CN111398423A - An ultrasonic nondestructive testing device for shaft parts - Google Patents
An ultrasonic nondestructive testing device for shaft parts Download PDFInfo
- Publication number
- CN111398423A CN111398423A CN202010356296.6A CN202010356296A CN111398423A CN 111398423 A CN111398423 A CN 111398423A CN 202010356296 A CN202010356296 A CN 202010356296A CN 111398423 A CN111398423 A CN 111398423A
- Authority
- CN
- China
- Prior art keywords
- roller
- probe
- ultrasonic
- water tank
- testing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009659 non-destructive testing Methods 0.000 title claims abstract description 20
- 239000000523 sample Substances 0.000 claims abstract description 83
- 238000001514 detection method Methods 0.000 claims abstract description 48
- 238000007789 sealing Methods 0.000 claims abstract description 43
- 230000008878 coupling Effects 0.000 claims abstract description 39
- 238000010168 coupling process Methods 0.000 claims abstract description 39
- 238000005859 coupling reaction Methods 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000012360 testing method Methods 0.000 claims abstract description 9
- 230000001360 synchronised effect Effects 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 16
- 238000003825 pressing Methods 0.000 claims description 12
- 238000007689 inspection Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/28—Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0234—Metals, e.g. steel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/106—Number of transducers one or more transducer arrays
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明提供了一种轴类件超声波无损检测装置,包括检测工作台和控制器,检测工作台上设置有耦合水箱和悬臂梁单元,耦合水箱内沿水平方向设置有一对相互平行且直径相同的滚轴,各滚轴的两端均通过轴承和密封套穿设在耦合水箱箱壁上,滚轴之间连接有同步带,滚轴由设置在耦合水箱外的减速电机驱动沿轴向旋转;悬臂梁单元包括设置在水箱上方且与主动滚轴平行的横梁,横梁上设置有可水平移动的探头升降座,探头升降座上设置有可上下移动的探头架,探头架上设置有若干超声波探头。该探伤装置结构简单、操作方便,对待检测部件表面光滑度要求低,探头不易磨损,探头组模块化设计,便于拆装和更换,适于多种规格轴类件的无损检测应用。
The invention provides an ultrasonic non-destructive testing device for shaft parts, which includes a testing workbench and a controller. The detection workbench is provided with a coupling water tank and a cantilever beam unit. rollers, both ends of each roller are penetrated on the wall of the coupling water tank through bearings and sealing sleeves, a synchronous belt is connected between the rollers, and the rollers are driven by a gear motor arranged outside the coupling water tank to rotate in the axial direction; The cantilever beam unit includes a beam arranged above the water tank and parallel to the active roller, the beam is provided with a probe lift seat that can move horizontally, the probe lift seat is provided with a probe frame that can move up and down, and the probe frame is provided with a number of ultrasonic probes . The flaw detection device has a simple structure and convenient operation, low requirements on the surface smoothness of the parts to be detected, and the probe is not easy to wear.
Description
技术领域technical field
本发明属于无损探伤检测设备技术领域,具体涉及一种轴类件超声波无损检测装置。The invention belongs to the technical field of nondestructive testing equipment, and particularly relates to an ultrasonic nondestructive testing device for shaft parts.
背景技术Background technique
轴类部件应用在设备、工件上时,通常需要承受较大的载荷、扭矩等,如果其存在例如裂纹、内部缩孔等加工缺陷,在使用过程中易发生变形或断轴等问题,造成设备损坏或引发安全事故,因此,大多数的轴类件在加工过程中都需要进行无损探伤检测的环节。目前,较为常用的检测手段为超声波检测,利用材料及其缺陷的声学性能差异,对超声波传播波形及反射和穿透时的能量变化进行探测,来检测材料的内部缺陷。传统的超声波无损检测方式通常使用手持的探伤设备,通过人工手动在待检测部件上进行选点和探扫,检测效率低,人工成本高,特别是对于一些批次加工数量较大的零部件,使用人工手持设备进行检测探伤难以满足高效生产作业的需求。When shaft components are applied to equipment and workpieces, they usually need to bear a large load, torque, etc. If they have processing defects such as cracks and internal shrinkage holes, they are prone to deformation or shaft breakage during use, resulting in equipment failure. damage or lead to safety accidents, therefore, most of the shaft parts require non-destructive testing in the process of processing. At present, the more commonly used detection method is ultrasonic testing, which uses the difference in the acoustic properties of materials and their defects to detect the ultrasonic wave propagation waveform and the energy changes during reflection and penetration to detect the internal defects of materials. The traditional ultrasonic nondestructive testing method usually uses hand-held flaw detection equipment to manually select and scan the parts to be tested. The detection efficiency is low and the labor cost is high, especially for some parts with a large number of batches. It is difficult to meet the needs of efficient production operations by using manual hand-held equipment for inspection and flaw detection.
目前,在轴类件的无损探伤检测领域也出现了一些自动化检测设备,但是存在结构复杂、操作不便、对待检测件表面加工精度要求较高等不足。例如公开号为CN103217477的一种车轴径向自动探伤装置,待检车轴通过两端的气动顶尖支撑转动,要求保证车轴与气动顶尖之间的同轴度,操作要求高,造成设备结构上更加复杂,进行检测作业时,探头需要紧贴车轴表面,对于车轴表面光滑度要求较高,而且容易磨损探头。公开号为CN101614703B的一种轨道交通用车轴自动化超声波探伤装置,水下支撑旋转机构结构复杂,易对探伤信号平稳度产生影响,多组探头分别由伺服电机控制保持与车轴表面距离,系统联动复杂,较易发生故障,而且成本较高。At present, some automated testing equipment has also appeared in the field of non-destructive testing of shaft parts, but there are shortcomings such as complex structure, inconvenient operation, and high requirements for the surface processing accuracy of the parts to be tested. For example, a radial automatic flaw detection device for an axle with the publication number of CN103217477, the axle to be inspected is rotated by the pneumatic top support at both ends, and it is required to ensure the coaxiality between the axle and the pneumatic top, and the operation requirements are high, which makes the equipment structure more complicated. When performing inspection operations, the probe needs to be close to the surface of the axle, which requires a high degree of smoothness on the surface of the axle, and the probe is easy to wear. The publication number is CN101614703B, an automatic ultrasonic flaw detection device for rail transit axles. The structure of the underwater supporting rotating mechanism is complex, which is easy to affect the smoothness of the flaw detection signal. Multiple sets of probes are controlled by servo motors to maintain the distance from the axle surface, and the system linkage is complex. , more prone to failure, and higher cost.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供了一种轴类件超声波无损检测装置,相较于现有的轴类件探伤检测装置,支承和转动机构结构更加简单,探伤操作更加简便,具有更好的探伤效果。为实现上述技术目的,本发明采取的技术方案如下:In order to solve the above technical problems, the present invention provides an ultrasonic non-destructive testing device for shaft parts. Compared with the existing shaft parts flaw detection and detection device, the supporting and rotating mechanism structure is simpler, the flaw detection operation is simpler, and it has better performance. Flaw detection effect. For realizing the above-mentioned technical purpose, the technical scheme that the present invention takes is as follows:
一种轴类件超声波无损检测装置,包括检测工作台和控制器,检测工作台上设置有耦合水箱和悬臂梁单元;所述耦合水箱内沿水平方向设置有一对相互平行且直径相同的滚轴,所述滚轴均穿设在耦合水箱的箱壁上,滚轴与箱壁连接处设置有轴承和密封套;所述滚轴之间在位于耦合水箱之外的位置连接有同步带;所述滚轴包括主动滚轴和从动滚轴,其中主动滚轴由设置在检测工作台上的减速电机驱动沿轴向旋转,并通过同步带带动从动滚轴同向同速转动;所述悬臂梁单元上设置有横梁,横梁位于耦合水箱上方并与滚轴平行;在横梁上沿长度方向设置有直线导轨,沿直线导轨可移动的设有探头升降座,探头升降座上设置有可上下活动的探头架,探头架上沿平行于滚轴轴线的方向设置有若干朝向下方的超声波探头;减速电机、探头升降座和超声波探头均与控制器电路连接。An ultrasonic nondestructive testing device for shaft parts, including a testing table and a controller, a coupling water tank and a cantilever beam unit are arranged on the testing table; a pair of rollers parallel to each other and having the same diameter are arranged in the coupling water tank along the horizontal direction , the rollers are all worn on the box wall of the coupling water tank, and a bearing and a sealing sleeve are provided at the connection between the roller and the box wall; a timing belt is connected between the rollers at a position outside the coupling water tank; so The roller includes a driving roller and a driven roller, wherein the driving roller is driven to rotate in the axial direction by a deceleration motor arranged on the detection table, and drives the driven roller to rotate in the same direction and at the same speed through the synchronous belt; A beam is arranged on the cantilever beam unit, and the beam is located above the coupling water tank and is parallel to the roller; a linear guide rail is arranged on the beam along the length direction, and a probe lifting seat is movable along the linear guide rail. The movable probe frame is provided with several ultrasonic probes facing downward along the direction parallel to the axis of the roller; the geared motor, the probe lifting seat and the ultrasonic probe are all connected with the controller circuit.
优选的,所述密封套和所述轴承均套设在滚轴上,在耦合水箱箱壁与滚轴各连接处的内壁和外壁均连接有密封套;密封套内壁上设置有若干环绕于滚轴的环形凹槽,所述凹槽内嵌入有密封圈,密封圈箍套在滚轴上,并被滚轴压紧在所述环形凹槽内;所述轴承外部设置有轴承套,轴承套连接在密封套上,所述滚轴上还套设有压紧片,所述压紧片连接在所述轴承套上。Preferably, the sealing sleeve and the bearing are both sleeved on the roller, and the inner wall and the outer wall of each connection between the wall of the coupling water tank and the roller are connected with sealing sleeves; An annular groove of the shaft, a sealing ring is embedded in the groove, and the sealing ring is sleeved on the roller and pressed into the annular groove by the roller; a bearing sleeve is provided outside the bearing, and the bearing sleeve is is connected to the sealing sleeve, the roller is also sleeved with a pressing piece, and the pressing piece is connected to the bearing sleeve.
进一步的,密封套与耦合水箱箱壁之间、轴承套与密封套之间,以及压紧盘与轴承套之间,均设置有密封垫片。Further, sealing gaskets are arranged between the sealing sleeve and the wall of the coupling water tank, between the bearing sleeve and the sealing sleeve, and between the pressing plate and the bearing sleeve.
优选的,每个滚轴包括位于两端的连接段和位于中段的检测件承托段,连接段通过轴承和密封套连接在耦合水箱箱壁上,连接段和检测件承托段同轴装配连接。Preferably, each roller includes a connecting section at both ends and a detecting piece supporting section at the middle section, the connecting section is connected to the wall of the coupled water tank through a bearing and a sealing sleeve, and the connecting section and the detecting piece supporting section are coaxially assembled and connected .
进一步的,在各滚轴的检测件承托段上分别套设有一对沿轴向位置可调节的限位轮,每对限位轮的相对面为竖向平面。Further, a pair of limit wheels whose positions can be adjusted in the axial direction are respectively sleeved on the detection piece supporting section of each roller, and the opposite surfaces of each pair of limit wheels are vertical planes.
进一步的,在各滚轴的检测件承托段上相对应位置分别套设有若干摩擦轮,所述摩擦轮沿所述滚轴轴向位置可调。Further, a plurality of friction wheels are respectively sleeved on the corresponding positions of the detecting member bearing sections of each roller, and the position of the friction wheels is adjustable along the axial direction of the roller.
优选的,所述横梁上设置有与直线导轨平行的丝杆,所述探头升降座上设置有可沿直线导轨滑动的滑块和与丝杆配合连接的传动块;所述丝杆由设置在横梁上的伺服电机驱动沿轴向旋转,丝杆旋转时通过传动块带动探头升降座沿直线导轨水平运动;所述伺服电机与所述控制器电路连接。Preferably, a screw rod parallel to the linear guide rail is arranged on the beam, and a slider that can slide along the linear guide rail and a transmission block matched with the screw rod are arranged on the probe lifting seat; the screw rod is arranged on the The servo motor on the beam is driven to rotate in the axial direction, and when the lead screw rotates, the probe lifting seat is driven to move horizontally along the linear guide rail through the transmission block; the servo motor is connected with the controller circuit.
优选的,在所述探头升降座上设置有竖直朝下的气缸,气缸的下端连接有C型夹板,C型夹板由气缸驱动上下运动,探头架安装在C型夹板上;所述气缸与控制器电路连接。Preferably, a vertical downward cylinder is arranged on the probe lifting seat, a C-type splint is connected to the lower end of the cylinder, the C-type splint is driven by the cylinder to move up and down, and the probe frame is mounted on the C-type splint; the cylinder is connected to the C-type splint. Controller circuit connections.
进一步的,所述探头升降座上设置有竖向位置可调的气缸安装架,所述气缸设置在所述气缸安装架上。Further, a cylinder mounting frame with adjustable vertical position is provided on the probe lifting base, and the cylinder is arranged on the cylinder mounting frame.
进一步的,所述探头架上设置有一对卡块,所述卡块相对位置设置有与所述C型夹板相匹配的卡槽,所述C型夹板插入在所述卡槽内。Further, the probe frame is provided with a pair of clamping blocks, and the clamping blocks are provided with clamping grooves matching the C-type splint in relative positions, and the C-type clamping plate is inserted into the clamping grooves.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
(1)使用超声波水浸法作为探伤方式,超声波探头无需与待检测轴件直接接触,有效降低了对探头的磨损,对待检测轴件表面光滑度要求较低,可在精加工之前进行检测,及早发现问题,避免对故障轴件进行后续的无效加工,改进了生产工艺。(1) Using the ultrasonic water immersion method as the flaw detection method, the ultrasonic probe does not need to be in direct contact with the shaft to be tested, which effectively reduces the wear of the probe. Early detection of problems can avoid subsequent ineffective processing of faulty shaft parts and improve the production process.
(2)待检测轴件的支承和转动机构结构简单,滚轴的驱动和传动部件均设置在耦合水箱之外,减少了对超声波检测信号平稳度的影响,有效解决了传动部件在液体中易锈蚀和不易养护的问题。(2) The structure of the supporting and rotating mechanism of the shaft to be detected is simple, and the driving and transmission parts of the roller are set outside the coupling water tank, which reduces the influence on the smoothness of the ultrasonic detection signal and effectively solves the problem that the transmission parts are easily damaged in liquid. Rust and difficult maintenance problems.
(3)多个探头同时探测,有效提高了探伤效率,探头和探头架一体化模块设计,可根据待检测轴件的规格以及检测的要求,选择相适应的探头架快速拆装更换,特别是对于具有表面凸轮轴件的检测,提供了较好的解决方法,整体结构简单,操作方便,系统联动较少,可有效降低设备的故障率。(3) Multiple probes detect at the same time, which effectively improves the flaw detection efficiency. The integrated module design of the probe and the probe frame can select the appropriate probe frame to quickly disassemble and replace according to the specifications of the shaft to be tested and the testing requirements, especially For the detection of surface camshaft parts, a better solution is provided, the overall structure is simple, the operation is convenient, and the system linkage is less, which can effectively reduce the failure rate of the equipment.
(4)具有较高的自动化程度,降低了操作人员的工作强度和对检测结果的误判,可通过设置不同组合方式的探头架和操作控制软件,对轴类件的内部和表面缺陷进行自动检测和识别,通过联动工业机器人可配套在工业流水线上。(4) It has a high degree of automation, which reduces the work intensity of the operator and the misjudgment of the test results. The internal and surface defects of the shaft parts can be automatically detected by setting different combinations of probe holders and operation control software. Detection and identification, through the linkage of industrial robots can be matched in the industrial assembly line.
附图说明Description of drawings
图1:本发明的立体结构示意图;Fig. 1: the three-dimensional structure schematic diagram of the present invention;
图2:本发明的俯视结构示意图;Fig. 2: the top view structure schematic diagram of the present invention;
图3:本发明的侧视剖面结构示意图;Fig. 3: the side view sectional structure schematic diagram of the present invention;
图4:本发明中耦合水箱箱壁与滚轴连接处的剖面结构示意图;Figure 4: a schematic cross-sectional structure diagram of the connection between the wall of the coupled water tank and the roller in the present invention;
图5:本发明中轴承和密封套的拆解示意图;Figure 5: Schematic diagram of the disassembly of the bearing and the sealing sleeve in the present invention;
图6:本发明限位轮和摩擦轮的安装结构示意图;Fig. 6: The installation structure schematic diagram of the limit wheel and friction wheel of the present invention;
图7:本发明探头架的局部结构示意图。FIG. 7 is a schematic diagram of the partial structure of the probe holder of the present invention.
在各图中:1.检测工作台;2.耦合水箱;3.悬臂梁单元;4.控制器;In each figure: 1. Inspection table; 2. Coupling water tank; 3. Cantilever beam unit; 4. Controller;
21.滚轴;22.轴承;23.密封套;24.减速电机;25.同步带;26.限位轮;27.摩擦轮;221.轴承套;222.压紧盘;231.环形凹槽;232.密封圈;21. Roller; 22. Bearing; 23. Sealing sleeve; 24. Geared motor; 25. Timing belt; 26. Limit wheel; 27. Friction wheel; 221. Bearing sleeve; groove; 232. sealing ring;
31.横梁;32.探头升降座;311.直线导轨;312.丝杆;313.伺服电机;321.滑块;322.传动块;323.气缸;324.C型夹板;325.探头架;326.超声波探头;327.气缸安装架;328.卡块。31. Beam; 32. Probe lifting seat; 311. Linear guide rail; 312. Screw rod; 313. Servo motor; 321. Slider; 322. Transmission block; 323. Cylinder; 326. Ultrasonic probe; 327. Cylinder mounting bracket; 328. Clamping block.
具体实施方式Detailed ways
为了更好的理解本发明,下面结合附图和具体实施例作更为清楚、完整的说明。所列各实施例为本发明的优选形式,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。For a better understanding of the present invention, a clearer and more complete description is given below with reference to the accompanying drawings and specific embodiments. The listed embodiments are preferred forms of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work belong to The scope of protection of the present invention.
一种轴类件超声波无损检测装置,参照图1至图3所示,包括检测工作台1和控制器4,所述检测工作台1上设置有耦合水箱2和悬臂梁单元3,在耦合水箱2内沿水平方向设置有一对相互平行且直径相同的滚轴21,所述滚轴21均穿设在耦合水箱2的箱壁上,滚轴21与箱壁的连接处设置有轴承22和密封套23,各滚轴21之间在位于耦合水箱2之外的位置连接有同步带25,在一种具体的实施例中,所述同步带25为套设在两根滚轴21同一端端部的橡皮带;所述滚轴21包括主动滚轴和从动滚轴,主动滚轴由设置在检测工作台1上的减速电机24驱动沿轴向旋转,并通过同步带25带动从动滚轴同向同速转动;所述悬臂梁单元3上设置有横梁31,所述横梁31位于耦合水箱2上方并于滚轴21平行,在横梁31上沿长度方向设置有直线导轨311,沿直线导轨311可移动的设有探头升降座32,探头升降座32上设置有可上下移动的探头架325,探头架325沿平行于滚轴21轴线的方向设置有若干朝向下方的超声波探头326;减速电机24、探头升降座32和超声波探头326均与控制器4电路连接。在实际应用中,所述控制器4为一种工业上通常应用的工控机,可内置有多通道超声波处理单元、电气控制单元和人机交互单元,根据待检测件的规格和检测要求,通过预设的控制程序控制超声波探头326和各传动部件工作,所述控制器4可以设置在检测工作台1上,也可以是另行独立设置的操作控制平台。在具体的应用中,可以根据待检测轴件的规格,选取和设置探头架325上超声波探头326的数量及分布方式,还可根据检测要求的不同,例如是对表面或是内部缺陷进行检测,对控制器4中的超声波处理单元进行设置。此外,还可以在检测工作台1旁另行设置机械臂,通过控制器4进行控制,完成待检测轴件的夹取、放置和分检,从而实现检测探伤全流程的自动化作业。An ultrasonic non-destructive testing device for shaft parts, as shown in FIG. 1 to FIG. 3, includes a
该装置在进行检测探伤作业时,耦合水箱2内加入水或机油等耦合介质,待检测轴件水平放置在两根滚轴21之间,整体浸入在耦合介质中,滚轴21转动时带动待检测轴件同步转动;探头升降座32移动至待检测轴件的一端,同时探头架325向下移动,当超声波探头326与待检测轴件的表面达到有效作用距离时,开始进行探伤检测,完成检测后,探头升降座32向待检测轴件的另一端移动,移动一定距离后,进行下一段的检测,完成整段轴件检测后,更换待检测轴件,探头升降座32返回初始端,继续进行下一个轴件的检测。探头升降座32的水平移动和探头架325的上下移动,可以通过控制器4由操作人员手动控制,也可以根据轴件的尺寸、规格等,预设程序进行自动控制。与现有技术相比,该装置一是使用耦合液作为超声波的传导介质,超声波探头无需与待检测轴件直接接触,有效降低了对探头的磨损,且对待检测轴件表面光滑度要求较低,可在精加工之前进行检测,及早发现问题,避免对故障轴件进行后续的无效加工;二是待检测轴件的支承和转动机构结构简单,滚轴21的驱动和传动部件均设置在耦合水箱2之外,降低了对超声波检测信号平稳度的影响,且有效解决了传动部件在液体中易锈蚀的问题;三是多个探头同时探测,有效提高了探伤效率,超声波探头326和探头架325一体化模块设计,可根据待检测轴件的规格,选择与之相适应的探头架325快速拆装更换,整体结构简单,操作方便,系统联动较少,可有效降低设备的故障率。When the device performs the inspection and detection operation, the coupling medium such as water or oil is added into the
在该发明中,滚轴21在耦合水箱2内部用于支承和转动待检测轴件,而滚轴21的驱动和传动部件均设置在耦合水箱2之外,因此,滚轴21穿设在耦合水箱2的箱壁上,为了保证滚轴21平稳转动并防止耦合水箱2中的耦合液漏出,在滚轴21和耦合水箱2箱壁的连接处设置有轴承22和密封套23。在一种优选实施例中,参照图4至图5所示,所述密封套23和所述轴承22均套设在滚轴21上,在耦合水箱2箱壁与滚轴21各连接处的内壁和外壁上均连接有密封套23,密封套23的内腔壁上设置有若干环绕滚轴21的环形凹槽231,环形凹槽231内嵌入有密封圈232,密封圈232套在滚轴21上,并被滚轴21压紧在环形凹槽231内。所述轴承22的外部设置有轴承套221,所述轴承套221连接在密封套23上,所述滚轴21上还套设有压紧盘222,压紧盘222连接在轴承套221上。在具体的应用中,所述密封圈232由具有弹性的橡胶材料制成,为进一步提高密封效果,还可在橡胶的内部包裹一圈弹簧,以使密封圈232较为紧固地箍套在滚轴21上,经过试验验证,所述密封圈232可有效阻止耦合液从滚轴21与密封套23的连接处漏出。由于在实际使用时,滚轴21的转速较慢,因此该密封圈232不会对滚轴21的转动造成影响。此外,在具体的应用中,在密封套23与耦合水箱2箱壁之间、轴承套221与密封套23之间,以及压紧盘222与轴承套223之间,均通过螺栓固定连接,在连接部位可设置具橡胶材质的密封垫圈,进一步提高连接部位的整体密封性。在一种具体的实施例中,所述滚轴21在套设靠近外端压紧片222的部位,呈端部直径稍小的阶梯状,套设在滚轴21两端的压紧片222连接在轴承套221上时,同时压在所述阶梯上,通过两端的压紧片222对滚轴21的相对作用,可有效限制滚轴21在轴向发生位移。In this invention, the
在一种优选实施例中,所述滚轴21由三段构成,包括位于两端的连接段和位于中段的检测件承托段,连接段通过轴承22和密封套23连接在耦合水箱2的箱壁上,连接段与检测件承托段之间同轴装配连接。其效果在于,当对不同规格的轴件进行检测,需要更换滚轴21时,只需对中段的检测件承托段进行更换,无需进行滚轴21与耦合水箱2箱壁连接部位的重新装配,提高了作业效率。在具体的应用中,如图6所示,连接段和检测件承托段的连接部位相互配合卡接,并通过螺栓紧固。In a preferred embodiment, the
在检测作业时,待检测轴件放置在两根滚轴21之间,并由滚轴21带动同步转动,待检测轴件在转动时,可能会发生沿轴向的位移。在一种优选实施例中,参照图6所示,在两根滚轴21的检测件承托段相对应的位置分别套设有一对沿轴向位置可调的限位轮26,每对限位轮26的相对面为竖向平面。设置限位轮26的作用是将待检测轴件的位置限制在每对限位轮26之间,以免发生轴向位移,从而提高检测作业的稳定性,限位轮26沿滚轴21轴向位置可调,是为了适应不同长度的轴件的限位要求。在一种具体的实施例中,所述限位轮26上设置有套在滚轴21上的卡圈,所述卡圈上设置有螺孔,通过在螺孔中拧入螺母并压紧在滚轴21上,使限位轮26定位,调节时松开螺母移动限位轮26即可实现轴向位置的调节。此外,还可通过在限位轮26上设置带有弹性的卡紧圈或卡块等方式,来进行限位轮26轴向位置的调整。根据实际的操作经验可知,当滚轴21的转动方向不变时,在滚轴21上的轴件如果发生轴向位移,将会朝向同一方向移动,一侧的限位轮26即可起到限位作用,因此两个限位轮26之间的距离可以调节到大于轴件的长度,无需与轴件的长度紧密配合,不会出现因轴件两端和限位轮26之间间隙过小不便于轴件放入的问题,也不会出现因被限位轮26夹往而影响轴件转动的问题。During the inspection operation, the shaft to be inspected is placed between the two
在一种优选实施例中,参照图6所示,在各滚轴21的检测件承托段相对应的位置套设有若干摩擦轮27,设置摩擦轮27的作用是提高滚轴21与待检测轴件之间的摩擦力,避免转动时打滑,在具体的应用中,摩擦轮27表面可以为橡胶、尼龙等摩擦系数较高的材质。为了适应于不同尺寸、规格的轴件,在一种优选实施例中,所述摩擦轮27沿滚轴21轴向的位置可调,其位置调节的具体实施方式,与前段所述限位轮26的调节方式相同。In a preferred embodiment, as shown in FIG. 6 , a number of
在本发明所提供的检测装置中,探头升降座32沿直线导轨311水平移动,其目的是带动探头架325在待检测轴件的上方移动,从而完成整个轴件的检测。在一种优选实施例中,横梁31上设置有与直线导轨311平行的丝杆312,探头升降座32上设置有沿所述直线导轨311滑动的滑块321和与所述丝杆312配合连接的传动块322,所述丝杆312由设置有横梁31上的伺服电机313驱动沿轴向旋转,丝杆312旋转时,通过所述传动块322带动探头升降座32沿直线导轨311水平运动,所述伺服电机313与控制器4电路连接。通过丝杆312传动来驱动探头升降座32水平移动,结构更加简单,而且易于控制。此外,探头升降座32在水平方向的移动,还可以采用电动滑台、皮带或链条传动等其它方式来驱动。In the detection device provided by the present invention, the
在本发明所提供的检测装置中,探头升降座32上设置有可上下移动的探头架325,其目的是将探头架325上的超声波探头326移动接近待检测轴件表面,以达到有效探测距离。在一种优选实施例中,探头升降座32上设置有竖直朝下的气缸323,气缸323活塞项端连接有C型夹板324,所述C型夹板324由气缸323驱动上下运动,所述探头架325安装在C型夹板324上,所述气缸323与所述控制器4电路连接。通过气缸323驱动,更加易于控制,设置C型夹板324,可使探头架325更容易拆装。In the detection device provided by the present invention, the
在一种优选实施例中,探头升降座32上设置有竖向位置可调的气缸安装架327,所述气缸323设置在所述气缸安装架327上。在具体的实施例中,气缸安装架327竖向位置的调节可通过设置调节螺杆、齿条等方式来实现。设置竖向位置可调的气缸安装架327,其作用是降低检测作业时对气缸323行程的控制要求。在检测之前将气缸323活塞向下动运到最大行程,调节气缸安装架327的高度,使超声波探头326与待检测轴件表面的距离符合探测要求,在对同一批次的轴件进行检测时,气缸232活塞向下运动到最大行程即可进行检测,无需再对气缸232活塞每一次运动的距离进行计算和设定,简化了控制程序。In a preferred embodiment, the
在一种优选实施例中,参照图7所示,探头架325上设置有一对卡块328,所述卡块328相对位置有与C型夹板324相匹配的卡槽,所述C型夹板324插入在卡槽内。通过设置卡块328及卡槽,进一步简化了拆装探头架325的时的操作,便于快速拆装和更换探头架325。在具体的实施例中,所述卡块328可以是固定设置在探头架325上,也可以是可相对活动并具有向内复位弹性地设置在探头架325上。In a preferred embodiment, as shown in FIG. 7 , a pair of clamping
综上所述,本发明所提供的轴类件超声波检测装置,有效克服了现有轴类件探伤检测装置结构复杂、操作不便、对待检测件表面光滑度要求较高等问题,具有很高的利用价值和使用意义。To sum up, the ultrasonic detection device for shaft parts provided by the present invention effectively overcomes the problems of complex structure, inconvenient operation, and high requirements on the surface smoothness of the parts to be detected, etc. value and use.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010356296.6A CN111398423A (en) | 2020-04-29 | 2020-04-29 | An ultrasonic nondestructive testing device for shaft parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010356296.6A CN111398423A (en) | 2020-04-29 | 2020-04-29 | An ultrasonic nondestructive testing device for shaft parts |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111398423A true CN111398423A (en) | 2020-07-10 |
Family
ID=71437412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010356296.6A Withdrawn CN111398423A (en) | 2020-04-29 | 2020-04-29 | An ultrasonic nondestructive testing device for shaft parts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111398423A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112611807A (en) * | 2020-11-27 | 2021-04-06 | 重庆机电职业技术大学 | Truss flaw detection equipment assembly for detecting stepped shaft parts |
CN112730752A (en) * | 2020-12-28 | 2021-04-30 | 中铁建设集团基础设施建设有限公司 | Nondestructive testing system and method for steel structure flaw detection |
CN113418989A (en) * | 2021-08-19 | 2021-09-21 | 南通辰同智能科技有限公司 | Ultrasonic liquid immersion detection assembly for large bearing roller |
CN114487121A (en) * | 2021-12-15 | 2022-05-13 | 中国科学院深圳先进技术研究院 | a detection device |
CN114594161A (en) * | 2022-03-05 | 2022-06-07 | 浙江永立钢业有限公司 | An ultrasonic crack detection equipment for stainless steel pipes |
-
2020
- 2020-04-29 CN CN202010356296.6A patent/CN111398423A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112611807A (en) * | 2020-11-27 | 2021-04-06 | 重庆机电职业技术大学 | Truss flaw detection equipment assembly for detecting stepped shaft parts |
CN112730752A (en) * | 2020-12-28 | 2021-04-30 | 中铁建设集团基础设施建设有限公司 | Nondestructive testing system and method for steel structure flaw detection |
CN112730752B (en) * | 2020-12-28 | 2023-05-02 | 中铁建设集团有限公司 | Nondestructive testing system and method for steel structure flaw detection |
CN113418989A (en) * | 2021-08-19 | 2021-09-21 | 南通辰同智能科技有限公司 | Ultrasonic liquid immersion detection assembly for large bearing roller |
CN114487121A (en) * | 2021-12-15 | 2022-05-13 | 中国科学院深圳先进技术研究院 | a detection device |
CN114594161A (en) * | 2022-03-05 | 2022-06-07 | 浙江永立钢业有限公司 | An ultrasonic crack detection equipment for stainless steel pipes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111398423A (en) | An ultrasonic nondestructive testing device for shaft parts | |
CN104142281B (en) | The tangential fretting abrasion test device that a kind of voice coil motor drives | |
CN101339112B (en) | Machine tool guiding rail friction wear testing machine | |
CN203838115U (en) | Ultrasonic flaw detection wheel drive robot | |
CN106990007B (en) | Method and device for testing relation between residual stress of material and surface hardness | |
CN202630936U (en) | Horizontal detection device of shaft parts | |
CN109396059B (en) | Appearance diameter detection device suitable for tube-shape object | |
CN103175500B (en) | A kind of axle alters pick-up unit and detection method thereof | |
CN107159528A (en) | A kind of point gum machine rotating clamp and its operating method | |
CN109060966A (en) | A kind of ultrasonic transducer self-checking device | |
CN104330473A (en) | Ultrasonic flaw detection device for variable-cross-section shaft-disc type workpieces | |
CN104062353B (en) | Bent axle automation vortex, the compound the cannot-harm-detection device of Magnetic Memory | |
CN204241426U (en) | A kind of reflectoscope of non-uniform shaft disc type work | |
CN113252220A (en) | Residual stress detection equipment | |
CN105866236B (en) | Tooth surfaces of bevel gears grinding burn automatic detection device and detection method | |
CN212646575U (en) | Ultrasonic nondestructive testing device for shaft parts | |
CN110231724A (en) | Liquid crystal display lights detecting probe seat jacking apparatus | |
CN2539178Y (en) | Leakage magnetic flaw detector | |
CN215812172U (en) | Instrument for testing fatigue strength of rectangular sheet metal test piece | |
CN116183724A (en) | A kind of flaw detection equipment for metal processing production | |
CN116698990A (en) | Ultrasonic detection device and method for hollow axle strain defect | |
CN211602715U (en) | Loading device for detecting strength of plate | |
CN111504382A (en) | Automobile punching part checking fixture | |
CN102680339A (en) | Rolling fretting wear testing device | |
CN109604996B (en) | A fast grabbing and clamping device for RV reducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200710 |
|
WW01 | Invention patent application withdrawn after publication |