JP3531629B2 - Laser beam deflection control method in stereolithography system - Google Patents

Laser beam deflection control method in stereolithography system

Info

Publication number
JP3531629B2
JP3531629B2 JP2001226693A JP2001226693A JP3531629B2 JP 3531629 B2 JP3531629 B2 JP 3531629B2 JP 2001226693 A JP2001226693 A JP 2001226693A JP 2001226693 A JP2001226693 A JP 2001226693A JP 3531629 B2 JP3531629 B2 JP 3531629B2
Authority
JP
Japan
Prior art keywords
laser beam
irradiation
irradiation position
correction
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001226693A
Other languages
Japanese (ja)
Other versions
JP2003039562A (en
Inventor
裕彦 峠山
喜万 東
諭 阿部
徳雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001226693A priority Critical patent/JP3531629B2/en
Publication of JP2003039562A publication Critical patent/JP2003039562A/en
Application granted granted Critical
Publication of JP3531629B2 publication Critical patent/JP3531629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光造形システムにお
けるレーザビームの偏向制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser beam deflection control method in a stereolithography system.

【0002】[0002]

【従来の技術】光造形システムは、被固化剤に偏向手段
を介してレーザビームを照射して被固化剤の特定の部分
を固化させて固化層を形成するとともに、この固化層の
上に新たな固化層を形成することを繰り返すことで、所
望の三次元モデルを固化層が複数層積み重なったものと
して形成するもので、作成する三次元モデルの形状精度
はCADデータに基づいたレーザビームの走査の際の走
査精度に大きく影響される。
2. Description of the Related Art A stereolithography system irradiates a solidifying agent with a laser beam through a deflecting means to solidify a specific portion of the solidifying agent to form a solidified layer, and a new layer is formed on the solidified layer. By repeating the formation of various solidified layers, a desired three-dimensional model is formed as a stack of a plurality of solidified layers, and the shape accuracy of the three-dimensional model to be created is determined by scanning a laser beam based on CAD data. It is greatly affected by the scanning accuracy at the time of.

【0003】特にレーザビームの照射位置はモデル形成
作業の開始直前に較正を行ったとしても、レーザビーム
の光源の発振点のずれ、環境温度の変化によるレーザ光
源やレーザビームの走査のための偏向手段を支持する支
持部材のたわみ、偏向手段そのものの温度ドリフト等に
よって照射位置がずれてくることから、特開平8−31
8574号公報に記載のように、モデル形成作業の途中
で位置ずれの補正を行うことで精度の高い三次元モデル
を得られるようにすることがなされている。
In particular, even if the irradiation position of the laser beam is calibrated just before the start of the model forming work, the deviation of the oscillation point of the light source of the laser beam and the deflection for scanning the laser light source or the laser beam due to the change of the environmental temperature are caused. The irradiation position is displaced due to the deflection of the supporting member that supports the means, the temperature drift of the deflecting means itself, and the like.
As described in Japanese Patent No. 8574, it is possible to obtain a highly accurate three-dimensional model by correcting the positional deviation during the model forming work.

【0004】[0004]

【発明が解決しようとする課題】ところで、レーザビー
ムの走査のために偏向を行う偏向手段には、一般に図9
に示すように、直交する2軸の各軸回りに回転する2つ
のスキャンミラー21,22を具備するガルバノスキャ
ナーを用いるが、スキャンミラー21をX軸走査用、ス
キャンミラー22をY軸走査用とし、θxをスキャンミ
ラー21の光学角度、θyをスキャンミラー22の光学
角度とし、レーザビーム照射面でのレーザビーム照射位
置を(X,Y)とする時、2枚のスキャンミラー21,
22の動き(θx,θy)とレーザビーム照射位置との
関係が Δθx≠k1*ΔX, Δθy≒k2*ΔY ただしk1,k2は係数であって、非独立で線形性がな
いために、そして、図10に示すように、照射位置によ
ってずれ量に対する補正角が異なるために、単純に補正
量を決定することが困難である。
By the way, the deflecting means for deflecting the laser beam for scanning is generally shown in FIG.
As shown in FIG. 2, a galvano scanner including two scan mirrors 21 and 22 that rotate about two orthogonal axes is used. The scan mirror 21 is used for X-axis scanning and the scan mirror 22 is used for Y-axis scanning. , Θx is the optical angle of the scan mirror 21, θy is the optical angle of the scan mirror 22, and the laser beam irradiation position on the laser beam irradiation surface is (X, Y), the two scan mirrors 21,
The relationship between the movement (θx, θy) of 22 and the laser beam irradiation position is Δθx ≠ k1 * ΔX, Δθy≈k2 * ΔY where k1 and k2 are coefficients and are independent and non-linear. As shown in FIG. 10, it is difficult to simply determine the correction amount because the correction angle with respect to the deviation amount differs depending on the irradiation position.

【0005】本発明はこのような点に鑑みなされたもの
であって、その目的とするところはレーザビーム照射位
置の補正を高精度で行うことができる光造形システムに
おけるレーザビームの偏向制御方法を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a laser beam deflection control method in a stereolithography system capable of correcting a laser beam irradiation position with high accuracy. To provide.

【0006】[0006]

【課題を解決するための手段】しかして本発明に係る光
造形システムにおけるレーザビームの偏向制御方法は、
被固化剤に偏向手段を介してレーザビームを照射して固
化させた固化層を複数層積み重ねて所望の三次元形状モ
デルを形成するにあたり、予め所定の方法にて加工面で
のレーザビーム照射位置の較正作業を行って、その状態
で三次元モデル形成スタート直前に照射ターゲット上に
レーザビームを照射し、照射ターゲット上の照射位置を
複数箇所で測定してスタート時照射位置情報を取得する
段階と、三次元モデルの形成動作中において、照射ター
ゲット上にレーザビームを照射してその照射位置を複数
箇所で測定してモデル形成時照射位置情報を取得する段
階と、スタート時照射位置情報とモデル形成時照射位置
情報とを比較して、その差分データを得る差分データ取
得段階と、差分データからレーザビーム照射位置とレー
ザビームの偏向用のミラーの回転角との関係に基づいて
ミラーの補正角を決定してこの補正角に基づいてレーザ
ビームの偏向制御の補正を行う偏向制御段階とを有し
て、モデル形成時照射位置情報の取得段階と、差分デー
タ取得段階と、偏向制御段階とからなる途中補正動作を
モデル形成中に繰り返すとともに、途中補正動作に際
し、順次レーザビームを反射させる2つのスキャンミラ
ーからなる偏向手段における一方のスキャンミラーによ
る走査方向について測定及び補正を行い、その後、他方
のスキャンミラーによる走査方向について測定及び補正
を行うことに特徴を有している。
The method for controlling the deflection of the laser beam in the stereolithography system according to the present invention is as follows.
In order to form a desired three-dimensional shape model by stacking a plurality of solidified layers that have been solidified by irradiating a solidifying agent with a laser beam through a deflection means, a laser beam irradiation position on a processed surface by a predetermined method in advance Performing the calibration work of the above, irradiating the laser beam onto the irradiation target immediately before the start of the three-dimensional model formation in that state, measuring the irradiation positions on the irradiation target at multiple points, and acquiring the irradiation position information at the start. During the three-dimensional model forming operation, a step of irradiating the irradiation target with a laser beam and measuring the irradiation positions at multiple points to obtain irradiation position information during model formation, and irradiation position information during start and model formation Difference data acquisition step of obtaining the difference data by comparing the time irradiation position information, and for deflecting the laser beam irradiation position and the laser beam from the difference data Acquisition of irradiation position information during model formation, having a deflection control step of determining a correction angle of the mirror based on the relationship with the rotation angle of the mirror and correcting the deflection control of the laser beam based on this correction angle. One of the scan mirrors in the deflecting means, which is composed of two scan mirrors that sequentially reflects the laser beam in the midway correction operation, is repeated during the model formation, and the midway correction operation including the step, the difference data acquisition step, and the deflection control step It is characterized in that the measurement and correction are performed in the scanning direction by, and then the measurement and correction are performed in the scanning direction by the other scan mirror.

【0007】この時、上記途中補正動作に際し、レーザ
ビームの照射領域内の測定予定点に関して照射位置と偏
向手段におけるミラーの回転量との関係係数を予め求め
ておき、上記関係係数を用いて補正を行うとよい。
At this time, in the midway correction operation, a relational coefficient between the irradiation position and the rotation amount of the mirror in the deflecting means with respect to the measurement point in the irradiation area of the laser beam is obtained in advance, and correction is performed using the relational coefficient. Good to do.

【0008】また、形成する三次元モデルの形状データ
に基づいて、途中補正動作の実行タイミングを予め決定
しておいたり、形成する三次元モデルの形状データに基
づいて、レーザビームの積算照射熱量を予め演算し、そ
の積算値に基づいて途中補正動作の実行タイミングを予
め決定しておいたりするとよく、また、形成する三次元
モデルの形状データに基づいて、途中補正動作における
モデル形成時照射位置情報の取得段階での照射ターゲッ
トに対する照射位置測定点の数を変化させるようにする
のも好ましい。
Further, the execution timing of the intermediate correction operation is determined in advance based on the shape data of the three-dimensional model to be formed, or the integrated irradiation heat quantity of the laser beam is calculated based on the shape data of the three-dimensional model to be formed. It is preferable to calculate in advance and determine the execution timing of the midway correction operation based on the integrated value in advance. Also, based on the shape data of the three-dimensional model to be formed, the irradiation position information during model formation in the midway correction operation. It is also preferable to change the number of irradiation position measurement points with respect to the irradiation target in the acquisition step of.

【0009】このほか、レーザビームの照射位置測定に
際して、レーザビームの照射領域内を横断可能な高精度
位置決め可動テーブルに設置した照射位置測定用のカメ
ラを用いることができる。
In addition, when measuring the irradiation position of the laser beam, it is possible to use a camera for measuring the irradiation position, which is installed on a high-precision positioning movable table that can traverse the irradiation region of the laser beam.

【0010】また、照射ターゲットとして、加工面上に
位置させることができるものを用いるとともに、加工面
上に位置させた照射ターゲットに対してレーザビームの
照射を行うようにしてもよく、この場合、精密位置決め
可能な可動テーブルで照射ターゲットを加工面上に加工
面と平行に位置させるとよい。
Further, as the irradiation target, one which can be positioned on the processing surface is used, and the irradiation target positioned on the processing surface may be irradiated with the laser beam. In this case, It is advisable to position the irradiation target on the machined surface in parallel with the machined surface by means of a movable table capable of precise positioning.

【0011】[0011]

【発明の実施の形態】以下本発明を実施の形態の一例に
基づいて詳述すると、図2は本発明に係るレーザビーム
の偏向制御装置を備えた光造形システムの一例を示して
おり、被固化剤の層が上面に形成されるとともに造形に
従って昇降を行う造形ステージ1の周辺には、造形ステ
ージ1上の被固化剤の掻き取り用のスキージング40を
備えた可動テーブル4を移動させるための駆動機構41
と、撮像用のカメラ50を備えた可動テーブル5を移動
させるための駆動機構51とが設置されている。また、
造形ステージ1の上方には、レーザ光源20から出力さ
れたレーザビームを造形ステージ1上に走査するための
偏向手段2が配されている。この偏向手段2は直交する
2軸の回りを夫々回転駆動される2つのスキャンミラー
21,22を備えたガルバノスキャナで構成されてい
る。また、偏向手段2とレーザ光源20との間には焦点
調整及び集光径の変更用のレンズを備えた調整部23が
設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to an example of an embodiment. FIG. 2 shows an example of a stereolithography system including a laser beam deflection control device according to the present invention. In order to move the movable table 4 provided with the squeegee 40 for scraping off the solidified agent on the modeling stage 1, around the modeling stage 1 in which the layer of the solidifying agent is formed on the upper surface and which moves up and down according to the modeling. Drive mechanism 41
And a drive mechanism 51 for moving the movable table 5 equipped with a camera 50 for imaging. Also,
Above the modeling stage 1, a deflection unit 2 for scanning the laser beam output from the laser light source 20 onto the modeling stage 1 is arranged. The deflecting means 2 is composed of a galvano scanner provided with two scan mirrors 21 and 22 which are respectively driven to rotate about two orthogonal axes. Further, between the deflecting means 2 and the laser light source 20, there is provided an adjusting unit 23 having a lens for focus adjustment and change of the focused diameter.

【0012】そして、上記偏向手段2と調整部23及び
レーザ光源20は偏向制御や焦点制御並びに発振制御の
ための偏向制御装置24を介して制御コンピュータ9に
接続されており、また上記可動テーブル4,5も制御コ
ンピュータ9に接続されてスキージング動作及びカメラ
50による撮像エリアのコントロールが制御コンピュー
タ9によってなされるようになっており、さらにカメラ
50は画像処理装置55を介して制御コンピュータ9に
接続されている。
The deflection means 2, the adjusting section 23 and the laser light source 20 are connected to a control computer 9 via a deflection control device 24 for deflection control, focus control and oscillation control, and the movable table 4 is also provided. , 5 are also connected to the control computer 9 so that the control computer 9 controls the squeegeeing operation and the imaging area by the camera 50, and the camera 50 is connected to the control computer 9 via the image processing device 55. Has been done.

【0013】本発明においては、上記カメラ50を用い
てレーザビームの照射位置の測定を行うのであるが、こ
の時、上記可動テーブル4上に設けた照射ターゲット3
を用いて測定を行う。ここでは照射ターゲット3とし
て、ロール供給方式の感熱紙を用いている。
In the present invention, the irradiation position of the laser beam is measured by using the camera 50. At this time, the irradiation target 3 provided on the movable table 4 is measured.
Is used to measure. Here, as the irradiation target 3, a roll supply type thermal paper is used.

【0014】この照射ターゲット3とカメラ50とによ
るレーザビームの照射位置測定は、次のようにして行
う。すなわち、可動テーブル4を駆動することで照射タ
ーゲット3を加工面である造形ステージ1上に移動さ
せ、この状態で所定の複数点の位置の確認ができるマー
キング模様(たとえば図8に示すような格子模様)をレ
ーザビームによって照射ターゲット3上に描く。この時
の所定の複数点は、レーザビーム走査領域内で格子状間
隔で存在し且つ必要な走査領域と走査精度で決まる間隔
(この間隔は実験等で求めてもよい)を持つものという
条件を満たすものとする。そして、マーキング模様を照
射ターゲット3上に描いたならば、可動テーブル5を照
射ターゲット3上に移動させて、カメラ50で格子点付
近を撮像し、画像処理と撮影時のカメラ50の位置とか
ら格子点中心ccの位置を求める。
The irradiation position measurement of the laser beam by the irradiation target 3 and the camera 50 is performed as follows. That is, by driving the movable table 4, the irradiation target 3 is moved onto the modeling stage 1 which is a processing surface, and in this state, a marking pattern (for example, a grid as shown in FIG. 8) that can confirm the positions of a predetermined plurality of points. A pattern) is drawn on the irradiation target 3 by the laser beam. At this time, it is necessary that the predetermined plurality of points are present at a grid-like interval in the laser beam scanning area and have an interval determined by a required scanning area and scanning accuracy (this interval may be obtained by an experiment or the like). Shall be met. Then, after the marking pattern is drawn on the irradiation target 3, the movable table 5 is moved onto the irradiation target 3, and the camera 50 captures an image of the vicinity of the lattice point, and the image processing and the position of the camera 50 at the time of capturing are performed. The position of the lattice point center cc is obtained.

【0015】上記の照射位置測定と補正とについて三次
元モデルの造形手順に従って説明すると、まず所定の方
法にて造形ステージ1上でのレーザビーム照射位置の較
正作業を行っておく。そして、三次元モデル形成のスタ
ート直前に、上記測定動作を行って、予め定めた複数の
測定点についてのレーザビーム照射位置情報をスタート
時照射位置情報として記憶しておく。この時、格子状の
各測定点とその中心位置とを測定点(1,1),格子点
中心位置(X,Y)=(XXX,YYY)といったデー
タ形式で記憶する。
The above-mentioned irradiation position measurement and correction will be described according to the three-dimensional model forming procedure. First, the laser beam irradiation position on the forming stage 1 is calibrated by a predetermined method. Immediately before the start of the formation of the three-dimensional model, the above measurement operation is performed to store the laser beam irradiation position information on a plurality of predetermined measurement points as the start irradiation position information. At this time, each grid-shaped measurement point and its center position are stored in a data format such as measurement point (1, 1) and grid point center position (X, Y) = (XXX, YYY).

【0016】このように初期状態での予め定めた測定点
に対するレーザビームの照射位置の測定が完了すれば、
造形ステージ1上に被固化剤の層を形成し、被固化剤の
所定エリアをレーザビームの照射により固化させて固化
層とし、造形ステージ1を一段降下させた後、上記固化
層の上に被固化剤の新たな層を形成し、被固化剤の所定
エリアをレーザビームの照射により固化させて下層の固
化層と結合された固化層を設けるということを繰り返し
て、固化層を積み重ねていくことで所望の三次元形状モ
デルの造形を行う。
When the measurement of the irradiation position of the laser beam with respect to the predetermined measurement point in the initial state is completed in this way,
A layer of the agent to be solidified is formed on the modeling stage 1, a predetermined area of the agent to be solidified is solidified by irradiation with a laser beam to form a solidified layer, and the modeling stage 1 is lowered by one step, and then the solidified layer is coated on the solidified layer. Forming a new layer of the solidifying agent, solidifying a predetermined area of the solidifying agent by irradiation of a laser beam, and providing a solidified layer combined with the lower solidified layer, stacking the solidified layers repeatedly. Then, a desired three-dimensional shape model is formed.

【0017】この間、適宜のタイミングで造形ステージ
1上に照射ターゲット3を移動させて前述のようなレー
ザビーム照射位置測定動作をおこない、その測定結果を
上記スタート時照射位置情報と比較して、その差分デー
タ、つまりはずれ量とずれの方向とに関するデータを得
る。また、各測定点についての上記差分データから、測
定点以外の点でのずれ量及びずれ方向を推定する。
During this period, the irradiation target 3 is moved on the modeling stage 1 at an appropriate timing to perform the laser beam irradiation position measuring operation as described above, and the measurement result is compared with the irradiation position information at the start time. Difference data, that is, data regarding the deviation amount and the deviation direction is obtained. Further, the shift amount and the shift direction at points other than the measurement points are estimated from the difference data for each measurement point.

【0018】そして差分データからレーザビーム照射位
置とレーザビームの偏向用のミラーの回転角との関係に
基づいてミラー21,22の補正角を決定してこの補正
角に基づいて次の被固化剤に対するレーザビーム照射に
際しレーザビームの偏向制御の補正を行う。この補正角
は、次のレーザビーム照射位置測定動作を行うまで維持
する。
Then, the correction angles of the mirrors 21 and 22 are determined from the difference data based on the relationship between the laser beam irradiation position and the rotation angle of the laser beam deflection mirror, and the next solidification agent is determined based on this correction angle. The deflection control of the laser beam is corrected when the laser beam is radiated to the laser beam. This correction angle is maintained until the next laser beam irradiation position measuring operation is performed.

【0019】ここにおいて、上記レーザビーム照射位置
測定動作と補正角の決定にあたっては、偏向手段2であ
る2つのスキャンミラー21,22のうち、たとえば図
1に示すように、スキャンミラー22による走査方向に
おけるずれ量に基づいて、スキャンミラー22の補正角
を求め、スキャンミラー22に対する補正角を加えた状
態で再度レーザビーム照射位置測定動作を行って、今度
はスキャンミラー21による走査方向におけるずれ量に
基づいてスキャンミラー21の補正角を求めるようにし
ている。走査系のY座標をまず確定させ、この状態でも
う一度計測してX座標を確定させるのである。スキャン
ミラー21,22間の距離をe、スキャンミラー22と
レーザビーム照射面までの距離をZとすると、Y,Z,
eの値でスキャンミラー21の回転角θxが定まること
から、的確な補正を行うことができる。
Here, in the operation of measuring the laser beam irradiation position and the determination of the correction angle, of the two scan mirrors 21 and 22 which are the deflection means 2, for example, as shown in FIG. The correction angle of the scan mirror 22 is obtained based on the deviation amount in the scan mirror 22, and the laser beam irradiation position measurement operation is performed again with the correction angle for the scan mirror 22 added. Based on this, the correction angle of the scan mirror 21 is obtained. First, the Y coordinate of the scanning system is determined, and then the X coordinate is determined by measuring again in this state. When the distance between the scan mirrors 21 and 22 is e and the distance between the scan mirror 22 and the laser beam irradiation surface is Z, Y, Z,
Since the rotation angle θx of the scan mirror 21 is determined by the value of e, accurate correction can be performed.

【0020】ところで、ずれ量に基づいた補正角の決定
にあたっては、スキャンミラー21,22の回転角θ
x,θyと照射位置X,Yとの間には、上記Z,eの両
値が一定であるとすると、
By the way, in determining the correction angle based on the shift amount, the rotation angle θ of the scan mirrors 21 and 22.
If the values of Z and e are constant between x and θy and the irradiation positions X and Y,

【0021】[0021]

【数1】 [Equation 1]

【0022】の関係があることから、この両式を基に補
正角を算出すればよいが、これはスキャナミラー21,
22とレーザ照射面との位置関係が理想的な場合におい
て適用することができるだけで、実際上、この理想的な
位置関係を保持することは困難である。このために、こ
こではレーザビーム照射領域内の測定点に関して全て事
前に照射位置とスキャンミラー21,22の回転量との
関係係数(変換係数)を測定点毎に求めておき、この数
値を用いて補正を行うとよい。
Since there is a relation of (2), the correction angle may be calculated based on these two equations.
It can be applied only when the positional relationship between 22 and the laser irradiation surface is ideal, and it is practically difficult to maintain this ideal positional relationship. For this reason, here, with respect to all the measurement points in the laser beam irradiation region, the relation coefficient (conversion coefficient) between the irradiation position and the rotation amount of the scan mirrors 21 and 22 is obtained in advance for each measurement point, and this numerical value is used. It is good to correct it.

【0023】測定点(i,j)で走査方向Xについて、
ずれΔX(i,j)がある時、予め求めておいた変換係
数Kx(i,j)をずれΔX(i,j)に乗じて測定点
(i,j)についての回転補正角Δθx(i,j)を求
め、同様に測定点(i,j)についての回転補正角Δθ
y(i,j)もその測定点(i,j)について実験で求
めて置いた変換係数Ky(i,j)を測定点(i,j)
で実際に観測されたずれΔY(i,j)に乗じて算出す
る。
At the measurement point (i, j) in the scanning direction X,
When there is a deviation ΔX (i, j), the conversion coefficient Kx (i, j) obtained in advance is multiplied by the deviation ΔX (i, j) to obtain the rotation correction angle Δθx (i at the measurement point (i, j). , J), and similarly the rotation correction angle Δθ for the measurement point (i, j)
As for y (i, j), the conversion coefficient Ky (i, j) obtained by the experiment at the measurement point (i, j) is set to the measurement point (i, j).
It is calculated by multiplying the deviation ΔY (i, j) actually observed at.

【0024】このように、ずれ量(長さ)と回転角との
関係係数(変換係数)Kx(i,j),Ky(i,j)
を予め実測で求めておくことで、スキャナーミラー2
1,22とレーザ照射面との平行度や垂直度が少々ずれ
ていても、適切な補正を行うことができることになる。
As described above, the coefficient of relation (conversion coefficient) Kx (i, j), Ky (i, j) between the amount of deviation (length) and the rotation angle.
The scanner mirror 2
Even if the parallelism and the verticality between the laser irradiation surfaces 1 and 22 are slightly different from each other, appropriate correction can be performed.

【0025】なお、測定点の数は多いほどより正確な補
正を行うことができるが、測定点を多くすればするほど
多くの時間がかかることになり、モデル作成中の補正に
はその精度を若干落としてでも短時間で処理することが
できるようにしておくことが望ましく、これに伴って測
定点の数も少なくすることになる。そして、このように
測定点の数を少なくした時には、各測定点から離れたと
ころについて、その位置ずれ量と対応する補正をどのよ
うに行うかが問題となるが、これはある測定点を中心と
した所定のエリア内の全域に、ある測定点について求め
た位置ずれ量及び関係係数をすべて適用したり、あるい
は隣接する2つの測定点間の中間点に対し、両測定点に
ついての位置ずれ量の中間値及び関係係数の中間値を適
用する直線近似法を用いたりすればよい。図5は測定点
を9点とし、他の点(内部点)については直線近似法を
適用して位置ずれ量及び変換係数を求めて補正を行って
いる場合の例を示している。
It should be noted that the more the number of measurement points, the more accurate the correction can be made. However, the more the measurement points, the more time is required. It is desirable to be able to process in a short time even if it is slightly dropped, and the number of measurement points will be reduced accordingly. Then, when the number of measurement points is reduced in this way, the problem is how to perform the correction corresponding to the amount of positional deviation at a location distant from each measurement point. For all areas within the specified area, the amount of positional deviation and the relation coefficient obtained for a certain measuring point are all applied, or the amount of positional deviation for both measuring points with respect to the intermediate point between two adjacent measuring points. It is possible to use a linear approximation method that applies the intermediate value of and the intermediate value of the relationship coefficient. FIG. 5 shows an example in which the number of measurement points is 9, and the other points (internal points) are corrected by applying the linear approximation method to obtain the positional deviation amount and the conversion coefficient.

【0026】ところで、レーザビーム照射位置測定動作
をモデル作成中に行うタイミングは、上記偏向手段2の
各ミラー21,22に付設した熱電対のような温度セン
サ25,25の出力に基づいて行うことができる。温度
センサ25,25でミラー21,22の温度を常時監視
し、所定時間内の温度の変化が所定値ΔTを越える時、
補正必要有りと判断して、レーザビーム照射位置測定動
作とこれに続く照射位置補正動作とを行うとよいが、予
め決定しておいたタイミングで途中補正動作を行うよう
にしてもよい。
By the way, the timing of the laser beam irradiation position measuring operation during the model preparation is based on the outputs of the temperature sensors 25, 25 such as thermocouples attached to the mirrors 21, 22 of the deflection means 2. You can The temperature of the mirrors 21 and 22 is constantly monitored by the temperature sensors 25 and 25, and when the temperature change within a predetermined time exceeds a predetermined value ΔT,
The laser beam irradiation position measuring operation and the irradiation position correcting operation subsequent thereto may be performed when it is determined that the correction is necessary, but the intermediate correcting operation may be performed at a timing determined in advance.

【0027】たとえば、三次元モデルデータに基づき、
レーザビームの走査線分データの各層毎に線分の総延長
を計算し、各層毎の線分総延長を足した時にその値が所
定の値とほぼ等しくなる時を途中補正動作のタイミング
とするのである。図6に示すように、断面積が異なるた
めに線分の長さ及び本数(走査回数)が異なる時にも、
ほぼ同じレーザビームの照射時間毎に途中補正動作を行
うことができるものとなる。図6は断面Aの部分で長さ
Liの線分がm本ある場合と、断面Bの部分で長さLj
の線分がn本ある場合を示しており、各総延長は
For example, based on the three-dimensional model data,
The total length of the line segment is calculated for each layer of the scanning line data of the laser beam, and when the total length of the line segments for each layer is added, the value becomes almost equal to the predetermined value as the timing of the midway correction operation. Of. As shown in FIG. 6, even when the length and the number of lines (the number of scans) are different due to the different cross-sectional areas,
The midway correction operation can be performed at almost the same irradiation time of the laser beam. FIG. 6 shows the case where there are m line segments of length Li in the section A and the length Lj in the section B.
Shows the case where there are n line segments, and each total extension is

【0028】[0028]

【数2】 [Equation 2]

【0029】となる。It becomes

【0030】また、レーザビームのパワーを層によって
変更する場合には、線分総延長に加えてパワーも考慮し
てレーザビームの積算照射熱量を予め演算し、その積算
値に基づいて途中補正動作の実行タイミングを予め決定
するようにしてもよい。図7は線分Li1〜Limの各
レーザビームパワーがPi1〜Pimである場合と、線
分Lj1〜Ljnの各レーザビームパワーがPj1〜P
jnである場合とを示しており、各積算照射熱量Ai,
Ajは
When the power of the laser beam is changed depending on the layer, the integrated irradiation heat quantity of the laser beam is pre-calculated in consideration of the power in addition to the total length of the line segment, and the intermediate correction operation is performed based on the integrated value. The execution timing of may be determined in advance. In FIG. 7, the laser beam powers of the line segments Li1 to Lim are Pi1 to Pim, and the laser beam powers of the line segments Lj1 to Ljn are Pj1 to Pj.
jn and the cumulative irradiation heat amount Ai,
Aj is

【0031】[0031]

【数3】 [Equation 3]

【0032】となる。It becomes

【0033】このほか、上記途中補正動作に際してのレ
ーザビーム照射位置測定動作は、レーザビーム照射可能
領域全域で行う必要はなく、加工領域が図8に斜線部で
示すように一部だけである場合には、4つの測定点から
なる正方形を補正領域単位としてセルCを形成し、加工
領域を含む最小セル構成で測定及び補正を行うとよい。
In addition, it is not necessary to perform the laser beam irradiation position measuring operation in the midway correction operation in the entire laser beam irradiation possible area, and when the processing area is only a part as shown by the hatched portion in FIG. For the above, it is preferable that the cell C is formed with a square composed of four measurement points as a correction area unit, and measurement and correction are performed with the minimum cell configuration including the processing area.

【0034】[0034]

【発明の効果】以上のように本発明においては、モデル
形成時照射位置情報の取得段階と、差分データ取得段階
と、偏向制御段階とからなる途中補正動作をモデル形成
中に繰り返すとともに、途中補正動作に際し、順次レー
ザビームを反射させる2つのスキャンミラーからなる偏
向手段における一方のスキャンミラーによる走査方向に
ついて測定及び補正を行い、その後、他方のスキャンミ
ラーによる走査方向について測定及び補正を行うことか
ら、光学系が複雑であっても測定及び補正を的確に行う
ことができるものであり、また信頼性も高いものであ
る。
As described above, in the present invention, the midway correction operation including the model formation irradiation position information acquisition step, the difference data acquisition step, and the deflection control step is repeated during model formation, and the midpoint correction is performed. In operation, in the deflecting means composed of two scan mirrors for sequentially reflecting the laser beam, measurement and correction are performed in the scanning direction by one scan mirror, and thereafter, measurement and correction are performed in the scanning direction by the other scan mirror. Even if the optical system is complicated, the measurement and correction can be accurately performed, and the reliability is high.

【0035】この時、上記途中補正動作に際し、レーザ
ビームの照射領域内の測定予定点に関して照射位置と偏
向手段におけるミラーの回転量との関係係数を予め求め
ておき、上記関係係数を用いて補正を行うと、精度の良
い補正を行うことができる。
At this time, in the midway correction operation, a relational coefficient between the irradiation position and the rotation amount of the mirror in the deflecting means with respect to the measurement point in the irradiation area of the laser beam is obtained in advance, and the relational coefficient is used for correction. By performing, it is possible to perform accurate correction.

【0036】また、形成する三次元モデルの形状データ
に基づいて、途中補正動作の実行タイミングを予め決定
しておけば、各層毎の走査線分の総延長が異なる場合に
も、所定層毎に途中補正動作を行う場合に比して、レー
ザビーム照射時間の差を無くすことができる上に、予め
実行タイミングを適切な状態に割り振ることができる。
Further, if the execution timing of the intermediate correction operation is determined in advance based on the shape data of the three-dimensional model to be formed, even if the total extension of the scanning line segment for each layer is different, it is possible for each predetermined layer. Compared to the case where the midway correction operation is performed, the difference in laser beam irradiation time can be eliminated, and the execution timing can be assigned to an appropriate state in advance.

【0037】形成する三次元モデルの形状データに基づ
いて、レーザビームの積算照射熱量を予め演算し、その
積算値に基づいて途中補正動作の実行タイミングを予め
決定しておくならば、レーザビームパワーを途中で変化
させたりしている時にも、適切な時点で途中補正動作を
行わせることができる。
If the integrated irradiation heat quantity of the laser beam is calculated in advance based on the shape data of the three-dimensional model to be formed and the execution timing of the intermediate correction operation is determined in advance based on the integrated value, the laser beam power It is possible to perform the midway correction operation at an appropriate time even when changing the midpoint.

【0038】また、形成する三次元モデルの形状データ
に基づいて、途中補正動作におけるモデル形成時照射位
置情報の取得段階での照射ターゲットに対する照射位置
測定点の数を変化させると、測定に要する時間を必要最
小限に留めることができて、不必要な動作が少なくなる
ために、全体としてスピードアップが可能である。
Further, when the number of irradiation position measurement points for the irradiation target at the stage of acquiring irradiation position information during model formation in the mid-correction operation is changed based on the shape data of the three-dimensional model to be formed, the time required for measurement is changed. Can be kept to a necessary minimum, and unnecessary movements can be reduced, so that the speed can be increased as a whole.

【0039】このほか、レーザビームの照射位置測定に
際して、レーザビームの照射領域内を横断可能な高精度
位置決め可動テーブルに設置した照射位置測定用のカメ
ラを用いると、測定点や測定領域の変更に素早く対応さ
せることができる。
In addition, when measuring the irradiation position of the laser beam, if a camera for irradiation position measurement installed on a highly accurate positioning movable table that can traverse the irradiation region of the laser beam is used, it is possible to change the measuring point or the measuring region. Can respond quickly.

【0040】また、照射ターゲットとして、加工面上に
位置させることができるものを用いるとともに、加工面
上に位置させた照射ターゲットに対してレーザビームの
照射を行うようにすれば、実際の加工領域に測定点をも
ってくることができるために、正確な補正を行うことが
できるほか、ターゲットの大きさを照射領域とは関係無
く設定することができるために、測定点や測定領域の変
更への対応も容易となる。
If an irradiation target that can be positioned on the processing surface is used and the irradiation target positioned on the processing surface is irradiated with the laser beam, the actual processing area is reduced. Since the measurement point can be brought to the position, accurate correction can be performed, and the size of the target can be set regardless of the irradiation area. Will also be easier.

【0041】さらに精密位置決め可能な可動テーブルで
照射ターゲットを加工面上に加工面と平行に位置させる
と、測定誤差を少なくすることができるとともに補正の
ための計算も簡略化することができる。
Further, when the irradiation target is positioned on the machined surface in parallel with the machined surface by the movable table capable of precise positioning, the measurement error can be reduced and the calculation for the correction can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る偏向制御方法の説明図である。FIG. 1 is an explanatory diagram of a deflection control method according to the present invention.

【図2】同上の装置の斜視図である。FIG. 2 is a perspective view of the above apparatus.

【図3】同上の測定点についての説明図である。FIG. 3 is an explanatory diagram of measurement points of the above.

【図4】同上の変更制御方法の主ステップの説明図であ
る。
FIG. 4 is an explanatory diagram of main steps of the above change control method.

【図5】測定点以外の箇所の位置ずれ量の推定処理を含
む偏向制御方法の説明図である。
FIG. 5 is an explanatory diagram of a deflection control method that includes a process of estimating a positional deviation amount of a portion other than a measurement point.

【図6】途中補正動作の実行タイミングに関する説明図
である。
FIG. 6 is an explanatory diagram regarding execution timing of an intermediate correction operation.

【図7】途中補正動作の実行タイミングの他例の説明図
である。
FIG. 7 is an explanatory diagram of another example of the execution timing of the midway correction operation.

【図8】加工領域と測定領域との説明図である。FIG. 8 is an explanatory diagram of a processing area and a measurement area.

【図9】偏向手段の一例の斜視図である。FIG. 9 is a perspective view of an example of a deflection unit.

【図10】同上の動作説明図である。FIG. 10 is an operation explanatory diagram of the above.

【符号の説明】[Explanation of symbols]

2 変更手段 21 スキャンミラー 22 スキャンミラー 2 Change means 21 scan mirror 22 Scan mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 徳雄 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開 平8−318574(JP,A) 特開2000−326416(JP,A) 特開2001−96381(JP,A) 特表 平9−511854(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 67/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Yoshida 1048, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd. (56) References JP-A-8-318574 (JP, A) JP-A-2000-326416 (JP) , A) JP 2001-96381 (JP, A) JP-A 9-511854 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B29C 67/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被固化剤に偏向手段を介してレーザビー
ムを照射して固化させた固化層を複数層積み重ねて所望
の三次元形状モデルを形成するにあたり、予め所定の方
法にて加工面でのレーザビーム照射位置の較正作業を行
って、その状態で三次元モデル形成スタート直前に照射
ターゲット上にレーザビームを照射し、照射ターゲット
上の照射位置を複数箇所で測定してスタート時照射位置
情報を取得する段階と、三次元モデルの形成動作中にお
いて、照射ターゲット上にレーザビームを照射してその
照射位置を複数箇所で測定してモデル形成時照射位置情
報を取得する段階と、スタート時照射位置情報とモデル
形成時照射位置情報とを比較して、その差分データを得
る差分データ取得段階と、差分データからレーザビーム
照射位置とレーザビームの偏向用のミラーの回転角との
関係に基づいてミラーの補正角を決定してこの補正角に
基づいてレーザビームの偏向制御の補正を行う偏向制御
段階とを有して、モデル形成時照射位置情報の取得段階
と、差分データ取得段階と、偏向制御段階とからなる途
中補正動作をモデル形成中に繰り返すとともに、途中補
正動作に際し、順次レーザビームを反射させる2つのス
キャンミラーからなる偏向手段における一方のスキャン
ミラーによる走査方向について測定及び補正を行い、そ
の後、他方のスキャンミラーによる走査方向について測
定及び補正を行うことを特徴とする光造形システムにお
けるレーザビームの偏向制御方法。
1. When a desired three-dimensional shape model is formed by stacking a plurality of solidified layers obtained by irradiating a solidifying agent with a laser beam through a deflecting means and solidifying the solidified layers, a surface to be processed is prepared in advance by a predetermined method. The laser beam irradiation position is calibrated, and the laser beam is irradiated onto the irradiation target immediately before the start of the three-dimensional model formation in that state, and the irradiation position on the irradiation target is measured at multiple points. During the operation of forming the three-dimensional model, the step of irradiating the irradiation target with a laser beam, measuring the irradiation positions at multiple points, and acquiring the irradiation position information during model formation, and the irradiation at the start The difference data acquisition step of obtaining the difference data by comparing the position information with the irradiation position information during model formation, and the laser beam irradiation position and the laser beam from the difference data. And a deflection control step for determining the correction angle of the mirror based on the relationship with the rotation angle of the mirror for deflecting the beam and correcting the deflection control of the laser beam based on this correction angle. During the model formation, an intermediate correction operation consisting of a step of acquiring the temporal irradiation position information, a step of acquiring the difference data, and a deflection control step is repeated during the model formation, and a deflection consisting of two scan mirrors for sequentially reflecting the laser beam during the intermediate correction operation. A method of controlling deflection of a laser beam in a stereolithography system, comprising: measuring and correcting in a scanning direction by one of the scan mirrors in the means, and then measuring and correcting in a scanning direction by the other scan mirror.
【請求項2】 途中補正動作に際し、レーザビームの照
射領域内の測定予定点に関して照射位置と偏向手段にお
けるミラーの回転量との関係係数を予め求めておき、途
中補正動作に際して上記関係係数を用いて補正を行うこ
とを特徴とする請求項1記載の光造形システムにおける
レーザビームの偏向制御方法。
2. In the midway correction operation, a relational coefficient between the irradiation position and the rotation amount of the mirror in the deflecting means is obtained in advance with respect to a measurement point in the irradiation area of the laser beam, and the relational coefficient is used in the midway correction operation. The method for controlling deflection of a laser beam in a stereolithography system according to claim 1, wherein the correction is performed by the correction.
【請求項3】 形成する三次元モデルの形状データに基
づいて、途中補正動作の実行タイミングを予め決定して
おくことを特徴とする請求項1または2記載の光造形シ
ステムにおけるレーザビームの偏向制御方法。
3. The deflection control of the laser beam in the stereolithography system according to claim 1, wherein the execution timing of the midway correction operation is determined in advance based on the shape data of the three-dimensional model to be formed. Method.
【請求項4】 形成する三次元モデルの形状データに基
づいて、レーザビームの積算照射熱量を予め演算し、そ
の積算値に基づいて途中補正動作の実行タイミングを予
め決定しておくことを特徴とする請求項1または2記載
の光造形システムにおけるレーザビームの偏向制御方
法。
4. The integrated irradiation heat quantity of the laser beam is calculated in advance based on the shape data of the three-dimensional model to be formed, and the execution timing of the midway correction operation is determined in advance based on the integrated value. The method for controlling deflection of a laser beam in the stereolithography system according to claim 1 or 2.
【請求項5】 形成する三次元モデルの形状データに基
づいて、途中補正動作におけるモデル形成時照射位置情
報の取得段階での照射ターゲットに対する照射位置測定
の数を変化させることを特徴とする請求項1または2
記載の光造形システムにおけるレーザビームの偏向制御
方法。
5. The number of irradiation position measurement points for an irradiation target is changed based on the shape data of a three-dimensional model to be formed, in the step of acquiring irradiation position information during model formation in the midway correction operation. Item 1 or 2
A method for controlling deflection of a laser beam in the stereolithography system according to claim 1.
【請求項6】 レーザビームの照射位置測定に、レーザ
ビームの照射領域内を横断可能な高精度位置決め可動テ
ーブルに設置した照射位置測定用のカメラを用いている
ことを特徴とする請求項1〜5のいずれかの項に記載の
光造形システムにおけるレーザビームの偏向制御方法。
6. A camera for irradiation position measurement, which is installed on a high-precision positioning movable table that can traverse an irradiation region of the laser beam, is used for measuring the irradiation position of the laser beam. 5. A deflection control method of a laser beam in the stereolithography system according to any one of items 5.
【請求項7】 照射ターゲットとして、加工面上に位置
させることができるものを用いるとともに、加工面上に
位置させた照射ターゲットに対してレーザビームの照射
を行うことを特徴とする請求項1〜6のいずれかの項に
記載の光造形システムにおけるレーザビームの偏向制御
方法。
7. The irradiation target that can be positioned on the processing surface is used, and the irradiation target positioned on the processing surface is irradiated with a laser beam. 7. A deflection control method of a laser beam in the stereolithography system according to any one of items 6.
【請求項8】 精密位置決め可能な可動テーブルで照射
ターゲットを加工面上に加工面と平行に位置させること
を特徴とする請求項7記載の光造形システムにおけるレ
ーザビームの偏向制御方法。
8. The deflection control method of a laser beam in an optical modeling system according to claim 7, wherein the irradiation target is positioned on the processing surface in parallel with the processing surface by a movable table capable of precise positioning.
JP2001226693A 2001-07-26 2001-07-26 Laser beam deflection control method in stereolithography system Expired - Lifetime JP3531629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226693A JP3531629B2 (en) 2001-07-26 2001-07-26 Laser beam deflection control method in stereolithography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226693A JP3531629B2 (en) 2001-07-26 2001-07-26 Laser beam deflection control method in stereolithography system

Publications (2)

Publication Number Publication Date
JP2003039562A JP2003039562A (en) 2003-02-13
JP3531629B2 true JP3531629B2 (en) 2004-05-31

Family

ID=19059468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226693A Expired - Lifetime JP3531629B2 (en) 2001-07-26 2001-07-26 Laser beam deflection control method in stereolithography system

Country Status (1)

Country Link
JP (1) JP3531629B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI526797B (en) * 2014-09-02 2016-03-21 三緯國際立體列印科技股份有限公司 Calibration apparatus and calibration method for three dimensional printing apparatus
JP6087328B2 (en) * 2014-09-18 2017-03-01 株式会社ソディック Additive manufacturing equipment
CN106956430B (en) * 2017-03-29 2019-07-30 深圳市大业激光成型技术有限公司 Its 3D printer system of a kind of calibrating installation of galvanometer scanning system and application
JP2019155606A (en) 2018-03-07 2019-09-19 株式会社リコー Modeling apparatus, and modeling system and method
CN109396657B (en) * 2018-11-16 2019-10-01 北京易加三维科技有限公司 More Laser correctives and joining method for increasing material manufacturing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4437284A1 (en) * 1994-10-18 1996-04-25 Eos Electro Optical Syst Method for calibrating a controller to deflect a laser beam
JP3155168B2 (en) * 1995-05-26 2001-04-09 松下電工株式会社 3D shape forming method
DE19918613A1 (en) * 1999-04-23 2000-11-30 Eos Electro Optical Syst Method for calibrating a device for producing a three-dimensional object, calibration device and method and device for producing a three-dimensional object
JP2001096381A (en) * 1999-09-29 2001-04-10 Matsushita Electric Ind Co Ltd Laser beam machining process

Also Published As

Publication number Publication date
JP2003039562A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP6959698B2 (en) How to calibrate multiple scanners in additive manufacturing equipment
US7867431B2 (en) Method of and apparatus for making a three-dimensional object
EP2769800B1 (en) Laser processing machine
KR101698269B1 (en) Laser processing machine and calibration method for laser processing machine according to distortion of workpiece
JP7190489B2 (en) Scanning system calibration
JP5383920B2 (en) Laser processing apparatus and substrate position detection method
WO2017158327A1 (en) Calibration of additive manufacturing apparatus
KR102392452B1 (en) Galvanometer calibration system and method
JP2022545820A (en) equipment and devices
US11850792B2 (en) Method for calibrating an apparatus for producing an object by means of additive manufacturing, and apparatus for the method
JP2010060556A (en) System and method for measuring curved member
JP6632781B1 (en) Laser processing apparatus, laser processing method, and error adjustment method
JP3531629B2 (en) Laser beam deflection control method in stereolithography system
JP6157093B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2006263803A (en) Laser beam machining method and equipment
CN113853261B (en) Method and device
CN116652369A (en) Laser processing control method, system and device
JP3565186B2 (en) Laser beam deflection control method and device in stereolithography system
JP3754743B2 (en) Surface position setting method, wafer height setting method, surface position setting method, wafer surface position detection method, and exposure apparatus
JP2001304827A (en) Sectional shape measuring apparatus and sectional shape measuring method
TWI783672B (en) Lamination molding apparatus and calibration method thereof
JP2002001562A (en) Optical processing method and it's device and recording medium
KR101493013B1 (en) Method for compensating beam patterning direction and position
Land II CHARACTERIZATION AND IN-PROCESS METROLOGY OF A LASER POWDER FUSION ADDITIVE MANUFACTURING MACHINE
CN117881527A (en) Improving positional accuracy of energy supply in an additive manufacturing apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R151 Written notification of patent or utility model registration

Ref document number: 3531629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

EXPY Cancellation because of completion of term