NL2026684B1 - Method and assembly for harvesting insect eggs and for farming insects - Google Patents

Method and assembly for harvesting insect eggs and for farming insects Download PDF

Info

Publication number
NL2026684B1
NL2026684B1 NL2026684A NL2026684A NL2026684B1 NL 2026684 B1 NL2026684 B1 NL 2026684B1 NL 2026684 A NL2026684 A NL 2026684A NL 2026684 A NL2026684 A NL 2026684A NL 2026684 B1 NL2026684 B1 NL 2026684B1
Authority
NL
Netherlands
Prior art keywords
insect
egg
conveyor
container
conveyor belt
Prior art date
Application number
NL2026684A
Other languages
Dutch (nl)
Inventor
Haaring Hendrikus
Jozephus Maria Zents Antonius
Original Assignee
Dorset Group B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dorset Group B V filed Critical Dorset Group B V
Priority to NL2026684A priority Critical patent/NL2026684B1/en
Priority to EP21795027.8A priority patent/EP4228401A1/en
Priority to PCT/NL2021/050626 priority patent/WO2022081014A1/en
Application granted granted Critical
Publication of NL2026684B1 publication Critical patent/NL2026684B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates

Abstract

The invention provides an insect egg harvesting assembly comprising: - at least one insect container comprising a sieve bottom having a mesh size dimensioned for allowing insects to lay eggs at the opposite side of the sieve bottom and for preventing said insects to pass the sieve bottom and thus for preventing said insects to leave the insect container; - an egg conveyor belt; - an insect container lift system for lifting said at least one insect container from said egg conveyor belt and for lowering said at least one insect container With said sieve bottom onto said egg conveyor belt.

Description

P100348NL00 Method and assembly for harvesting insect eggs and for farming insects Field of the invention The invention relates to a method and assembly for harvesting insect eggs, and for breeding or farming insects. Background of the invention Breeding insects is traditionally done using racks holding crates. An example of such is system is disclosed in WO2016/153338. The insect breeding facility has a spawning area with spawning containers which are adapted to receive adult insects and insect food, wherein at least one spawning structure is provided in each spawning container, in which spawning structure the moth insects will spawn their eggs.
WO2019/125165 according to its abstract relates to a “insect breeding device comprising at least one insect cage (101); a bin (120) for holding a cleaning liquid; a first pipe (3) connected to the bin for receiving the cleaning liquid, wherein the pipe is entering the at least one insect cage through a first opening (11); a nozzle (14) coupled to the first pipe, positioned inside the at least one insect cage configured to deliver the cleaning liquid to the interior of the at least one insect cage; and a second pipe (4) coupled to a second opening (12), different from the first opening (11), in the at least one insect cage, configured to drain the cleaning liquid and the debris from the at least one insect cage.” In known facilities, feeding can be complex, as is illustrated in WO2017/223096.
WO2018/029597 in its abstract states “a technological line for rearing and/or breeding of flightless insects and/or larval forms of insects wherein it includes at least one level, the level being an autonomous conveyor belt (11) with lateral sidewalls (6a, 6b) placed on both sides along the direction of the conveyor belt's movement, having upper edges curved inwardly at least once, with the bending angle (a) of the edge of each sidewall is not less than 30°, preferably between 30° and 90°, and transverse brackets (12), extending generally perpendicularly to the lateral sidewalls (6a, 6b), supporting the belt of the conveyor (11), connecting the opposite profiled lateral sidewalls (6a, 6b), whereas the profiled lateral sidewalls (6a, 6b) are also structural elements supporting longitudinal edges of the belt of the conveyor (11), so that both the conveyor belt (11) and the lateral sidewalls (6a, 6b) form a trough profile, and the pressure of the mass of the insects, which are on the surface of the conveyor belt (11) and potentially additionally of the feed and/or excrements of insects press down on the longitudinal edges of the conveyor belt (11) against the profiled lateral sidewalls (6a, 6b), wherein both the transverse brackets (12) and the profiled lateral sidewalls (6a, 6b) are made of a material with efficient heat conducting properties.
The invention also relates to a modular system of technological lines for rearing and/or breeding flightless insects and/or larval forms of insects, a method of rearing and/or breeding of flightless insects and/or larval forms of insects and use of the technological line and the modular system of the invention for rearing and/or breeding flightless insects and/or larval forms of insects.”
KR20120097205 in its abstract states "An apparatus for protecting and raising odontomyia hirayamae larvae using a conveyor is provided to mass-propagate odontomyia hirayamae larvae.
CONSTITUTION: An apparatus for protecting and raising odontomyia hirayamae larvae includes a container(100), a main body, and a conveyor.
Odontomyia hirayamae larvae inhabit in the container.
The container is capable of containing organic waste.
Inclined sides are formed at one or more lateral sides of the main body.
The odontomyia hirayamae larvae are movable along the inclined sides of the main body.
The conveyor is arranged at one side of the main body.
The conveyor is capable of transferring the organic waste.
The organic waste is treated based on the conveyor.
Protective covers(104) are mounted at both end parts of the container to prevent the escaping of the odontomyia hirayamae larvae.” EP2703372 in its abstract states “To provide an efficient system for manufacturing an organic fertilizer base material that reduces the manual labor involved in treating livestock manure using Musca domestica larvae. [Solution] Provided is an organic fertilizer production system for producing organic fertilizer from the excreta of livestock by using the larvae of Musca domestica.
The organic fertilizer production system is configured as follows: provided is a first cultivation processing housing unit for cultivating larvae hatched from eggs; disposed is a second cultivation processing housing unit that is divided into a plurality of sections below the first cultivation processing housing unit; provided is a drop part that allows the larvae to fall by utilizing the fact that the larvae crawl, an organic fertilizer base is manufactured by letting the larvae fall from the drop part into the next stage of the second cultivation processing housing unit and repeating this process several times, and in each of the cultivation processing housing units, the excreta is enzymatically hydrolyzed within the larvae during the process of rearing the larvae and is subsequently excreted by the larvae; provided are an organic fertilizer base gathering unit that gathers the produced organic fertilizer base material and discharges the same, and a larvae gathering unit that gathers the larvae group that crawled and fell from the final section of the cultivation processing housing unit; and the organic fertilizer base and the larvae group are discharged.” US2013319334 in its abstract states “In one embodiment, a system for rearing larvae includes a plurality of culture trays arranged in at least one stack of trays, each stack comprising multiple levels of trays, each tray comprising an open-topped basin adapted to receive larvae and larval feed, a feed delivery system adapted to automatically deliver larval feed to individually selected culture trays, and a water delivery system adapted to automatically deliver water to the culture trays.” WO2008040033 in its abstract states: “A device for production and separation of biohumus, consists from a housing (1) of the device with three conveyor belts (2.1), (2.2) and (2.3) set one underneath the other and three conveyor belts (2.4), (2.5) and (2.6) in the housing (1') all of these set in special tunnels (13) with heated air.
Housings (1) and (1') are set in parallel, one next to the other, where dung (3) is dosed by dosage units (6) and (6') onto the conveyor belts, and underneath the belt (2.6) of the second housing (1') wherein is set a collecting container (18) that is connected to a vibratory dumping out grating (20) by means of a worm conveyor (19). At the entrance of the first housing (1) above the conveyor belt (2.1), is set a receiving compartment (4) with a mixer, a heater and a dosage unit. Above the receiving compartment (4) is set a conveyor (5) to bring the dung therewith. Belts of the conveyor belts (2.1) to (2.6) have rubber deflectors (2') shaped as a turned up letter "V" that are set at certain distances along the whole length of the belt and for the purpose of removal of the migrating larvae and the rest from the floor (1") of the tunnel (13), by cleaning aside the migrating larvae and the rest from the floor (1") and toward the lateral collector (22). At the top of the dumping out grating (20) for separation of fractions of biohumus, a coarse-grained sieve (23) is set for the first fraction of biohumus - matters granulated without larvae, and a middle sieve (24) set underneath it, for the second fraction - matters for granulation and larvae, while underneath it is a fine sieve (25) for the third fraction - pure biohumus (27).” Summary of the invention A disadvantage of prior art is that the growth of larvae is still had to control, and/or monitor. Furthermore, the amount of human manual labour is considerable.
Hence, it 1s an aspect of the invention to provide an alternative assembly and/or method, which preferably further at least partly obviates one or more of above- described drawbacks.
There 1s provided an insect egg harvesting assembly comprising: - at least one insect container comprising a sieve bottom having a mesh size dimensioned for allowing insects to lay eggs at the opposite side of the sieve bottom and for preventing said insects to pass the sieve bottom and thus for preventing said insects to leave the insect container; -an egg conveyor belt; - an insect container lift system for lifting said at least one insect container from said egg conveyor belt and for lowering said at least one insect container with said sieve bottom onto said egg conveyor belt.
The insect container has a bottom from a sieve or sift or gauze material. The mesh size of dimensions of the holes or passages should be such that an insect can reach through the openings in order to lay its eggs in a layer of feed below the insect container. On the other hand, insects should not be allowed to pass the sieve bottom. Usually, the sieve bottom comprises or is made of a metal comprising a fine metal mesh screen on a frame. A loose or open gauze may also be used, as long as it retains the insects.
The assembly uses belt conveyor that comprise a belt that actuated. Free after Wikipedia: A conveyor belt is the carrying medium of a belt conveyor system (often shortened to belt conveyor). In an embodiment, a belt conveyor system comprises two or more pulleys (sometimes referred to as drums), with a closed loop of carrying medium—the conveyor belt—that rotates about them. One or both of the pulleys can be powered/actuated to rotate about their rotational axes, takin the belt with them for moving the belt and the material on the belt forward. In case of one drive pulley, the powered pulley is called the drive pulley while the unpowered pulley is called the idler pulley. In this description, often the term “conveyor belt” is used. This revers to a belt conveyor. In case the wording “surface of the conveyor bel” is used, it refers to the surface of the belt that 1s available for placing material upon. In the current application, a belt conveyor can have a length of up to 100 meters. It can have a width of between 5 30and 150 cm.
Any insect may be used in the current assembly. In particular, the current assembly and method relate to the growth and farming of the following insects: tenebrio molitor or yellow mealworm, alphitobius diaperinus or lesser mealworm, Alphitobius laevigatus or buffalo worm.
There is further provided an insect breeding system comprising: at least one insect egg harvesting assembly described above, and at least one breeding conveyor belt functionally coupled to said at least one insect egg harvesting assembly for receiving harvested insect eggs from said insect egg harvesting assembly.
There 1s further provided an insect breeding method using the insect egg harvesting assembly described above, said insect breeding method comprising: - providing male and female insects in said at least one insect container and providing said at least one insect container on said lift system; - providing nutrients onto a said conveyor belt below said crates; - lowering said lift system on said at least one of said conveyor belts for placing said at least one insect container onto said nutrients; - after a predetermined amount of time, lifting said crates, thus providing insect eggs onto said conveyor belt; - actuating said at least one egg conveyor belt for transporting said eggs from said egg conveyor belts.
There is further provided a computer program product for controlling an insect egg harvesting assembly described above and which, when running on a data processor: - controls a feed distributing device and an egg conveyor for distributing feed on the egg conveyor, and - controls the insect container lift system for lowering the insect container with its sieve bottom on said feed on said egg conveyor belt.
In an embodiment, the sieve bottom having said mesh size dimensioned for allowing said insects to get nutrition from the opposite side of the sieve bottom.
In an embodiment, the sieve bottom has a mesh size of less than 5 mm.
In a particular embodiment, the mesh size is 1-4 mm.
In an embodiment, the insects have an ovipositor that should reach through the sieve bottom and van a The ovipositor is a tube-like organ used by some animals, especially insects for the laying of eggs.
In insects, an ovipositor consists of a maximum of three pairs of appendages.
The details and morphology of the ovipositor vary, but typically its form is adapted to functions such as preparing a place for the egg, transmitting the egg, and then placing it properly.
For insects, the organ is used merely to attach the egg to some surface.
In an embodiment, the insect container lift system is arranged for lowering said at least one insect container with said sieve bottom parallel to said egg conveyor belt.
In an embodiment, the insect egg harvesting assembly further comprising an insect feed system for distributing insect feed on said egg conveyor belt, in particular before lowering said at least one insect container onto said egg conveyor belt.
In an embodiment, the insect egg harvesting assembly further comprising an egg conveyor ventilation system for inducing a flow of air over said egg conveyor belt.
In an embodiment, the insect egg harvesting assembly further comprising a egg conveyor moistening system for providing a mist of water on said egg conveyor belt.
In an embodiment, the at least one insect container comprises series of insect crates, each insect crate comprising a sieve bottom for allowing insect eggs to pass the sieve bottom and to leave the insect crate and for not allowing the insects to leave the insect crate, in particular each insect crate comprises a circumferential wall for preventing insects to leave the insect crate.
In an embodiment the series of insect crates are arranged with said sieve bottoms in a plane and parallel to said conveyor belt.
In an embodiment, the container lift system is coupled to each insect crate for lifting said series of insect crates together from said egg conveyor belt and placing said insect crates with said sieve bottoms together onto said egg conveyor belt.
In particular, the container lift system comprising a frame for holding said insect crates with their sieve bottoms substantially in one plane.
In an embodiment, the insect breeding system comprising a series of said breeding conveyor belts substantially parallel above one another.
In an embodiment the insect breeding assembly comprising at least one compartment hermetically sealed from its environment, said compartment comprising the insect breeding system.
In an embodiment, the insect breeding assembly comprising a series of said compartments hermetically sealed from one another, and each comprising a series of said insect breeding systems each comprising at least two breeding conveyor belts.
In an embodiment, in the insect breeding assembly each conveyor belt comprises a drive, and further comprising a controller comprising a data coupling to a drive of each of said conveyor belts and coupling to temperature and humidity sensors, wherein said compartments are hermetically sealed for controlling a temperature and a humidity in each compartment separately.
In an embodiment of the method, it further comprises - allowing eggs to hatch and grow into grown larvae; - after a predetermined growing time, activating said conveyor belts holding said larvae for transporting said larvae to a processing plant.
In an embodiment of the computer program product, the computer program product: - reads environmental parameters, including temperature and moisture levels, and - controls a climate system for keeping said environmental parameters within a set condition.
The terms “upstream” and “downstream” relate to an arrangement of items or features relative to the stage of development of the insects, wherein the egg-stage is relatively upstream of the larvae stage.
The term “substantially” herein, such as in “substantially all larvae” or in “substantially consists”, will be understood by the person skilled in the art. The term “substantially” may also include embodiments with “entirely”, “completely”, “all”, etc. Hence, in embodiments the adjective substantially may also be removed. Where applicable, the term “substantially” may also relate to 90% or higher, such as 95% or higher, especially 99% or higher, even more especially 99.5% or higher, including
100%. The term “comprise” includes also embodiments wherein the term “comprises” means “consists of”.
The term "functionally" will be understood by, and be clear to, a person skilled in the art. The term “substantially” as well as “functionally” may also include embodiments with “entirely”, “completely”, “all”, etc. Hence, in embodiments the adjective functionally may also be removed. When used, for instance in “functionally parallel”, a skilled person will understand that the adjective “functionally” includes the term substantially as explained above. Functionally in particular is to be understood to include a configuration of features that allows these features to function as if the adjective “functionally” was not present. The term “functionally” is intended to cover variations in the feature to which it refers, and which variations are such that in the functional use of the feature, possibly in combination with other features it relates to in the invention, that combination of features is able to operate or function. For instance, if an antenna is functionally coupled or functionally connected to a communication device, received electromagnetic signals that are receives by the antenna can be used by the communication device. The word “functionally” as for instance used in “functionally parallel” is used to cover exactly parallel, but also the embodiments that are covered by the word “substantially” explained above. For instance, “functionally parallel” relates to embodiments that in operation function as if the parts are for instance parallel. This covers embodiments for which it is clear to a skilled person that it operates within its intended field of use as if it were parallel.
Furthermore, the terms first, second, third and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.
The devices or apparatus or as assembly herein are amongst others described during operation. As will be clear to the person skilled in the art, the invention is not limited to methods of operation or devices in operation.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb "to comprise" and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and may comprise a suitably programmed computer. In the device or apparatus claims enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
The invention further applies to an apparatus or device or assembly comprising one or more of the characterising features described in the description and/or shown in the attached drawings. The invention further pertains to a method or process comprising one or more of the characterising features described in the description and/or shown in the attached drawings.
The various aspects discussed in this patent can be combined in order to provide additional advantages. Furthermore, some of the features can form the basis for one or more divisional applications.
Brief description of the drawings Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which: Figure 1 schematically depicts an embodiment of the insect egg harvesting assembly, seen from the side; Figure 2 the egg harvesting assembly of figure 1, head-on, and Figure 3 an insect breeding system comprising the insect egg harvesting assembly of figures 1 and 2.
The drawings are not necessarily on scale Description of preferred embodiments
Figure 1 schematically depicts an insect egg harvesting assembly 1 depicted from the side, and in figure 2 head on.
The insect egg harvesting assembly 1 comprises an egg conveyor belt 2, an insect container 4, and a container lift system 3. The insect container 4 has a sieve bottom.
The sieve bottom has a mesh that is dimensioned for preventing the insects to leave the insect container. Furthermore, the mesh is such that the insects can lay eggs through the mesh in an underlaying layer of food. In an embodiment, the mesh width is less than 5 mm. In an embodiment, a mesh width is 1-4 mm. In a particular embodiment, the mesh will be 1-3 mm. For making the yield as high as possible, the layer of food is as thin as possible. In an embodiment, the layer of food on the egg conveyor belt is less than 1 cm thick.
In an embodiment, the insect container 4 comprise a circumferential wall for preventing insects to leave the insect container 4. In an embodiment, the insect container 4 may be covered with a lid or mesh for preventing the insects to leave the insect container 4.
The egg conveyor belt 2 here comprises an actuator 5 for driving said egg container belt 2. Usually, the actuator 5 comprises an electromotor and a controller functionally coupled to the electromotor for controlling it.
The container lift system 3 is provided for lifting the insect container 4 from the egg conveyor belt 2, and for lowering the insect container 4 onto the egg conveyor belt
2. In the depicted embodiment, the container lifting system 3 comprises at least one bar or lift rod 7. This lift rod 7 is mounted above the egg conveyor 2, in particular above and functionally parallel to the egg conveyor 2. The insect container 4 is coupled to the lift rod 7 via cables or chains 8. Using an actuator, here an electromotor 11, the lift rod 7 can be rotated about its longitudinal axis. This will wind the cables or chains 8 around the lifting rods 7 and thus raise or lower the insect container 4 with respect to the egg conveyor belt 2. The insect container 4 in the depicted embodiment comprises a series of insect crates 6. These insect crates are provided in a layer of insect crates 6. In an embodiment, the crates are rectangular. They can have and size, but it was found that they can have a size of about 25-100 length x 25-100 cm width. This size allows them to be manually handled. In the embodiment with circumferential wall, each insect crate
6 comprises a circumferential wall.
Each insect crate 6 may comprise a closure further preventing insects to leave the crate 6. The closure may comprise a lid or a mesh.
In an embodiment, the insect container lift system 3 comprises a frame holding the insect crates 6 together.
In an alternative embodiment, the insect crates 6 comprise a crate coupling provision allowing the insect crates to be mutually coupled in order to allow lifting of the series of insect crates 6 together as one part as explained.
Such a coupling may comprise a snap fit coupling.
The crate coupling can be provided on an outside of a circumferential wall.
The insect egg harvesting assembly 1 further comprises a moistening device 9 extending along the egg conveyor belt 2. In an embodiment, the moistening device 9 extends in a longitudinal direct of the egg conveyor belt 2. The moistening device 9 is provided along a side of the egg conveyor belt 2. It is provided with a series of spray nozzles (indicated with circles) for spraying a mist of water on the egg conveyor belt 2 when the insect container 4 has been lifted from the egg conveyor 2. On the opposite side along the egg conveyor belt, a ventilation device 10 is provided.
The ventilation device 10 comprises a series of air inlet/outlets along the egg conveyor belt 2. When sucking in air, the ventilation device 10 assist in distributing the water mist from the moistening device 9. In an alternative embodiment (not depicted), the moistening device extends along the conveyor, in particular above the conveyor.
In this embodiment, it is arranged for spraying on the conveyor.
In a particular embodiment, the moistening device comprises a main conduit running along the length of the conveyor, and comprises branching conduits running in width direction of the conveyor.
The main conduit can run at a side of the conveyor and for instance elevated from the conveyor surface.
Branching conduits are for instance provided at regular intervals, in an embodiment with 30-600 cm interspacing, in an embodiment 100-500 cm.
Each branching conduit can be provided with at least one spraying nozzle spraying in the longitudinal direction of the conveyor.
In particular, the nozzles are directed to spray substantially parallel to the belt.
The moistening device can be provided for an egg conveyor, for a breeding conveyor, or for both.25- The insect egg harvesting assembly in an embodiment further comprises a egg conveyor feed dispensing system 19 for distributing larvae feed, often comprising flour, on the egg conveyor belt 2. In an embodiment, the egg conveyor feed dispensing system is provided at an end of the egg conveyor.
The dispensing system can distribute a flow of larvae feed in a strip of an egg conveyor width.
When running the conveyor belt 2, the larvae feed 12 will distribute on the complete egg conveyor belt surface.
Usually, the layer should be as thin as possible in order to get a high yield.
In most cases, such a layer has a thickness of below 2 cm.
A layer thickness of about 1 cm proved possible.
The egg conveyor feed dispensing system 19 may comprise a transport screw for distributing the feed 12 on the (width of the) belt. producing a layer while running the conveyor belt will assure a layer on the entire length of the belt 2. The moistening device 9 can subsequently moistening the larvae feed 12, and the insect container 4 can be lowered on the larvae feed 12 on the egg conveyor belt 2. Figure 3 shows an insect breeding system comprising in this embodiment two insect egg harvesting assemblies 1 and two breeding conveyor belts 13, 14 above one another.
These parts are enclosed or enclosed in a compartment 16. In fact, the compartment 16 1s designed for hermetically sealing the parts.
In this way, the environment conditions (temperature, humidity, amount of air) can be maintained.
Furthermore, ingress 1s detrimental elements like pests can be prevented.
Here, when a pest gets onto a conveyor belt, the entire system needs to be disinfected.
In this embodiment, each breeding conveyor belt comprises a feed distributing device 20. In this case, as eggs or larvae are distributed as even as possible on the complete length of the belt, the feed distributing device here comprises a distributor that extends along the length of the belt 13, 14. This distributes feed evenly on the belt, which is important for getting a high yield.
Each belt in an embodiment comprises a moistening device 9 and ventilation device 10 as described above.
The belt system allows to keep a predetermined density of eggs per unit surface area, and further down the process a predetermined density of larvae per unit surface area on a conveyor.
In fact, the density can be controlled and modified as larvae grow.
Usually, the various devices are controlled using a controller 15. To that end, the controller is functionally coupled, as indicated.
This can be hard wired or wireless.
Often, various breeding systems are combined into an insect breeding assembly.
Often, one single controller 15 controls the different insect breeding systems.
It will also be clear that the above description and drawings are included to illustrate some embodiments of the invention, and not to limit the scope of protection.
Starting from this disclosure, many more embodiments will be evident to a skilled person.
These embodiments are within the scope of protection and the essence of this invention and are obvious combinations of prior art techniques and the disclosure of this patent.
Reference numbers 1 insect egg harvesting assembly 2 conveyor belt 3 container lift device
4 insect container 5 lift actuator 6 insect crate 7 lift rod
8 crate cable 9 moistening device 10 ventilation device 11 lift system actuator 12 larvae feed
13, 14 breeding conveyor belt 15 controller 16 compartment 17 insect container wall 18 insect container sieve bottom
19 harvesting device feed distributing device 20 breeding conveyor feed distributing device

Claims (18)

ConclusiesConclusions 1. Een insecten-el vogstsamenstel omvattende: -ten minste één insectenhouder omvattende sen zeefhodem welks een maaswijdte dimensionering heeft die toelaat dat insecten sieren aan de andere zijde van de zeef bodem leggen en om te voorkomen dat de insecten de zeefbodem passeren en daardoor voorkomen dat de insecten de houder verlaten; ~- een el transportband: - een insectenhouder hetsysteem voor opheffen van de ten minste ene insectenhouder van de ei transportband en voor neerlaten van de ten minste ene insectenhouder met de zeefbodem op de ei transportband.An insect screen assembly comprising: - at least one insect container comprising a screen bottom which has a mesh size dimension that allows insects to lay ornamental plants on the other side of the screen bottom and to prevent the insects from passing through the screen bottom and thereby prevent the insects leave the container; ~- an ell conveyor belt: - an insect holder the system for lifting the at least one insect holder from the egg conveyor belt and for lowering the at least one insect holder with the sieve bottom on the egg conveyor belt. 2. Het insecten-el oogstsamenstel volgens conclusie 1, de zeefbodem met de maaswijdte die gedimensioneerd is zodat de insecten voeding kunnen halen van de andere zijde van de zeefhodem.The insect cell harvesting assembly of claim 1, the screen bottom having the mesh size sized so that the insects can obtain food from the other side of the screen bottom. 3. Het insecten-ej oogstsamenstel volgens conclusies 1 of 2, waarbij de zeefhodem een maaswijdte van 1-4 mm heeft,The insect harvesting assembly of claims 1 or 2, wherein the screen cover has a mesh size of 1-4 mm, 4. Het insecten-ei oogst samenstel volgens sen van de voorgaande conclusies, waarin het insectenhouder hefsysteem ingericht is voor het neerlaten van len minste ene insectennouder met de zeefbodem parallel aan de ei transportband. The insect egg harvesting assembly according to any one of the preceding claims, wherein the insect container lifting system is adapted to lower at least one insect holder with the screen bottom parallel to the egg conveyor belt. 5, Het inseclten-ej oogstsamenstel volgens een van de voorgaande conclusies, verder omvattende een insectenvaersysteem voor het verspreiden van insectenvoer op de el transportband, in het bijzonder voor het neerlaten van de ten minste ene insectenhouder op de ei transportband,The insect-ej harvesting assembly according to any one of the preceding claims, further comprising an insect landing system for distributing insect food on the egg conveyor belt, in particular for lowering the at least one insect container onto the egg conveyor belt, 6. Het insecten-ei oogstsamenstel volgens een van de voorgaande conclusies, verder omvattende een ei transportband ventilatiesysteem voor het opwekken van een luchistroom over de ej transportband.The insect egg harvesting assembly of any preceding claim, further comprising an egg conveyor ventilation system for generating an airflow over the ej conveyor. +. Het insecten-ei vogstsamensiel volgens sen van de voorgaande conclusies, verder omvattend een ei transportband bevochtigingssysteem voor het verschaffen van een nevel van water op de ei transportband,† The insect egg mist assembly according to any one of the preceding claims, further comprising an egg conveyor wetting system for providing a mist of water on the egg conveyor, 3. Het insecten-si oogstsamenstel volgens sen van de voorgaande conclusies, waarin ten minste één insectenhouder insectenkratten omvat, elk insectenkrat omvattend een zeefbodem zodanig dat insecteneieren de zeefbodem kunnen passeren en het insectenkrat te verlaten en voor het niet toestaan dat de Insecten het insectenkrat verlaten, elk insectenkrat omvat in het bijzonder sen omtrek wand voor het weerhouden dat insecten het insecten krat verlaten.The insect si harvesting assembly according to any one of the preceding claims, wherein at least one insect container comprises insect crates, each insect crate comprising a screen bottom such that insect eggs can pass through the screen bottom and exit the insect crate and for not permitting the insects to exit the insect crate In particular, each insect crate includes a perimeter wall for preventing insects from exiting the insect crate. 9. Het insecten-ei oogstsamenstel volgens conclusie 8, waarin de insectenkratten geplaatst zijn met de zeetbodem in een vlak en parallel aan de transportband.The insect egg harvesting assembly according to claim 8, wherein the insect crates are placed with the seabed in a plane and parallel to the conveyor belt. 10. Het insecten-el oagstsamenstel, waarin het houder hefsysteem is gekoppeld aan elk insectenkrat voor het heffen van de insectenkratten samen van de ei! transportband en het plaatsen van de insectenkratten met hun zeefbodems samen op de el transportband, in het bijzonder omvat het houder hefsysteem een frame voor het houden van de insectenkratten met hun zeefbodems substantieel in een vlak,10. The insect cage assembly, wherein the container lifting system is coupled to each insect crate for lifting the insect crates together from the egg! conveyor belt and placing the insect crates with their screen bottoms together on the el conveyor belt, in particular the container lifting system comprises a frame for holding the insect crates with their screen bottoms substantially in a plane, 11. Een Insectopfoksysteem amvattende: len minste één insecten-ei oogstsamenstel volgens een van de voorgaande conclusies, en ten minste éen opfoktransportband functioneel gekoppeld aan ten minste een insecterrel oogstsamenstel voor het ontvangen van geoogste insecteneieren van het insecten-el oogstsamenstel,An insect rearing system comprising: at least one insect egg harvesting assembly according to any preceding claim, and at least one rearing conveyor operatively coupled to at least one insect egg harvesting assembly for receiving harvested insect eggs from the insect egg harvesting assembly, 12. Het insectenopfoksysteem volgens conclusie 11, omvattende de opfoktransportbanden substantieel parallel boven elkaar,The insect rearing system of claim 11, comprising the rearing conveyors substantially parallel one above the other, 13. Een insectenopfoksamenstel omvattende ten minste een compartiment dat hermetisch afgeschermd is van zijn omgeving, het compartiment omvattend een insectenopfaksysteem volgens conclusie 11 of 12.An insect rearing assembly comprising at least one compartment hermetically shielded from its environment, the compartment comprising an insect rearing system according to claim 11 or 12. 14. Het insecten fok samenstel volgens conclusie 13, omvattende meerdere van de compartimenten hermetisch afgeschermd van elkaar, en elk omvattende meerdere vande insectenopfoksystemen, elk omvattende ten minste twee vpfokiransportbanden. The insect rearing assembly of claim 13, comprising a plurality of the compartments hermetically shielded from each other, and each comprising a plurality of the insect rearing systems, each comprising at least two rearing conveyor belts. 15, Het insectenopfoksamenstel volgens conclusie 14, waarin elke transportband een aandrijving omvat, en verder sen controller omvattenge sen dalakoppeling naar een aandrijving van elk van de transportbanden en gekoppeld aan temperatuur- en vochtigheidssensaren, waarin de compartimenten hermelisch zijn afgeschermd voor het regelen van een temperatuur en een vochtigheid In elk compartiment apart.The insect rearing assembly of claim 14, wherein each conveyor comprises a drive, and further comprising a controller including a coupling to a drive of each of the conveyors and coupled to temperature and humidity sensors, wherein the compartments are hermetic shielded to regulate a temperature and a humidity in each compartment separately. 16. Een insectopfokwerkwijze onder toepassing van het insecten-et vogstsamenstel volgens conclusie 1, de insectenopfokwerkwijze omvattend: - het verschaffen van mannelijke en vrouwelijke Insecten in ten minste één insectenhouder en het verschaffen van ten minste één insectenhouder op het hefsysteerm; - het verstrekken van voeding op een van de transportband onder de kratten; het neerlaten van het hefsysteem op ten minste één van de transportbanden voor het plaatsen van ten minste ene insectenhouder op de voeding; -na een vooraf besloten tijd, heffen van de kratten, waardoor verschaffen van de insectensieren op de transportband; - het actusren van de ten minste ene si transportband voor het transporteren van de ejeren van de ej transportbanden.An insect rearing method using the insect raising system according to claim 1, the insect rearing method comprising: - providing male and female insects in at least one insect container and providing at least one insect container on the lifting system; - providing food on one of the conveyor belts under the crates; lowering the lifting system onto at least one of the conveyor belts for placing at least one insect container on the feed; - after a predetermined time, lifting of the crates, thereby providing the insect ornaments on the conveyor belt; - actuating the at least one si conveyor for conveying the ej and the ej conveyors. 17. De werkwijze volgens conclusie 16, verder omvattend - het Jaten uitkomen van de sieren en tot voigroeide larven laten groeien; -na een voorat bepaalde grosiperiode, het activeren van de transportbanden welke de larven houdt voor het transporten van de larven naar sen verwerkingsfabriek,The method of claim 16, further comprising - hatching the ornamentals and growing into fully grown larvae; - after a predetermined grosi period, activating the conveyor belts that hold the larvae for transporting the larvae to a processing plant, 18. Een computerprogramma product voor het regelen van een insecten-el oogstsamenstel volgens sen van de voorgaande conclusies en welke, wanneer werkend op sen dataprocessor: - een voerverdeelinrichting en een el transportband bestuurt voor het verdelen van voer op het ei transportband, en - het besturen van een insectenhouder hefsysteem voor het neerlaten van de insectenhouder met zijn zeefbodem op de ei transportband.A computer program product for controlling an insect cubit harvesting assembly according to any one of the preceding claims and which, when operating on a data processor: - controls a feed distribution device and a cubit conveyor for distributing feed on the egg conveyor, and - controlling an insect container lifting system for lowering the insect container with its sieve bottom onto the egg conveyor belt. 19, Het computer programma product volgens conclusie 18, waarin het computer programma product: - omgevingsparameters inleest, Inclusief temperatuur en vochtigheldsniveau’s, en - cen klimaatsysteem regelt voor het binnen een ingestelde conditie houden van de omgevingsparamelers.The computer program product of claim 18, wherein the computer program product: - reads in environmental parameters, including temperature and humidity levels, and - controls a climate system to maintain the environmental parameters within a set condition. -0-0-0-0-0--0-0-0-0-0-
NL2026684A 2020-10-15 2020-10-15 Method and assembly for harvesting insect eggs and for farming insects NL2026684B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2026684A NL2026684B1 (en) 2020-10-15 2020-10-15 Method and assembly for harvesting insect eggs and for farming insects
EP21795027.8A EP4228401A1 (en) 2020-10-15 2021-10-15 Method and assembly for harvesting insect eggs and for farming insects
PCT/NL2021/050626 WO2022081014A1 (en) 2020-10-15 2021-10-15 Method and assembly for harvesting insect eggs and for farming insects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2026684A NL2026684B1 (en) 2020-10-15 2020-10-15 Method and assembly for harvesting insect eggs and for farming insects

Publications (1)

Publication Number Publication Date
NL2026684B1 true NL2026684B1 (en) 2022-06-08

Family

ID=74592651

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026684A NL2026684B1 (en) 2020-10-15 2020-10-15 Method and assembly for harvesting insect eggs and for farming insects

Country Status (3)

Country Link
EP (1) EP4228401A1 (en)
NL (1) NL2026684B1 (en)
WO (1) WO2022081014A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022114308B3 (en) * 2022-06-07 2023-06-22 Alpha-Protein GmbH DEVICE AND METHOD FOR SUPPLYING INSECTS

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411220A (en) * 1979-07-10 1983-10-25 Inst. Nat. De La Recherche Agronomique Mass production unit for producing eggs of an insect
WO2008040033A2 (en) 2006-09-28 2008-04-03 Altamed, D.O.O. Device for production and separation of biohumus
KR20120097205A (en) 2011-02-24 2012-09-03 그린테코 주식회사 Protective cover device of bsf mass rearing using the conveyor
US20130319334A1 (en) 2011-02-21 2013-12-05 G. Larry Newton Systems and Methods for Rearing Insect Larvae
EP2703372A1 (en) 2011-04-28 2014-03-05 E's Inc Organic fertilizer production system
WO2016153338A1 (en) 2015-03-24 2016-09-29 Proti-Farm R & D B.V. Method and facility for breeding insects
WO2017223096A1 (en) 2016-06-20 2017-12-28 Aspire Food Group Usa, Inc. Autonomous feed delivery platform for insects
WO2018029597A1 (en) 2016-08-09 2018-02-15 Hipromine S.A. The technological line for rearing or breeding of insects, the modular system of technological lines, the method and use thereof
US20180049416A1 (en) * 2016-08-21 2018-02-22 Daniel Michael Leo Insect production systems and methods
US20190021296A1 (en) * 2017-07-21 2019-01-24 Big Dutchman International Gmbh Device, system and method for residue use in livestock farming
WO2019125165A1 (en) 2017-12-22 2019-06-27 Protix B.V. Insect breeding device
US20200288685A1 (en) * 2017-09-20 2020-09-17 Proti-Farm R & D B.V. Insect breeding

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411220A (en) * 1979-07-10 1983-10-25 Inst. Nat. De La Recherche Agronomique Mass production unit for producing eggs of an insect
WO2008040033A2 (en) 2006-09-28 2008-04-03 Altamed, D.O.O. Device for production and separation of biohumus
US20130319334A1 (en) 2011-02-21 2013-12-05 G. Larry Newton Systems and Methods for Rearing Insect Larvae
KR20120097205A (en) 2011-02-24 2012-09-03 그린테코 주식회사 Protective cover device of bsf mass rearing using the conveyor
EP2703372A1 (en) 2011-04-28 2014-03-05 E's Inc Organic fertilizer production system
WO2016153338A1 (en) 2015-03-24 2016-09-29 Proti-Farm R & D B.V. Method and facility for breeding insects
WO2017223096A1 (en) 2016-06-20 2017-12-28 Aspire Food Group Usa, Inc. Autonomous feed delivery platform for insects
WO2018029597A1 (en) 2016-08-09 2018-02-15 Hipromine S.A. The technological line for rearing or breeding of insects, the modular system of technological lines, the method and use thereof
US20180049416A1 (en) * 2016-08-21 2018-02-22 Daniel Michael Leo Insect production systems and methods
US20190021296A1 (en) * 2017-07-21 2019-01-24 Big Dutchman International Gmbh Device, system and method for residue use in livestock farming
US20200288685A1 (en) * 2017-09-20 2020-09-17 Proti-Farm R & D B.V. Insect breeding
WO2019125165A1 (en) 2017-12-22 2019-06-27 Protix B.V. Insect breeding device

Also Published As

Publication number Publication date
WO2022081014A1 (en) 2022-04-21
EP4228401A1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
RU2762415C2 (en) Automatic modular system for managing vertical farms
KR101607279B1 (en) Method and arrangement for growing plants
CN113939190B (en) Automatic insect feeding system and container
US9629339B2 (en) Systems and methods for rearing insect larvae
US11147238B2 (en) Circular grazing system and method
CN105472972B (en) For the cultivation system waterborne cultivated in pond and for its floating carrier
KR20170131547A (en) Insect Reproduction Facility and Method
CN102084786B (en) Automatic vegetable cultivation and processing method
KR101946828B1 (en) Useful insect mass breeding automation equipment
KR102024635B1 (en) Organic waste treatment appartus using larva of insect
JP2010110307A (en) Insect-raising compost bed
KR20190110257A (en) Auto-rearing apparatus for larvae
NL2026684B1 (en) Method and assembly for harvesting insect eggs and for farming insects
EP3826452B1 (en) Plant cultivation system and apparatuses therefor
RU2369092C1 (en) Chicken keeping method and unit for its implementation
CN111202031A (en) Black soldier fly larva breeding device and method
CN116685199A (en) Feeding device
KR20180047041A (en) The automated facilities for raising of industrial insect
KR100376758B1 (en) Apparatus for treating stock excretion by fly larva
AU2012254950A1 (en) Continuous growing and harvesting method and apparatus
RU2787703C1 (en) Technological line of continuous germination of grain
RU2807445C1 (en) Insect growth compartment, their growing system and methods for insect cultivation
RU2390126C2 (en) Method of synanthropic slugs cultivation
AU2012100784A4 (en) A continuous growing apparatus
KR20230123241A (en) Apparatus For Inputting Larva Of Soldier Fly