 Pulse detection part 23 Accumulation part 24 Correction coefficient memory | storage part 25 Correction amount calculation part 30 Control part 34 f (theta) lens 36X, 36Y Galvano scanner 38 Temperature Detection unit 100 Laser processing device L Laser light P1 to P (n + 2) Laser pulse

Claims (7)

  1.  レーザ発振器が被処理基板側へ出射したパルスレーザの出射タイミングを検出するパルス検出部と、
     所定時間内に出射された前記パルスレーザの各エネルギー量を積算してエネルギー積算量を算出する積算部と、
     前記被処理基板へ照射されるパルスレーザに位置ずれが生じた際に前記パルスレーザの照射位置を所望位置に補正する補正量として、前記エネルギー積算量に応じた位置ずれ補正量を算出する補正量算出部と、
     前記パルスレーザを用いて前記被処理基板を加工する加工部に対し、前記位置ずれ補正量に基づいて、前記パルスレーザの照射位置を補正するよう制御する制御部と、
     を備えることを特徴とするレーザ加工制御装置。
    A pulse detector for detecting the emission timing of the pulse laser emitted from the laser oscillator to the substrate to be processed;
    An integration unit that integrates each energy amount of the pulse laser emitted within a predetermined time to calculate an energy integration amount;
    A correction amount for calculating a misalignment correction amount according to the integrated energy amount as a correction amount for correcting the irradiation position of the pulse laser to a desired position when a misalignment occurs in the pulse laser irradiated to the substrate to be processed A calculation unit;
    A control unit that controls the processing unit that processes the substrate to be processed using the pulse laser so as to correct the irradiation position of the pulse laser based on the misalignment correction amount;
    A laser processing control device comprising:
  2.  前記補正量算出部は、前記被処理基板側に照射されるパルスレーザのガルバノエリア内での座標位置に応じた位置ずれ補正量を算出することを特徴とする請求項1に記載のレーザ加工制御装置。 2. The laser processing control according to claim 1, wherein the correction amount calculation unit calculates a displacement correction amount according to a coordinate position in a galvano area of a pulse laser irradiated to the substrate to be processed. apparatus.
  3.  前記補正量算出部は、前記レーザ発振器から前記被処理基板へ送られる前記パルスレーザが通過するfθレンズの基底温度に応じた位置ずれ補正量を算出することを特徴とする請求項1または2に記載のレーザ加工制御装置。 The correction amount calculation unit calculates a displacement correction amount according to a base temperature of an fθ lens through which the pulse laser transmitted from the laser oscillator to the substrate to be processed passes. The laser processing control apparatus described.
  4.  前記積算部は、前記パルスレーザが出射されてからの経過時間に応じた各エネルギー量を積算することによって前記エネルギー積算量を算出することを特徴とする請求項1~3のいずれか1つに記載のレーザ加工制御装置。 4. The integration unit according to claim 1, wherein the integration unit calculates the energy integration amount by integrating each energy amount according to an elapsed time after the pulse laser is emitted. The laser processing control apparatus described.
  5.  前記積算部は、前記パルスレーザの各エネルギー量を一定値として前記エネルギー積算量を算出することを特徴とする請求項1~3のいずれか1つに記載のレーザ加工制御装置。 4. The laser processing control apparatus according to claim 1, wherein the integration unit calculates the energy integration amount with each energy amount of the pulse laser as a constant value.
  6.  前記制御部は、前記加工部が備えるガルバノスキャナを制御することにより、前記パルスレーザの照射位置を補正することを特徴とする請求項1~5のいずれか1つに記載のレーザ加工制御装置。 6. The laser processing control apparatus according to claim 1, wherein the control unit corrects an irradiation position of the pulse laser by controlling a galvano scanner provided in the processing unit.
  7.  レーザ発振器が被処理基板側へパルスレーザを出射する出射ステップと、
     前記パルスレーザの出射タイミングを検出するパルス検出ステップと、
     所定時間内に出射された前記パルスレーザの各エネルギー量を積算してエネルギー積算量を算出する積算ステップと、
     前記被処理基板へ照射されるパルスレーザに位置ずれが生じた際に前記パルスレーザの照射位置を所望位置に補正する補正量として、前記エネルギー積算量に応じた位置ずれ補正量を算出する補正量算出ステップと、
     前記パルスレーザを用いて前記被処理基板を加工する加工部に対し、前記位置ずれ補正量に基づいて、前記パルスレーザの照射位置を補正するよう制御する制御ステップと、
     を含むことを特徴とするレーザ加工制御方法。
    An emission step in which a laser oscillator emits a pulse laser toward the substrate to be processed;
    A pulse detection step of detecting the emission timing of the pulse laser;
    An integration step of calculating an energy integrated amount by integrating the energy amounts of the pulse laser emitted within a predetermined time;
    A correction amount for calculating a misalignment correction amount according to the integrated energy amount as a correction amount for correcting the irradiation position of the pulse laser to a desired position when a misalignment occurs in the pulse laser irradiated to the substrate to be processed A calculation step;
    A control step for controlling a processing unit that processes the substrate to be processed using the pulse laser so as to correct the irradiation position of the pulse laser based on the positional deviation correction amount;
    A laser processing control method comprising:
PCT/JP2011/073694 2011-10-14 2011-10-14 Laser processing control device and laser processing control method WO2013054445A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/073694 WO2013054445A1 (en) 2011-10-14 2011-10-14 Laser processing control device and laser processing control method
TW101105418A TW201315562A (en) 2011-10-14 2012-02-20 Laser processing control device and laser processing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073694 WO2013054445A1 (en) 2011-10-14 2011-10-14 Laser processing control device and laser processing control method

Publications (1)

Publication Number Publication Date
WO2013054445A1 true WO2013054445A1 (en) 2013-04-18

Family

ID=48081518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073694 WO2013054445A1 (en) 2011-10-14 2011-10-14 Laser processing control device and laser processing control method

Country Status (2)

Country Link
TW (1) TW201315562A (en)
WO (1) WO2013054445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184071A (en) * 2015-03-26 2016-10-20 京セラドキュメントソリューションズ株式会社 Optical scanner and image forming apparatus including optical scanner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043763A1 (en) 2016-09-02 2018-03-08 Kyushu University, National University Corporation Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
CN109792134B (en) 2017-02-07 2022-08-16 国立大学法人九州大学 Current injection type organic semiconductor laser diode, method for manufacturing the same, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290944A (en) * 2002-04-04 2003-10-14 Mitsubishi Electric Corp Laser beam machining apparatus
JP2005040843A (en) * 2003-07-24 2005-02-17 Mitsubishi Electric Corp Laser beam machining device, and machining position-shifting correction method therefor
WO2009122758A1 (en) * 2008-04-04 2009-10-08 三菱電機株式会社 Processing control device and laser processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290944A (en) * 2002-04-04 2003-10-14 Mitsubishi Electric Corp Laser beam machining apparatus
JP2005040843A (en) * 2003-07-24 2005-02-17 Mitsubishi Electric Corp Laser beam machining device, and machining position-shifting correction method therefor
WO2009122758A1 (en) * 2008-04-04 2009-10-08 三菱電機株式会社 Processing control device and laser processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184071A (en) * 2015-03-26 2016-10-20 京セラドキュメントソリューションズ株式会社 Optical scanner and image forming apparatus including optical scanner

Also Published As

Publication number Publication date
TW201315562A (en) 2013-04-16

Similar Documents

Publication Publication Date Title
EP1173302B1 (en) Laser calibration apparatus and method
JP5288987B2 (en) Laser processing equipment
JP5383920B2 (en) Laser processing apparatus and substrate position detection method
JP6234296B2 (en) Laser processing apparatus and laser processing method
JP2010082663A (en) Laser beam machine
CN108620726B (en) Laser processing device and laser processing method
WO2013054445A1 (en) Laser processing control device and laser processing control method
JP5519123B2 (en) Laser processing machine
CN110587119B (en) Machining method and machining device
KR101451007B1 (en) Laser processing apparatus and laser processing method
JP2006263803A (en) Laser beam machining method and equipment
KR100950017B1 (en) Laser drilling manufacturing method
JP4467333B2 (en) Laser processing apparatus and processing method
KR102533457B1 (en) laser processing device
JP2002290007A (en) Method and device for forming circuit board
JP4272667B2 (en) Drilling method and laser processing machine
JP2010274267A (en) Laser beam machine
JP4580600B2 (en) Galvano scanner control method, apparatus, and galvano scanner
JP2009082956A (en) Method for correcting laser irradiation position in laser beam machine
JP4698092B2 (en) Galvano scanner device and control method thereof
JP3531629B2 (en) Laser beam deflection control method in stereolithography system
JPH09248688A (en) Laser beam machining device
JP3850308B2 (en) Method and apparatus for digital control of galvano scanner
JP2006315086A (en) Apparatus and method for laser beam machining
JP2005262260A (en) Laser beam machining apparatus and laser beam machining control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP