NL2027058B1 - Reliability test simulation loading apparatus of electric spindle - Google Patents

Reliability test simulation loading apparatus of electric spindle Download PDF

Info

Publication number
NL2027058B1
NL2027058B1 NL2027058A NL2027058A NL2027058B1 NL 2027058 B1 NL2027058 B1 NL 2027058B1 NL 2027058 A NL2027058 A NL 2027058A NL 2027058 A NL2027058 A NL 2027058A NL 2027058 B1 NL2027058 B1 NL 2027058B1
Authority
NL
Netherlands
Prior art keywords
load
electric spindle
motor shaft
loading
load arm
Prior art date
Application number
NL2027058A
Other languages
Dutch (nl)
Inventor
Ying Jun
Guo Jinyan
Li Shizheng
Jin Tongtong
Yang Zhaojun
Tian Hailong
Chen Chuanhai
Original Assignee
Univ Jilin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Jilin filed Critical Univ Jilin
Priority to NL2027058A priority Critical patent/NL2027058B1/en
Application granted granted Critical
Publication of NL2027058B1 publication Critical patent/NL2027058B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/027Test-benches with force-applying means, e.g. loading of drive shafts along several directions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

The present invention belongs to the technical field of mechanical test equipment, and relates to a reliability test simulation loading apparatus of an electric spindle, which includes a main supporting body and a stress loading apparatus. The main supporting body includes a supporting disc. The stress loading apparatus includes a piezoelectric ceramic loading apparatus, a dynamometer loading apparatus, a diaphragm coupling, a loading unit, an oil contamination loading apparatus and an electric spindle loading apparatus. The piezoelectric ceramic loading apparatus, the dynamometer loading apparatus and the electric spindle loading apparatus are fixed on the supporting disc. The diaphragm coupling and the loading unit are installed between the dynamometer loading apparatus and the electric spindle loading apparatus. One end of the diaphragm coupling is connected with the loading unit, and the other end is connected with the dynamometer loading apparatus. The oil contamination loading apparatus is installed on the electric spindle loading apparatus and is coaxial with a core of the electric spindle. The present invention designs the loading apparatuses respectively for three important factors which influence the reliability of the electric spindle, i.e., dynamic cutting forces, cutting torques and oil contamination, so that all loads on the electric spindle in a practical cutting process can be actually simulated.

Description

RELIABILITY TEST SIMULATION LOADING APPARATUS OF ELECTRIC SPINDLE Technical Field The present invention belongs to the technical field of mechanical test equipment, and relates to a reliability test simulation loading apparatus of an electric spindle, and particularly relates to a reliability test simulation loading apparatus which can simulate dynamic cutting forces, cutting torques and oil contamination of the electric spindle in a cutting process and realize multi-degree-of-freedom multi-stress compound loading.
Background Computer numerical control machine tools are important cornerstones for realizing industrial modernization, and their quality, performance and owning amount have become important indicators to measure the industrialization level and comprehensive national strength of a country. An electric spindle is a key functional component of the computer numerical control machine tool. Due to its complex structure and frequent failures, the reliability of the electric spindle directly affects the reliability of the entire computer numerical control machine tool. Failure data of an on-site reliability tracking test of the computer numerical control machine tool shows that the dynamic cutting forces, torques and oil contamination of the electric spindle are main causes of the failures of the electric spindle.
At present, most of reliability test apparatuses of the electric spindle in China and abroad simulate the cutting torque of the electric spindle by connecting a dynamometer and a spindle through a coupling, and directly apply an axial force and a radial force to the tested spindle. There is no reliability test apparatus of the electric spindle that can simulate the dynamic cutting forces, cutting torques and oil contamination of the electric spindles of different models and specifications in the cutting process. However, reliability test beds cannot well simulate real working conditions of the electric spindle in the cutting process, and cannot stimulate all failures of the spindle, resulting in inaccurate reliability evaluation results of the electric spindle, and even affecting the reliability design of the electric spindle of the computer numerical control machine tool.
Summary The present invention aims at solving the technical problems in the prior art that dynamic cutting forces, cutting torques and oil contamination of electric spindles of different models and specifications cannot be comprehensively simulated, thereby designing a reliability test simulation loading apparatus of an electric spindle, which can simulate the dynamic cutting forces, cutting torques and oil contamination of electric spindles of different models and specifications.
To solve the above technical problems, the present invention adopts the technical solutions as follows, which are described below in conjunction with the accompanying drawings: A reliability test simulation loading apparatus of an electric spindle includes a main supporting body and a stress loading apparatus.
The main supporting body includes a supporting disc 4.
The stress loading apparatus includes a piezoelectric ceramic loading apparatus 1, a dynamometer loading apparatus 2, a diaphragm coupling 3, a loading unit 5, an oil contamination loading apparatus 6 and an electric spindle loading apparatus 7.
The supporting disc 4 is fixed on a horizon iron 10.
The piezoelectric ceramic loading apparatus 1, the dynamometer loading apparatus 2 and the electric spindle loading apparatus 7 are fixed on the supporting disc 4.
The diaphragm coupling 3 and the loading unit 5 are installed between the dynamometer loading apparatus 2 and the electric spindle loading apparatus 7.
One end of the diaphragm coupling 3 is connected with the loading unit 5, and the other end is connected with the dynamometer loading apparatus 2.
The oil contamination loading apparatus 6 is installed on the electric spindle loading apparatus 7 and is coaxial with a core of the electric spindle.
The supporting disc 4 in the technical solution includes a rotating disc 11, a disc driving motor 12 and a disc base 13. The disc driving motor 12 is fixed on the disc base 13, and the disc driving motor 12 drives the rotating disc 11 to rotate around a motor shaft, thereby realizing the rotation of the loading apparatus on a horizontal plane.
The piezoelectric ceramic loading apparatus 1 in the technical solution includes a main protection body 14, a loading guide rail 15, an arc slide-way 18, a sliding block A 17, a sliding block B 18, an arc rack A 19, a gear A 20, a loading arm 21, a sliding block C 22, a sliding block D283, an arc rack B 24, a gear B 25 and a piezoelectric ceramic 26. The loading guide rail 15 is fixed at the inner top of the main protection body 14 through a bolt, and a lower arc surface of the loading guide rail 15 is provided with the arc rack A 19. The gear A 20 is installed on the arc slide-way 16 and engaged with the arc rack A 19. The gear A 20 rotates on the arc rack A 19 to drive the arc slide-way 16 to slide on the loading guide rail 15 through the sliding block A 17 and the sliding block B 18. A lower arc surface of the arc slide-way 16 is provided with the arc rack B 24, and the gear B 25 is installed on the loading arm 21 and engaged with the arc rack B 24. The gear B 25 rotates on the arc rack B 24 to drive the loading arm 21 to slide on the arc slide- way 16 through the sliding block C 22 and the sliding block D 23, thereby realizing the spatial multi-degree-of-freedom transformation of the entire piezoelectric ceramic loading apparatus.
The loading arm 21 includes a gear support 27, a hydraulic rod 28, a loading arm joint | 29, a loading arm joint II 30, a loading arm motor shaft A 31, a loading arm joint III-A 32, a loading arm motor shaft B 33, a loading arm motor shaft C 34, a loading arm joint II-B 35, a loading arm motor shaft D 36, a loading arm motor shaft E 37, a piezoelectric ceramic clamp A
38 and a piezoelectric ceramic clamp B 39. The hydraulic rod 28 is located above the loading arm joint | 29 and drives the loading arm joint | 29 to move up and down in a hydraulic control way. The loading arm joint | 29 is connected with the loading arm joint Il 30 through the loading arm motor shaft A 31, and the loading arm motor shaft A 31 drives the loading arm joint II 30 to rotate around the shaft. The loading arm joint | 29 is connected with the loading arm joint IlI-A 32 and the loading arm joint II-B 35 through the loading arm motor shaft B 33 and the loading arm motor shaft C 34 on two sides. The loading arm motor shaft B 33 and the loading arm motor shaft C 34 drive the loading arm joint III-A 32 and the loading arm joint II-B 35 to rotate around their axes respectively. The loading arm joint III-A 32 is connected with the piezoelectric ceramic clamp A 38 through the loading arm motor shaft D 36. The loading arm joint I-B 35 is connected with the piezoelectric ceramic clamp B 39 through the loading arm motor shaft E 37. The loading arm joint II-A 32 and the loading arm joint III-B 35 drive the piezoelectric ceramic clamp A 38 and the piezoelectric ceramic clamp B 39 to rotate around their axes respectively, thereby realizing the release and clamping of the piezoelectric ceramic 26 as well as the spatial angle transformation of the loading arm 21.
The loading arm 21 clamps the piezoelectric ceramic 26 through the piezoelectric ceramic clamp A 38 and the piezoelectric ceramic clamp B 39, thereby realizing the dynamic force loading onto the electric spindle.
The loading arm 21 is cooperated with the supporting disc 4 and the piezoelectric ceramic loading apparatus 1 to realize the spatial multi-degree-of-freedom transformation of the piezoelectric ceramic 26, thereby simulating stresses on the electric spindle in different directions during the cutting.
The dynamometer loading apparatus 2 in the technical solution includes a dynamometer 40, guiding columns 41, a dynamometer connecting plate 42, a lead screw guide rail 43 and a dynamometer loading apparatus bottom plate 44. The dynamometer 40 is fixed on the dynamometer connecting plate 42 through a fastening bolt. The bottom surfaces of four guiding columns 41 are fixed on the dynamometer loading apparatus bottom plate 44 and connected with the dynamometer connecting plate 42. The upper end of the lead screw guide rail 43 is fixed on the dynamometer connecting plate 42; the lower end is fixed on the dynamometer loading apparatus bottom plate 44; and the dynamometer connecting plate 42 is driven by a lead screw to move up and down.
The loading unit 5 in the technical solution includes a simulation knife handle 45, a loading unit upper cover 46, a bearing 47, a sleeve 48, a loading unit lower cover 49, a loading unit shell 50 and a cooling pipe 51. The loading unit upper cover 46, the bearing 47, the sleeve 48 and the loading unit lower cover 49 are assembled at one end of the simulation knife handle 45 in sequence, and encased by the loading unit shell 50. The cooling pipe 51 is embedded at a recession at the inner side of the loading unit shell 50, thereby cooling the entire loading unit 5.
One end of the simulation knife handle 45 is connected with the diaphragm coupling 3, and the other end is connected with the electric spindle loading apparatus 7.
The loading unit shell 50 is provided with a pit 52.
The oil contamination loading apparatus 6 in the technical solution includes a protection cover 53, an oil immersion box body | 54, sealing rings 55, spray heads 56, oil injection pipes 57, an oil immersion box body II 58, a locking bolt 59, a fixed ring | 60 and a fixed ring 1 61. In the protection cover 53, the oil immersion box body | 54 and the oil immersion box body II 58 are interlocked and fixed by the fixed ring | 60 and the fixed ring II 61. The fixed ring | 60 and the fixed ring Il 61 are locked by the locking bolt 59. The inner sides of the oil immersion box body | 54 and the oil immersion box body II 58 are both provided with the sealing ring 55, so that good sealing property after the oil immersion box body | 54 and the oil immersion box body II 58 are interlocked can be guaranteed. The oil immersion box body Il 58 is provided with an oil injection hole. A colour oil contamination mixed solution is injected into an oil immersion box body composed of the oil immersion box body | 54 and the oil immersion box body II 58 through the oil injection hole to simulate oil contamination conditions of the spindle in the cutting process, thereby detecting the sealing property at a junction between an electric spindle shell and a bearing end cover can be detected.
The oil contamination loading apparatus 6 includes the protection cover 53, the oil immersion box body | 54, the spray heads 56, the oil injection pipes 57, the oil immersion box body Il 58, the locking bolt 59, the fixed ring | 60 and the fixed ring II 61. In the protection cover 53, the oil immersion box body | 54 and the oil immersion box body II 58 are interlocked and fixed by the fixed ring | 60 and the fixed ring II 61, and the fixed ring | 60 and the fixed ring II 61 are locked by the locking bolt 59. The oil immersion box body II 58 is provided with the oil injection hole, and the colour oil contamination mixed solution is injected into the oil immersion box body composed of the oil immersion box body | 54 and the oil immersion box body II 58 through the oil injection hole.
The spray heads 56 are fixed at one end of the oil injection pipes 57, and the other ends of the oil injection pipes 57 are located on the oil immersion box body | 54 or the oil immersion box body II 58.
Preferably, the four spray heads 56 are fixed at one end of the four oil injection pipes 57 respectively. The other ends of the four oil injection pipes 57 are located in pairs on the oil immersion box body | 54 and the oil immersion box body Il 58. The colour oil contamination mixed solution is injected through the supercharging of the oil injection hole, and the mixed solution is sprayed out by the four spray heads 58 to simulate the oil contamination of the spindle in the cutting process, thereby detecting the sealing property of a clearance between the electric spindle core and an end cover.
The electric spindle loading apparatus 7 in the technical solution includes an electric spindle loading apparatus shell 62, a spindle clamp adjusting mechanism 63, a clamp plate 64,
an electric spindle 65, V-shaped supporting structures 66, a moving sliding plate 67, a sliding block E 88, a rectilinear slide-way 69 and an electric spindle loading apparatus bottom plate 70. The electric spindle loading apparatus shell 62 is connected with the clamp plate 64 through the spindle clamp adjusting mechanism 63. The height of the spindle clamp adjusting mechanism 5 63 is adjusted hydraulically to realize the up-down movement of the clamp plate 64 so as to fit the electric spindle 65, thereby adapting to the installation and test of the electric spindles of different models. The bottom of the electric spindle loading apparatus shell 62 is fixed on the moving sliding plate 67 through a foundation bolt. The four V-shaped supporting structures 66 are fixed in pairs on the moving sliding plate 67 in an aligning manner through the fastening bolts to jointly support the electric spindle 65 and realize the support at different angles through the hydraulic adjustment to cooperate with the clamp plate 64 to jointly clamp the electric spindles of various models. The rectilinear slide-way 69 is fixed on the electric spindle loading apparatus bottom plate 70 through the bolt, and the moving sliding plate 87 is driven to slide through the sliding of the sliding block E 88, so that the back-and-forth movement of the entire electric spindle loading apparatus 7 can be realized, thereby facilitating the installation and feeding movement of the electric spindle.
The reliability test simulation loading apparatus of the electric spindle also includes an auxiliary device.
The auxiliary device in the technical solution includes a hydraulic station 8 and a control cabinet 9. The hydraulic station 8 and the control cabinet © are arranged on the ground.
The hydraulic station 8 supplies cooling liquid to the spindle and the loading unit and is provided with a flow control valve which can control the flow of hydraulic oil. The hydraulic station supplies hydraulic oil to a broach mechanism, and a hydraulic adjusting and control apparatus.
The control cabinet 9 realizes the parameter collection and control function for the entire reliability test system and can also display an operation condition of the test apparatus in a display.
Compared with the prior art, the present invention has the following beneficial effects:
1. The present invention designs the loading apparatuses respectively for three important factors which influence the reliability of the electric spindle, i.e., dynamic cutting forces, cutting torques and oil contamination, so that all loads on the electric spindle in the practical cutting process can be more actually simulated. The oil contamination is used as one of main operation conditions for simulation of the electric spindle, which is a breakthrough in the reliability test of the electric spindle.
2. The entire reliability test apparatus of the electric spindle can realize the spatial multi- degree-of-freedom transformation of the piezoelectric ceramic so as to simulate the stresses in different directions on the electric spindle in the practical machining process, thereby more accurately simulating the real working condition of the electric spindle.
3. The present invention designs the self-cooled loading unit to solve the problem that the overheating of the loading unit in the loading process is likely to cause the damage of the bearing in the loading unit. The cooling pipe is embedded inside a groove of the loading unit shell, thereby realizing the effective cooling and protection for the loading unit.
4. The present invention designs the adjustable electric spindle clamp and the supporting apparatus in order to adapt to the reliability test of the electric spindles of different models and specifications, so that the installation and clamping of the electric spindles of different models and specifications can be realized.
Description of Drawings The present invention is further described below in conjunction with the accompanying drawings: Fig. 1 is an axonometric drawing of a reliability test simulation loading apparatus of an electric spindle in the present invention. Fig. 2 is an axonometric drawing of a supporting disc in the present invention. Fig. 3 is an axonometric drawing of a piezoelectric ceramic loading apparatus in the present invention. Fig. 4 is an assembly schematic diagram of a loading guide rail and an arc slide-way in the present invention. Fig. 5 is an assembly sectional view of the loading guide rail and the arc slide-way in the present invention. Fig. 8 is an assembly schematic diagram of the arc slide-way and a loading arm in the present invention. Fig. 7 is an assembly sectional view of the arc slide-way and the loading arm in the present invention. Fig. 8 is an axonometric drawing of the loading arm in the present invention. Fig. 9 is an axonometric drawing of a dynamometer loading apparatus in the present invention. Fig. 10 is an exploded view of the loading unit in the present invention. Fig. 11 is an exploded view of an oil contamination loading apparatus in the present invention. Fig. 12 is an axonometric drawing of an electric spindle loading apparatus in the present invention. In the drawings:
1. Piezoelectric ceramic loading apparatus, 2. Dynamometer loading apparatus, 3. Diaphragm coupling, 4. Supporting disc, 5. Loading unit, 8. Oil contamination loading apparatus,
7. Electric spindle loading apparatus, 8. Hydraulic station, 9. Control cabinet, 10. Horizon iron,
11. Rotating disc, 12. Disc driving motor, 13. Disc base, 14. Main protection body, 15. Loading guide rail, 16. Arc slide-way, 17. Sliding block A, 18. Sliding block B, 19. Arc rack A, 20. Gear A,
21. Loading arm, 22. Sliding block C, 23. Sliding block D, 24. Arc rack B, 25. Gear B, 26. Piezoelectric ceramic, 27. Gear support, 28. Hydraulic rod, 29. Loading arm joint |, 30. Loading arm joint II, 31. Loading arm motor shaft A, 32. Loading arm joint III-A, 33. Loading arm motor shaft B, 34. Loading arm motor shaft C, 35. Loading arm joint lII-B, 36. Loading arm motor shaft D, 37. Loading arm motor shaft E, 38. Piezoelectric ceramic clamp A, 39. Piezoelectric ceramic clamp B, 40. Dynamometer, 41. Guiding column, 42. Dynamometer connecting plate, 43. Lead screw guide rail, 44. Dynamometer loading apparatus bottom plate, 45. Simulation knife handle,
46. Loading unit upper cover, 47. Bearing, 48. Sleeve, 49. Loading unit lower cover, 50. Loading unit shell, 51. Cooling pipe, 52. Pit, 53. Protection cover, 54. Oil immersion box body I, 55. Sealing ring, 56. Spray head, 57. Oil injection pipe, 58. Oil immersion box body II, 59. Locking bolt, 60. Fixed ring |, 61. Fixed ring II, 62. Electric spindle loading apparatus shell, 63. Spindle clamp adjusting mechanism, 64. Clamp plate, 65. Electric spindle, 66. V-shaped supporting structure, 67. Moving sliding plate, 68. Sliding block E, 69. Rectilinear slide-way, 70. Electric spindle loading apparatus bottom plate.
Detailed Description A reliability test simulation loading apparatus of an electric spindle in the present invention includes three major parts, i.e. a main supporting body, a stress loading apparatus and an auxiliary device.
The main supporting body includes a supporting disc 4 and a horizon iron 10.
The stress loading apparatus includes a piezoelectric ceramic loading apparatus 1, a dynamometer loading apparatus 2, a diaphragm coupling 3, a loading unit 5, an oil contamination loading apparatus 6 and an electric spindle loading apparatus 7.
The auxiliary device includes a hydraulic station 8 and a control cabinet 9.
Referring to Fig. 1, the supporting disc 4 is fixed on the horizon iron 10. The piezoelectric ceramic loading apparatus 1, the dynamometer loading apparatus 2 and the electric spindle loading apparatus 7 are fixed on the supporting disc 4. The diaphragm coupling 3 and the loading unit 5 are installed between the dynamometer loading apparatus 2 and the electric spindle loading apparatus 7. The oil contamination loading apparatus 6 is installed on the electric spindle loading apparatus 7. The hydraulic station 8 and the control cabinet 9 are arranged on the ground. Functions of main components are described as follows: The supporting disc 4 realizes the rotation of the entire reliability test apparatus of the electric spindle around a disc axis in a horizontal plane. The piezoelectric ceramic loading apparatus 1 realizes the lifting and multi-degree-of-freedom rotation in the space, thereby simulating different working conditions of the electric spindle in the actual machining process, i.e. stress conditions at different angles.
The piezoelectric ceramic loading apparatus 1 simulates the loading of dynamic cutting forces of the electric spindle through the loading unit 5.
The dynamometer loading apparatus 2 is used to simulate the loading of cutting torques of the electric spindle.
The diaphragm coupling 3 realizes the connection between the loading unit and the dynamometer loading apparatus 2.
The oil contamination loading apparatus 6 is used to simulate the loading of oil contamination of the electric spindle under the real working condition.
The electric spindle loading apparatus 7 is used to fixedly install the electric spindles of different models and specifications and has a position adjusting function.
The hydraulic station 8 is a power source for the assisting actions of the spindle and the loading unit and is provided with a flow control valve which can control the flow of hydraulic oil. The hydraulic station supplies hydraulic oil to a broach mechanism and a hydraulic adjusting and control apparatus.
The control cabinet 9 realizes the parameter collection and control function for the entire reliability test system and can also display an operation condition of the test apparatus in a display.
Referring to Fig. 2, the supporting disc 4 includes a rotating disc 11, a disc driving motor 12 and a disc base 13. The disc driving motor 12 is fixed on the disc base 13, and the disc driving motor 12 drives the rotating disc 11 to rotate around a motor shaft, thereby realizing the rotation of the loading apparatus in the horizontal plane.
Referring to Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7, the piezoelectric ceramic loading apparatus 1 includes a main protection body 14, a loading guide rail 15, an arc slide-way 16, a sliding block A 17, a sliding block B 18, an arc rack A 19, a gear A 20, a loading arm 21, a sliding block C 22, a sliding block D 23, an arc rack B 24, a gear B 25 and a piezoelectric ceramic 26.
Referring to Fig. 3, Fig. 4 and Fig. 5, the loading guide rail 15 is fixed at the inner top of the main protection body 14 through a bolt. A lower arc surface of the loading guide rail 15 is provided with the arc rack A 19. The gear A 20 is installed on the arc slide-way 16 and engaged with the arc rack A19. The gear A 20 rotates on the arc rack A 19 to drive the arc slide-way 16 to slide on the loading guide rail 15 through the sliding block A 17 and the sliding block B18.
Referring to Fig. 3, Fig. 6 and Fig. 7, the lower arc surface of the arc slide-way 16 is provided with the arc rack B24. The gear B 25 is installed on the loading arm 21 and engaged with the arc rack B 24. The gear B 25 rotates on the arc rack B24 to drive the loading arm 21 to rotate on the arc slide-way 16 through the sliding block C22 and the sliding block D23.
Referring to Fig. 8, the loading arm 21 includes a gear support 27, a hydraulic rod 28, a loading arm joint | 29, a loading arm joint Il 30, a loading arm motor shaft A 31, a loading arm joint III-A 32, a loading arm motor shaft B 33, a loading arm motor shaft C 34, a loading arm joint III-B 35, a loading arm motor shaft D 36, a loading arm motor shaft E 37, a piezoelectric ceramic clamp A 38 and a piezoelectric ceramic clamp B 39. The loading arm 21 slides on the arc slide-way 16 through the gear B25 on the gear support 27. The hydraulic rod 28 is located above the loading arm joint | 29 and drives the loading arm joint | 29 to move up and down in a hydraulic control way. The loading arm joint | 29 is connected with the loading arm joint Il 30 through the loading arm motor shaft A 31, and the loading arm motor shaft A 31 drives the loading arm joint II 30 to rotate around the shaft. The loading arm joint | 29 is connected with the loading arm joint II-A 32 and the loading arm joint II-B 35 through the loading arm motor shaft B 33 and the loading arm motor shaft C 34 on two sides. The loading arm motor shaft B 33 and the loading arm motor shaft C 34 drive the loading arm joint III-A 32 and the loading arm joint IlI- B 35 to rotate around the shafts respectively. The loading arm joint lll-A 32 is connected with the piezoelectric ceramic clamp A 38 through the loading arm motor shaft D 36. The loading arm joint III-B 35 is connected with the piezoelectric ceramic clamp B 39 through the loading arm motor shaft E 37. The loading arm joint llI-A 32 and the loading arm joint II-B 35 drive the piezoelectric ceramic clamp A 38 and the piezoelectric ceramic clamp B 39 respectively to rotate around the shafts, thereby realizing the release and clamping of the piezoelectric ceramic 26 as well as the spatial multi-angle transformation of the loading arm 21.
Referring to Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 8, Fig. 7 and Fig. 8, the bottom of the main protection body 14 of the piezoelectric ceramic loading apparatus 1 is fixed on the supporting disc 4 through a foundation bolt. The entire piezoelectric ceramic loading apparatus 1 realizes the spatial multi-degree-of-freedom transformation of the piezoelectric ceramic 26 through the horizontal rotation of the rotating disc 4, the sliding of the arc slide-way 16 on the loading guide rail 15, the sliding of the loading arm 21 on the arc slide-way 16 and the up-down movement of the loading arm 21 and the rotation of all joints, thereby simulating the stresses on the electric spindle in different directions during the cutting.
Referring to Fig. 9, the dynamometer loading apparatus 2 includes a dynamometer 40, guiding columns 41, a dynamometer connecting plate 42, a lead screw guide rail 43 and a dynamometer loading apparatus bottom plate 44. The dynamometer 40 is fixed on the dynamometer connecting plate 42 through a fastening bolt. The bottom surfaces of four guiding columns 41 are fixed on the dynamometer loading apparatus bottom plate 44 and connected with the dynamometer connecting plate 42. The upper end of the lead screw guide rail 43 is fixed on the dynamometer connecting plate 42; the lower end is fixed on the dynamometer loading apparatus bottom plate 44; and the dynamometer connecting plate 42 is driven by a lead screw to move up and down, thereby adjusting the position of the dynamometer.
Referring to Fig. 10, the loading unit 5 includes a simulation knife handle 45, a loading unit upper cover 46, a bearing 47, a sleeve 48, a loading unit lower cover 49, a loading unit shell 50 and a cooling pipe 51. The loading unit upper cover 46, the bearing 47, the sleeve 48 and the loading unit lower cover 49 are assembled at one end of the simulation knife handle 45 in sequence, and encased by the loading unit shell 50. The cooling pipe 51 is embedded at a recession at the inner side of the loading unit shell 50, thereby cooling the entire loading unit 5.
Referring to Fig. 1 and Fig. 10, the piezoelectric ceramic loading apparatus 1 simulates the loading of cutting forces through the pit 52 on the loading unit 5.
Referring to Fig. 11, the oil contamination loading apparatus 6 includes a protection cover 53, an oil immersion box body | 54, sealing rings 55, spray heads 58, oil injection pipes 57, an oil immersion box body II 58, a locking bolt 59, a fixed ring | 60 and a fixed ring Il 61. In the protection cover 53, the oil immersion box body | 54 and the oil immersion box body II 58 are interlocked and fixed by the fixed ring | 60 and the fixed ring Il 61. The fixed ring | 60 and the fixed ring II 61 are locked by the locking bolt 59. The inner sides of the oil immersion box body | 54 and the oil immersion box body II 58 are both provided with the sealing ring 55, so that good sealing property after the oil immersion box body | 54 and the oil immersion box body II 58 are interlocked can be guaranteed. The oil immersion box body II 58 is provided with an oil injection hole, and a colour oil contamination mixed solution is injected into an oil immersion box body composed of the oil immersion box body | 54 and the oil immersion box body II 58 through the oil injection hole to simulate oil contamination conditions of the spindle in the cutting process, thereby detecting the sealing property of a junction between the electric spindle shell and the bearing end cover. The four spray heads 56 are fixed at one end of the oil injection pipes 57 respectively, and the other ends of the four oil injection pipes 57 are located in pairs on the oil immersion box body | 54 and the oil immersion box body II 58. The colour oil contamination mixed solution is injected through the supercharging of the oil injection hole, and the mixed solution is sprayed out through the four spray heads 56 to simulate the oil contamination of the electric spindle in the cutting process, thereby detecting the sealing property of a clearance between an electric spindle core and the end cover. The oil contamination degree of the electric spindle is monitored by monitoring the condition of the colour oil contamination mixed solution in the protection cover 53 and the electric spindle 65.
Referring to Fig. 12, the electric spindle loading apparatus 7 includes an electric spindle loading apparatus shell 62, a spindle clamp adjusting mechanism 63, a clamp plate 84, an electric spindle 65, V-shaped supporting structures 66, a moving sliding plate 67, a sliding block E68, arectilinear slide-way 69 and an electric spindle loading apparatus bottom plate 70. The electric spindle loading apparatus shell 62 is connected with the clamp plate 64 through the spindle clamp adjusting mechanism 63. The height of the spindle clamp adjusting mechanism 63 is adjusted hydraulically to realize the up-down movement of the clamp plate 64 so as to fit the electric spindle 65, thereby adapting to the installation and test of the electric spindles of different models. The bottom of the electric spindle loading apparatus shell 62 is fixed on the moving sliding plate 67 through a foundation bolt. The four V-shaped supporting structures 66 are fixed in pairs on the moving sliding plate 67 in an aligning manner through the fastening bolts to jointly support the electric spindle 65 and realize the support at different angles through the hydraulic adjustment to cooperate with the clamp plate 64 to jointly clamp the electric spindles of various models. The rectilinear slide-way 69 is fixed on the electric spindle loading apparatus bottom plate 70 through the bolt, and the moving sliding plate 67 is driven to slide through the sliding of the sliding block E 68, so that the back-and-forth movement of the entire electric spindle loading apparatus 7 can be realized, thereby facilitating the installation and feeding movement of the electric spindle.
The examples described in the present invention are used to facilitate those skilled in the art to understand and use the present invention. The present invention is just an optimized example, or a preferred specific technical solution. Equivalent structural changes or various modifications made by those skilled in the art without contributing creative work on the premise of insisting on the basic technical solution of the present invention shall be included in the protection scope of the present invention.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Een inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel, die een hoofdsteunlichaam en een belastingspanningstoestel omvat, waarbij — het hoofdsteunlichaam een steunschijf (4) omvat; — het belastingspanningsinrichting bestaat uit een piëzo-elektrische keramische belastinginrichting (1), een dynamometer belastinginrichting (2), een membraankoppeling (3), een belastingeenheid (5), een olievervuiling belastinginrichting (6) en een elektrische spindel - belastinginrichting (7); — de piëzo-elektrische keramische belastinginrichting (1), de dynamometer belastinginrichting (2) en de elektrische spindel - belastinginrichting (7) op de steunschijf (4) zijn bevestigd; — de membraankoppeling (3) en de belastingeenheid (5) tussen de dynamometer belastinginrichting (2) en de elektrische spindel - belastinginrichting (7) zijn geplaatst; en het ene uiteinde van de membraankoppeling (3) verbonden is met de belastingeenheid (5) en het andere uiteinde verbonden is met de dynamometer belastinginrichting (2); — de olievervuilingsbelasting (6) op de elektrische spindel - belastinginrichting (7) is geplaatst en coaxiaal ten opzichte van een kern van de elektrische spindel loopt.An apparatus for simulating the load reliability of an electric spindle, comprising a main support body and a load tension device, wherein - the main support body comprises a support disk (4); - the load tension device consists of a piezoelectric ceramic load device (1), a dynamometer load device (2), a diaphragm coupling (3), a load unit (5), an oil pollution load device (6) and an electric spindle load device (7); — the piezoelectric ceramic load device (1), the dynamometer load device (2) and the electric spindle load device (7) are mounted on the backing pad (4); - the diaphragm coupling (3) and the load unit (5) are placed between the dynamometer load device (2) and the electric spindle load device (7); and one end of the diaphragm coupling (3) is connected to the load unit (5) and the other end is connected to the dynamometer load device (2); - the oil pollution load (6) is placed on the electric spindle load device (7) and runs coaxial with a core of the electric spindle. 2. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 1, waarbij: — het piëzo-elektrische keramische belastinginrichting (1) een hoofdbeschermingslichaam (14), een belastinggeleiderail (15), een boogvormige leibaan (16), een schuifblok A (17), een schuifblok B (18), een boogvormige heugel A (19), een tandwiel A (20), een belastingarm (21), een schuifblok C (22), een schuifblok D (23), een boogheugel B (24), een tandwiel B (25) en een piëzo-elektrisch keramisch element (26) omvat; — de belastinggeleiderail (15) aan de inwendige bovenzijde van de hoofdbeschermingslichaam (14) is bevestigd en een lager boogvormig oppervlak van de van de belastinggeleiderail (15) is voorzien van de boogvormige heugel A (19); het tandwiel A (20) op de boogvormige leibaan (16) is geplaatst en aangrijpt op de boogvormige heugel A (19); het tandwiel A (20) op de boogvormige heugel A (19) draait om de boogvormige leibaan (16) op de belastinggeleiderail (15) door het schuifblok A (17) en het schuifblok B (18) te doen glijden; een lager gelegen boogvormig oppervlak van de boogvormige leibaan (16) is voorzien van de boogvormige heugel B (24) en het tandwiel B (25) op de belastingarm (21) is gemonteerd en aangrijpt op de boogvormige heugel B (24); het tandwiel B (25) op de boogvormige heugel B (24) draait om de belastingarm (21) op de boogvormige leibaan (16) door het schuifblok C (22) en het schuifblok D (23) te doen glijden.The load reliability test device of an electric spindle by simulation according to claim 1, wherein: - the piezoelectric ceramic load device (1) comprises a main protective body (14), a load guide rail (15), an arc-shaped guideway (16) , a sliding block A (17), a sliding block B (18), an arc-shaped rack A (19), a gear A (20), a load arm (21), a sliding block C (22), a sliding block D (23), a rack B (24), a gear B (25) and a piezoelectric ceramic element (26); - the load guide rail (15) is fixed to the inner top of the main protection body (14) and a lower arcuate surface of the load guide rail (15) is provided with the arcuate rack A (19); the gear A (20) is placed on the arcuate guideway (16) and meshes with the arcuate rack A (19); the gear A (20) on the arcuate rack A (19) rotates about the arcuate guideway (16) on the load guide rail (15) sliding through the sliding block A (17) and the sliding block B (18); a lower arcuate surface of the arcuate track (16) has the arcuate rack B (24) and the gear B (25) mounted on the load arm (21) and meshed with the arcuate rack B (24); the gear B (25) on the arcuate rack B (24) rotates about the load arm (21) on the arcuate slide (16) sliding through the slide block C (22) and the slide block D (23). 3. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 2, waarbij: — de beladingsarm (21) een tandwielsteun (27), een hydraulische stang (28), een belastingarm-koppelstuk | (29), een belastingarm-koppelstuk II (30), een belastingarm- motoras A (31), een belastingarm-koppeling llI-A (32), een belastingarm-motoras B(33), een belastingarm-motoras C(34), een belastingarm-koppelstuk [II-B (35), een belastingarm-motoras D (36), een belastingarm-motoras E (37), een piézo-elektrische keramische klem A (38) en een piézo-elektrische keramische klem B (39) omvat; — de hydraulische stang (28) boven het belastingarm-koppelstuk | (29) is gelegen en het belastingarm-koppelstuk | (29) aandrijft om hydraulisch gestuurd op en neer te bewegen; — het belastingarm-koppelstuk | (29) verbonden is met het belastingarm-koppelstuk II (30) door de belastingarm-motoras A (31) en de belastingarm-motoras A (31) de motoras van de belastingarm II (30) aandrijft om rondom de belastingarm-motoras A (31) te draaien; — het belastingarm-koppelstuk | (29) tweezijdig verbonden is met de motoras van het belastingarm-koppelstuk III-A (32) het belastingarm-koppelstuk [II-B (35) door de belastingarm-motoras B (33) en de belastingarm-motoras C (34); — de belastingarm-motoras B (33) en de belastingarm-motoras C (34) de belastingarm- motoras III-A (32) en de belastingarm-motoras III-B (35) aandrijven om respectievelijk om de belastingarm-motoras B (33) en de belastingarm-motoras C (34) te draaien; — de belastingarm-motoras III-A (32) door de belastingarm-motoras D (38) verbonden is met de piëzo-elektrische keramische klem A (38); — de belastingarm-motoras III-B {35) door de belastingarm-motoras E (37) verbonden is met de piëzo-elektrische keramische klem B (39); — het belastingarm-koppelstuk III-A (32) en het belastingarm-koppelstuk III-B (35) de piëzo-elektrische keramische klem A (38) en de piëzo-elektrische keramische klem B (39) aandrijven om respectievelijk om de belastingarm-motoras D (36) en de belastingarm-motoras E (37) te draaien, waardoor het losmaken en vastklemmen van het piëzo-elektrisch keramische element (26) en de ruimtelijke hoektransformatie van de belastingarm (21) wordt gerealiseerd.The electric spindle load reliability simulation apparatus according to claim 2, wherein: - the load arm (21) comprises a gear support (27), a hydraulic rod (28), a load arm coupler | (29), a load arm coupler II (30), a load arm motor shaft A (31), a load arm coupling II-A (32), a load arm motor shaft B(33), a load arm motor shaft C(34) , a load arm coupler [II-B (35), a load arm motor shaft D (36), a load arm motor shaft E (37), a piezoelectric ceramic terminal A (38) and a piezoelectric ceramic terminal B ( 39) includes; — the hydraulic rod (28) above the load arm coupler | (29) is located and the load arm connector | (29) drives to move up and down hydraulically; — the load arm coupler | (29) is connected to the load arm coupler II (30) by the load arm motor shaft A (31) and the load arm motor shaft A (31) drives the motor shaft of the load arm II (30) to rotate around the load arm motor shaft A ( 31) to rotate; — the load arm coupler | (29) is bilaterally connected to the motor shaft of the load arm coupler III-A (32) the load arm coupler [II-B (35) through the load arm motor shaft B (33) and the load arm motor shaft C (34); — the load arm motor shaft B (33) and the load arm motor shaft C (34) drive the load arm motor shaft III-A (32) and the load arm motor shaft III-B (35) to rotate about the load arm motor shaft B (33), respectively ) and rotate the load arm motor shaft C (34); - the load arm motor shaft III-A (32) is connected by the load arm motor shaft D (38) to the piezoelectric ceramic terminal A (38); — the load arm motor shaft III-B {35) is connected by the load arm motor shaft E (37) to the piezoelectric ceramic terminal B (39); — the load arm coupler III-A (32) and the load arm coupler III-B (35) actuate the piezoelectric ceramic clamp A (38) and the piezoelectric ceramic clamp B (39) to move around the load arm respectively motor shaft D (36) and the load arm motor shaft E (37), thereby realizing the loosening and clamping of the piezoelectric ceramic element (26) and the spatial angular transformation of the load arm (21). 4. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 3, waarbij: — de dynamometer belastinginrichting (2) een dynamometer (40), geleidekolommen (41), een dynamometer verbindingsplaat (42), een leidschroefgeleiderail (43) en een bodemplaat van de dynamometer belastinginrichting (44) omvat;The load reliability test device of an electric spindle by simulation according to claim 3, wherein: - the dynamometer load device (2) comprises a dynamometer (40), guide columns (41), a dynamometer connecting plate (42), a lead screw guide rail ( 43) and a bottom plate of the dynamometer load device (44); — de dynamometer (40) op de dynamometer verbindingsplaat (42) is bevestigd; — de bodemoppervlakken van de vier geleidekolommen (41) bevestigd zijn op de bodemplaat van de dynamometer belastinginrichting (44) en verbonden met de dynamometer verbindingsplaat (42); — het boven gelegen uiteinde van de leidschroefgeleiderail (43) bevestigd is op de dynamometer verbindingsplaat (42) en het onder gelegen uiteinde bevestigd is op de bodemplaat van het dynamometer belastinginrichting (44); en de dynamometer verbindingsplaat (42) wordt aangedreven door een leidschroef om op en neer te bewegen.- the dynamometer (40) is mounted on the dynamometer connection plate (42); - the bottom surfaces of the four guide columns (41) are fixed to the bottom plate of the dynamometer loading device (44) and connected to the dynamometer connecting plate (42); - the upper end of the lead screw guide rail (43) is fixed to the dynamometer connection plate (42) and the lower end is fixed to the bottom plate of the dynamometer load device (44); and the dynamometer connecting plate (42) is driven by a lead screw to move up and down. 5. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 4, waarbij: — de belastingeenheid (5) een simulatiemes-handgreep (45), een boven gelegen afdekking (46) van de belastingeenheid, een lager (47), een manchet (48), een onder gelegen afdekking (49) van de belastingeenheid, een huls (50) van de laadeenheid en een koelleiding (51) omvat; — de boven gelegen afdekking (46) van de belastingeenheid, het lager (47), de manchet (48) en onder gelegen afdekking (49) van de belastingeenheid opeenvolgend aan een uiteinde van de simulatiemes-handgreep (45) zijn geplaatst en door de huls (50) van de laadeenheid worden omhuld; — de koelleiding (51) bij een uitsparing aan de binnenzijde van de huls (50) van de belastingeenheid is ingebed, waardoor de gehele belastingeenheid (5) wordt gekoeld; — het ene uiteinde van de simulatiemes-handgreep (45) verbonden is met de membraankoppeling (3) en het andere uiteinde is verbonden met de elektrische spindel - belastinginrichting (7).The apparatus for simulating the load reliability of an electric spindle according to claim 4, wherein: - the load unit (5) has a simulation knife handle (45), a top cover (46) of the load unit, a bearing ( 47), a sleeve (48), a lower cover (49) of the load unit, a sleeve (50) of the load unit and a cooling conduit (51); — the load unit top cover (46), the bearing (47), the sleeve (48) and the load unit bottom cover (49) are sequentially placed at one end of the simulation knife handle (45) and passed through the sleeve (50) of the loading unit; - the cooling pipe (51) is embedded at a recess on the inside of the sleeve (50) of the load unit, whereby the entire load unit (5) is cooled; — one end of the simulation knife handle (45) is connected to the diaphragm coupling (3) and the other end is connected to the electric spindle load device (7). 6. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 5, waarbij: — de olievervuiling belastinginrichting (6) een beschermingsafdekking (53), een olie- onderdompelingsdooslichaam | (54), sproeikoppen (56), olie-injectiepijpen (57), een olie- onderdompelingsdooslichaam Il (58), een vergrendelbout (59), een vaste ring | (60) en een vaste ring II (61) omvat; — het olie-onderdompelingsdooslichaam | (54) en het olie-onderdompelingsdooslichaam II (58) in de beschermingsafdekking (53) onderling zijn vergrendeld en vastgezet door de vaste ring | (60) en de vaste ring II (61); — de vaste ring | (60) en de vaste ring Il (61) zijn vergrendeld door de vergrendelbout (59); — het olie-onderdompelingsdooslichaam Il (58) is voorzien van een olie-injectieopening;The load reliability test device of an electric spindle by simulation according to claim 5, wherein: - the oil pollution load device (6) has a protection cover (53), an oil immersion box body | (54), nozzles (56), oil injection pipes (57), an oil immersion box body II (58), a locking bolt (59), a fixed washer | (60) and a solid ring II (61); — the oil immersion box body | (54) and the oil immersion box body II (58) in the protection cover (53) are interlocked and secured by the fixed ring | (60) and the solid ring II (61); — the fixed ring | (60) and the fixed ring II (61) are locked by the locking bolt (59); - the oil immersion box body II (58) is provided with an oil injection opening; — een gemengde gekleurde olieverontreinigingsoplossing door de olie-injectieopening wordt gespoten in een olie-onderdompelingsdooslichaam, die is samengesteld uit het olie-onderdompelings-dooslichaam | (54) en het olie-onderdompelingsdooslichaam II (58); — de sproeikoppen (56) aan een uiteinde van de olie-injectiepijpen (57) zijn vastgezet en de andere uiteinden van de olie-injectiepijpen (57) op het olie- onderdompelingsdooslichaam | (54) of het olie-onderdompelingsdooslichaam II (58) zijn gelegen.— a mixed colored oil contaminant solution is injected through the oil injection port into an oil immersion box body, which is composed of the oil immersion box body | (54) and the oil immersion box body II (58); — the nozzles (56) are fixed to one end of the oil injection pipes (57) and the other ends of the oil injection pipes (57) to the oil immersion box body | (54) or the oil immersion box body II (58). 7. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 6, waarbij: — elektrische spindel - belastinginrichting (7) een huls (62) van de elektrische spindel - belastinginrichting, een verstelmechanisme (63) van de spilklem, een klemplaat (64), een elektrische spil (65), V-vormige ondersteuningsstructuren (66), een bewegende glijplaat (67), een glijblok E (68), een rechte glijbaan (69) en een bodemplaat (70) van de elektrische spindel - belastinginrichting omvat; — de huls (62) van de elektrische spindel - belastinginrichting door het verstelmechanisme van de spilklem (63) met de klemplaat (64) is verbonden; — de hoogte van het verstelmechanisme van de spilklem (63) hydraulisch wordt ingesteld om de opwaartse beweging van de klemplaat (64) te realiseren, zodat deze passend is met de elektrische spil (65); — de onderkant van de huls (62) van de elektrische spindel - belastinginrichting op de bewegende glijplaat (67) is bevestigd; — de vier V-vormige ondersteuningsstructuren (66) paarsgewijs op de bewegende glijplaat (67) uitgelijnd zijn bevestigd door de bevestigingsbouten om de elektrische spindel (65) gezamenlijk te ondersteunen en de ondersteuning onder verschillende hoeken te realiseren door de hydraulische verstelling onder samenwerking met de klemplaat (64); — de rechte glijbaan (69) vastgezet op de bodemplaat (70) van de elektrische spindel - belastinginrichting en de bewegende glijplaat (67) wordt aangedreven om door de geleiding van het schuifblok E (68) te glijden.The apparatus for simulating the load reliability of an electric spindle according to claim 6, wherein: - electric spindle-loading device (7), a sleeve (62) of the electric spindle-loading device, an adjusting mechanism (63) of the spindle clamp , a clamping plate (64), an electric spindle (65), V-shaped support structures (66), a moving slide plate (67), a slide block E (68), a straight slide (69) and a bottom plate (70) of the electric spindle - load device includes; - the sleeve (62) of the electric spindle loading device is connected to the clamping plate (64) by the adjusting mechanism of the spindle clamp (63); - the height of the adjusting mechanism of the spindle clamp (63) is hydraulically adjusted to realize the upward movement of the clamp plate (64) so that it mates with the electric spindle (65); - the bottom of the sleeve (62) of the electric spindle load device is mounted on the moving slide plate (67); — the four V-shaped support structures (66) are fixed in pairs on the moving slide plate (67) by the fixing bolts to jointly support the electric spindle (65) and realize the support at different angles by the hydraulic adjustment in cooperation with the clamping plate (64); — the straight slide (69) fixed to the bottom plate (70) of the electric spindle load device and the moving slide (67) is driven to slide by the guide of the slide block E (68). 8. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 7, waarbij: — de steunschijf (4) een roterende schijf (11), een schijf-aandrijfmotor (12) en een schijfbasis (13) omvat; — de schijf-aandrijfmotor (12) op de schijfbasis (13) is vastgezet en de schijf-aandrijfmotor (12) de roterende schijf (11) aandrijft om om een motoras te draaien.The apparatus for simulating the load reliability of an electric spindle according to claim 7, wherein: - the backing disk (4) comprises a rotating disk (11), a disk drive motor (12) and a disk base (13); — the disc drive motor (12) is fixed to the disc base (13) and the disc drive motor (12) drives the rotating disc (11) to rotate about a motor shaft. 9. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens willekeurige welke van de conclusies 1 - 8, waarbij: — de inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel eveneens een hulpinrichting omvat; — de hulpinrichting een hydraulisch station (8) en een besturingskast (9) omvat; — het hydraulische station (8) en de besturingskast (9) zijn op de grond geplaatst; — het hydraulische station (8) koelvloeistof aan de spindel en de laadeenheid levert en is voorzien van een debietregelklep waarmee de doorstroming van de hydraulische olie kan worden gestuurd; — het hydraulische station hydraulische olie aan een brocheermechanisme en een hydraulische verstel- en regelinrichting levert; — de besturingskast (9) de parameterinzameling en de besturingsfunctie voor het volledige betrouwbaarheidstestsysteem realiseert en tevens een bewerkingstoestand van de testapparatuur op een weergave-inrichting kan tonen.The apparatus for simulating the load reliability of an electric spindle according to any one of claims 1 to 8, wherein: - the apparatus for simulating the testing of the load reliability of an electric spindle also comprises an auxiliary device; - the auxiliary device comprises a hydraulic station (8) and a control box (9); — the hydraulic station (8) and the control box (9) are placed on the ground; — the hydraulic station (8) supplies coolant to the spindle and the loading unit and is equipped with a flow control valve to control the flow of the hydraulic oil; — the hydraulic station supplies hydraulic oil to a broaching mechanism and a hydraulic adjusting and regulating device; — the control box (9) realizes the parameter collection and control function for the entire reliability test system, and also can display a processing state of the test equipment on a display device. 10. De inrichting voor het door simulatie testen van de belastingbetrouwbaarheid van een elektrische spindel volgens conclusie 6, waarbij: — de huls (50) van de laadeenheid is voorzien van een holte (52); — vier sproeikoppen (56) zijn aangebracht, en vier olie-injectiepijpen (57) zijn aangebracht; — de vier sproeikoppen (56) aan één uiteinde van de vier olie-injectiepijpen (57) zijn bevestigd; — de andere uiteinden van de vier olie-injectiepijpen (57) paarsgewijs op het olie- onderdompelingsdooslichaam | (54) en het olie-onderdompelingsdooslichaam II (58) zijn gelegen; — de gemengde gekleurde olieverontreinigingsoplossing wordt ingespoten door het op druk brengen van de olie-inspuitopening en de gemengde oplossing wordt door de vier sproeikoppen (56) uitgespoten om de olieverontreiniging van de spindel in het snijproces te simuleren en zo de afdichtingseigenschap van een speling tussen de elektrische spindel en een eindafdekking te detecteren.The apparatus for simulating the load reliability of an electric spindle according to claim 6, wherein: - the sleeve (50) of the loading unit is provided with a cavity (52); — four nozzles (56) are fitted, and four oil injection pipes (57) are fitted; - the four nozzles (56) are attached to one end of the four oil injection pipes (57); — the other ends of the four oil injection pipes (57) in pairs on the oil immersion box body | (54) and the oil immersion box body II (58) are located; — the mixed colored oil contamination solution is injected by pressing the oil nozzle and the mixed solution is ejected through the four nozzles (56) to simulate the oil contamination of the spindle in the cutting process and thus improve the sealing property of a clearance between the electric spindle and an end cover.
NL2027058A 2020-12-07 2020-12-07 Reliability test simulation loading apparatus of electric spindle NL2027058B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2027058A NL2027058B1 (en) 2020-12-07 2020-12-07 Reliability test simulation loading apparatus of electric spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2027058A NL2027058B1 (en) 2020-12-07 2020-12-07 Reliability test simulation loading apparatus of electric spindle

Publications (1)

Publication Number Publication Date
NL2027058B1 true NL2027058B1 (en) 2021-12-03

Family

ID=76708367

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2027058A NL2027058B1 (en) 2020-12-07 2020-12-07 Reliability test simulation loading apparatus of electric spindle

Country Status (1)

Country Link
NL (1) NL2027058B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384844B (en) * 2011-10-17 2013-06-19 吉林大学 Reliability test device of machine tool spindle dynamically loaded by electromagnet and dynamometer in combined manner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384844B (en) * 2011-10-17 2013-06-19 吉林大学 Reliability test device of machine tool spindle dynamically loaded by electromagnet and dynamometer in combined manner

Similar Documents

Publication Publication Date Title
CN111141515B (en) Electric main shaft reliability test simulation loading device
CN107036797A (en) The experimental rig of bolt looseness under a kind of measurement action of lateral load
CN110542550B (en) Electric spindle reliability loading test bed with load completely decoupled
CN105547685B (en) High-speed electric main shaft loads and tool changing experimental rig
CN103383315B (en) Automatic tool changer test bench for detecting comprehensive performance
CN106840644B (en) Reliability test bed for electromagnetic and electric push rod mixed loading tool rest
CN111721697A (en) General measuring device for key friction coefficients of bolt applicable to torque method and corner method
CN110608883A (en) Multi-type bearing damage simulation test system
CN114516005A (en) Motor train unit short shaft side gear box overhauling and clamping method and system based on AGV
CN205643052U (en) Safe and reliable's brinell hardness tester
CN111351659B (en) Universal transmission device tension-torsion composite reliability test bed and test method
CN111398423A (en) Ultrasonic nondestructive testing device for shaft parts
CN210487270U (en) Multi-type bearing damage simulation test system
NL2027058B1 (en) Reliability test simulation loading apparatus of electric spindle
CN110162002B (en) Numerical control rotary worktable reliability test bed capable of simulating actual working condition loading
CN107617840B (en) Multi-angle positioning fixture for welding
CN205352685U (en) High -speed electric main shaft loading and tool changing test device
CN108562431B (en) Power head reliability test device and test method for power tool rest
CN115267071A (en) Rotary type pipeline defect detection experiment platform and operation method thereof
CN204788940U (en) Main shaft and electric liquid drive formula tool changing hand test platform
CN220552414U (en) Outer diameter detection device for rotary shaft
CN112857773B (en) Reliability test device for numerical control tool rest loading mechanism and numerical control tool rest
CN219093711U (en) Drilling device for connecting rod machining
CN219132098U (en) Hydraulic motor test clamping device
CN212646575U (en) Ultrasonic nondestructive testing device for shaft parts