NL2021838B1 - Catalyst component, catalyst, and prepolymerization catalyst for olefin polymerization, and method for olefin polymerization - Google Patents

Catalyst component, catalyst, and prepolymerization catalyst for olefin polymerization, and method for olefin polymerization Download PDF

Info

Publication number
NL2021838B1
NL2021838B1 NL2021838A NL2021838A NL2021838B1 NL 2021838 B1 NL2021838 B1 NL 2021838B1 NL 2021838 A NL2021838 A NL 2021838A NL 2021838 A NL2021838 A NL 2021838A NL 2021838 B1 NL2021838 B1 NL 2021838B1
Authority
NL
Netherlands
Prior art keywords
unsubstituted
substituted
compound
titanium
catalyst
Prior art date
Application number
NL2021838A
Other languages
Dutch (nl)
Other versions
NL2021838A (en
Inventor
Gao Mingzhi
Cai Xiaoxia
Liu Haitao
Chen Jianhua
Ma Jixing
Wang Jun
Li Changxiu
Hu Jianjun
Ma Jing
He Shixiong
Original Assignee
China Petroleum & Chem Corp
Bejing Res Institute Of Chemical Industry China Petroleum & Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum & Chem Corp, Bejing Res Institute Of Chemical Industry China Petroleum & Chemical Corporation filed Critical China Petroleum & Chem Corp
Publication of NL2021838A publication Critical patent/NL2021838A/en
Application granted granted Critical
Publication of NL2021838B1 publication Critical patent/NL2021838B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Provided are a catalyst component for olefin polymerization, a catalyst for olefin polymerization, a prepolymerization catalyst obtained by prepolymerization of the catalyst, and a method for olefin polymerization. The catalyst component for olefin polymerization includes magnesium, titanium, halogen, Lewis base compound A as shown in formula (I), and another Lewis base compound B, wherein a molar ratio of a total amount of compound A and compound B to magnesium is in a range of (0.03—O.20):1. When the catalyst is used in olefin polymerization, in particular propylene polymerization, the catalyst has a high activity.

Description

-1- CATALYST COMPONENT, CATALYST, AND PREPOLYMERIZATION CATALYST FOR OLEFIN POLYMERIZATION, AND METHOD FOR OLEFIN POLYMERIZATION CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the priority of Chinese patent application CN 201610846996.7, entitled “Catalyst component, catalyst, and prepolymerization catalyst for olefin polymerization, and method for olefin polymerization” and filed on October 19, 2017, the entirety of which is incorporated herein by reference.
FIELD OF THE DISCLOSURE The present disclosure relates to the technical field of olefin polymerization, and in particular, to a catalyst component for olefin polymerization, a catalyst for olefin polymerization, a prepolymerization catalyst obtained by prepolymerization of the catalyst, and a method for olefin polymerization.
BACKGROUND OF THE DISCLOSURE A Ziegler-Natter catalyst is generally composed of magnesium, titanium, halogen, and a Lewis base and so on. The Lewis base is an organic compound containing oxygen, nitrogen, phosphorus, silicon, and the like. Sometimes, in order to improve overall performance of a catalyst, two or more Lewis base compounds are added during preparation of the catalyst. For example, it is disclosed in Chinese patents 201310517877.3, 201310518069.9, 201310518086.2, and 201310518285.3 that overall performance of a catalyst can be improved by using malonate compounds together with other Lewis base compounds, but activity of the catalyst is not high enough, which is not beneficial for energy-saving and efficiency-increasing. It is disclosed in Chinese patents CN201510708748.1 and CN201510708579.1 that phthalic anhydride is introduced in the above system, and activity of a catalyst is improved. However, introduction of phthalic anhydride will result in that a final catalyst obtained comprises more or less a phthalate compound, and residue of the phthalate compound will eventually stay in a polymer. The phthalate compound is an environmental hormone, which will influence human health, such as fertility and development, and thus it is not desirable that the polymer comprises such a substance. Although research and development on the Ziegler-Natter catalyst have been carried out for -1-
-2- decades, how to further improve the function of the catalyst is still a pursuit in the field, especially how to achieve a balance among various properties of the catalyst. For example, how to avoid presence of a phthalate compound in the catalyst while maintaining high catalytic activity is pursued.
SUMMARY OF THE DISCLOSURE The present disclosure aims to provide a catalyst component, a catalyst, and a prepolymerization catalyst for olefin polymerization, and a method for olefin polymerization. When used for olefin polymerization, especially for propylene polymerization, the catalyst component or the catalyst provided herein has a high catalytic activity, and does not comprise a phthalate compound. According to a first aspect of the present disclosure, provided is a catalyst component for olefin polymerization, comprising magnesium, titanium, halogen, Lewis base compound A as shown in formula (1), and another Lewis base compound B, wherein a molar ratio of a total amount of compound A and compound B to magnesium is in a range of (0.03-0.20):1, °° Ra Re ; R, b (1) in formula (1), R. and R, may be identical to or different from each other, selected from substituted or unsubstituted C:-Ca9alkyl, substituted or unsubstituted C-C29 alkenyl, substituted or unsubstituted C3-Cy cycloalkyl, substituted or unsubstituted Cs-Cy aryl, substituted or unsubstituted CC alkaryl, substituted or unsubstituted C7-C29 aralkyl or substituted or unsubstituted C19-C2 polycyclic aromatic groups, preferably selected from substituted or unsubstituted linear or branched C,-Cyo alkyl, substituted or unsubstituted Cs-Cg cycloalkyl, substituted or unsubstituted Cs-Ci9 aryl, substituted or unsubstituted C7-C9 alkaryl, or substituted or unsubstituted C;-Cyg aralkyl, and further preferably selected from substituted or unsubstituted linear or branched C,-Cg alkyl; R. and Ry may be identical to or different from each other, selected from hydrogen, substituted or unsubstituted linear or branched Ci-Cy alkyl, substituted or unsubstituted C,-Cyo alkenyl, substituted or unsubstituted Cs-Cyp cycloalkyl, substituted or unsubstituted Cs-C29 aryl, substituted or unsubstituted C7-C20 alkarvi, 22
-3- substituted or unsubstituted C;-C‚0 aralkyl or substituted or unsubstituted Ci9-C29 polycyclic aromatic groups, preferably selected from substituted or unsubstituted linear or branched CC alkyl, substituted or unsubstituted C:-C:9 alkenyl, substituted or unsubstituted C:-C19 cycloalkyl, substituted or unsubstituted Cs-Cy aryl, substituted or unsubstituted C;-Cyy alkaryl, substituted or unsubstituted CC aralkyl or substituted or unsubstituted Ci9-C1s polycyclic aromatic groups, further preferably selected from substituted or unsubstituted linear or branched C,-Cs alkyl, substituted or unsubstituted C3-Cs alkenyl, substituted or unsubstituted Cs-Cs aryl or substituted or unsubstituted CC aralkyl, and most preferably linear or branched C,-Cq alkyl or C3-Cs alkenyl; and R and Ry may optionally be bonded together to form a ring.
After an entensive study, inventors of the present invention found that when the molar ratio of a total amount of compound A and compound B to magnesium in the catalyst component is controlled in a range of (0.03-0.20): 1, preferably in a range of (0.03-0.17): 1, and more preferably in a range of (0.04-0.14): 1, the catalytic activity thereof can be significantly improved. According to some embodiments, the molar ratio of a total amount of compound A and compound B to magnesium may be 0.03:1,0.04: 1, 0.05: 1, 0.06: 1, 0.07: 1, 0.08: 1, 0.09: 1, 0.10: 1, 0.11: 1, 0.12: 1, 0.13: 1, 0.14: 1,
0.15:1,0.16:1,0.17:1,0.18:1, 0.19: 1, or 0.20: 1 and so on.
Further, the inventors found that when a molar ratio of compound A to compound B is controlled in a specific range, the catalytic activity thereof can be significantly improved. According to a preferred embodiment of the present disclosure, in the catalyst component, the molar ratio of compound A to compound B is in a range of (0.21-2.0):1, preferably (0.3-1.6):1, further preferably (0.4-1.5):1, and most preferably {0.5-1.4}:1. According to some embodiments, the molar ratio of compound A to compound B may be 0.3:1,0.4:1,05:1,0.6:1,0.7:1,0.8:1,0.9:1,1.0: 1, 1.1: 1, 1.2: 1,1.3:1,1.4:1,15:1,1.6:1,1.7:1,1.8:1,0r 1.9: 1 and so on.
In the present disclosure, the term *C:-C29 alkyl” refers to linear alkyl of C4-Cy or branched alkyl of C:-C9, and includes, but not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl and n-decyl.
In the present disclosure, examples of C3-Cy cycloalkyl include, but not limited to, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-n-propylcyclohexyl and 4-n-butylcyclohexyl.
In the present disclosure, examples of Cs-C9 aryl include, but not limited to, phenyl, -3-
-4- 4-methylphenyl, 4-ethylphenyl, dimethyiphenyl, vinylphenyl.
In the present disclosure, the term “C:-C29 alkenyl” refers to linear alkenyl of C:-C0r branched alkenyl of C3-C29, and includes, but not limited to, vinyl, allyl, and butenyl.
In the present disclosure, examples of C;-Cy aralkyl include, but not limited to, phenylmethyi, phenylethyl, phenyl-n-propyl, phenylisopropyl, phenyl-n-butyl and phenyl-tert-butyl.
In the present disclosure, examples of C;-C9 alkaryl include, but not limited to, tolyl, ethylphenyt, n-propylphenyl, isopropylphenyl, n-butylphenyl and tert-butylphenyl.
In the present disclosure, examples of C19-C29 polycyclic aromatic groups include, but not limited to, naphthyl, anthracenyl, phenanthryl, fluorenyl.
Specifically, the compound as shown in formula (1) is preferably selected from a group consisting of diethyl dipropyimalonate, dipropyl dipropylmalonate, diethyl diisobutylmalonate, diethyl di-n-butylmalonate, diethyl di-tert-butyimalonate, diethyl dibenzyimalonate, diethyl phenylethylmalonate, dipropyl diisobutylmalonate, dipropyl di-n-butylmalonate, dipropyl di-tert-butylmalonate, dibutyl diisobutylmalonate, dibutyl di-n-butylmalonate, dibutyl di-tert-butylmalonate, dipentyl diisobutylmalonate, dipentyl di-n-butylmalonate, dipentyl di-tert-butylmalonate, dihexyl diisobutylmalonate, dihexyl di-n-butylmalonate, dihexyl di-tert-butylmalonate, diheptyl diisobutylmalonate, diheptyl di-n-butylmalonate, diheptyl di-tert-butylmalonate, dipropyl diisoamylmalonate, dipropyl di-n-pentyimalonate, dipropyl dihexylmalonate, dipropyl phenylethylmalonate, dipropyl phenyimethylmalonate, dipropyl phenylpropylmalonate, dipropyl phenyl-n-butylmalonate, dipropyl phenylisobutylmalonate, dipropyl phenylisopentyimalonate, dipropyl phenyi-n-pentylmalonate, dipropyl diphenylmalonate, dipropyl benzylethyimalonate, dipropyl benzylmethylmalonate, dipropyl benzylpropylmalonate, dipropyl benzyl-n-butylmalonate, dipropyl benzylisobutylmalonate, dipropyl benzylisopentyimalonate, dipropyl benzyl-n-pentylmalonate, dipropyt dibenzylmalonate, dibutyl phenylethylmalonate, dibutyl phenylmethyimalonate, dibutyl phenylpropylmalonate, dibutyl phenyl-n-butylmalonate, dibutyl phenylisobutylmalonate, dibutyl phenylisopentylmalonate, dibutyl phenyl-n-pentylmalonate, dibutyl diphenylmalonate, dibutyl benzylethylmalonate, dibutyl benzylmethylmalonate, dibutyl benzylpropylmalonate, dibutyl benzyl n-butylmalonate, dibutyl benzylisobutylmalonate, dibutyl benzylisopentylmalonate, dibutyl benzyl-n-pentylmalonate, dibutyl dibenzylmalonate, dipentyl phenylethylmalonate, dipentyl phenylmethyimalonate, dipentyl phenylpropylmalonate, dipentyl -4-
-5.- phenyl-n-butylmalonate, dipentyl phenylisobutylmalonate, dipentyl phenylisopentylmalonate, dipentyl phenyi-n-pentylmalonate, dipentyl diphenylmalonate, dipentyl benzylethyimalonate, dipentyl benzylmethyimalonate, dipentyl benzylpropylmalonate, dipentyl benzyl-n-butylmalonate, dipentyl benzylisobutylmalonate, dipentyl benzylisopentylmalonate, dipentyl benzyl-n-pentylmalonate, dipentyl dibenzylmalonate, dicyclohexyl phenylethylmalonate, dicyclohexyl phenylmethyimalonate, dicyclohexyl phenylpropyimalonate, dicyclohexyl phenyl-n-butylmalonate, dicyclohexyl phenylisobutyimalonate, dicyclohexyl phenylisopentylmalonate, dicyclohexyl phenyl-n-pentyl malonate, dicyclohexyl diphenylmalonate, dicyclohexyl benzylethyimalonate, dicyclohexyl benzylmethylmalonate, dicyclohexyl benzylpropylmalonate, dicyclohexyl benzyl-n-butylmalonate, dicyclohexyl benzylisobutylmalonate, dicyclohexyl benzylisopentyimalonate, dicyclohexyl benzyl-n-pentylmalonate, dicyciohexyl dibenzylmalonate, diphenyl phenylmethyimalonate, diphenyl phenylpropyimalonate, diphenyl phenyin-butylmalonate, diphenyl phenylisobutylmalonate, diphenyl phenylisopentylmalonate, diphenyl phenyl-n-pentylmalonate, diphenyl diphenylmalonate, diphenyl benzylethylmalonate, diphenyl benzylmethyimalonate, diphenyl benzylpropylmalonate, diphenyl benzyl-n-butylmalonate, diphenyl benzylisobutylmalonate, diphenyl benzylisopentyl malonate, diphenyl benzyl-n-pentylmalonate, diphenyl dibenzylmalonate, dicyclohexyl fluorenylmethylmalonate, dicyclohexyl fluorenylpropylmalonate,dicyclohexyl fluorenyl-n-butylmalonate, dicyclohexyl fluorenylisobutyimalonate, dicyclohexyl fluorenylisopentylmalonate, dicyclohexyl fluorenyi-n-pentylmalonate, dicyclohexyl difluorenyl malonate, diphenyl allyimethyimalonate, diphenyl allyl propyimalonate, diphenyl allyl-n-butylmalonate, diphenyl allylisobutylmalonate, diphenyl allylisopentylmalonate,diphenyl allyl-n-pentylmalonate, diphenyl diallylmalonate, dimethyl allylmethylmalonate, dimethyl allylpropylmalonate, dimethyl allyl-n-butylmalonate, dimethyl allylisobutylmalonate, dimethyl allylisopentylmalonate, dimethyl allyl-n-pentylmalonate, dimethyl diallylmalonate, diethyl allylmethylmalonate, diethyl allylpropyimalonate, diethyl allyl-n-butylmalonate, diethyl allylisobutylmalonate, diethyl allylisopentylmalonate, diethyl allyl-n-pentylmalonate, diethyl diallylmalonate, dipropyl allylmethylmalonate, dipropyl allylpropylmalonate, dipropyl allyl-n-butylmalonate, dipropyl allylisobutyimalonate, dipropyl allylisopentylmalonate, dipropyl allyl-n-pentyimalonate, dipropyl diallylmalonate, dibutyl allylmethylmalonate, dibutyl allylpropylmalonate, dibutyl allyl-n-butylmalonate, dibutyl allylisobutylmalonate, dibutyl allylisopentylmalonate, dibutyl allyl-n-pentylmalonate, dibutyl diallyimalonate, dipentyl allylmethylmalonate, dipentyl allylpropylmalonate, dipentyl allyl-n-butylmalonate, dipentyl allylisobutylmalonate, dipentyl allylisopentylmalonate, dipentyl allyl-n-pentyimalonate, dipentyl diallylmalonate, dicyclohexyl allylmethylmalonate, dicyclohexyl allylpropylmalonate, dicyclohexyl allyl-n-butylmalonate, dicyclohexyl allylisobutylmalonate, dicyclohexyl allylisopentylmalonate, -5-
-6- dicyclohexyl allyln-pentylmalonate and dicyclohexyl diallylmalonate, further preferably selected from diethyl diisobutylmalonate, diethyl di-n-butyl-malonate, diethyl di-tert-butylmalonate, dipropyl diisobutylmalonate, dipropyl di-n-butylmalonate, dipropyl di-tert-butyimalonate, diethyl dibenzyimalonate, dipropyl dibenzylmalonate, diethyl phenylethyimalonate, dipropyl phenylethylmalonate, diethyl dipropyimalonate, dipropyl dipropylmalonate, diethyl diallylmalonate anddipropyl diallylmalonate. According to the present disclosure, the another Lewis base compound B refers to another Lewis base different from compound A.
According to an embodiment of the present disclosure, compound B is at least one of an ether compound, a monocarboxylic ester compound, and a dicarboxylic ester compound. Preferably, compound B is at least one of 1,3-diether compound, a polyol (polyphenol) ester compound, and a succinic acid ester compound.
Further preferably, compound B is at least one compound as shown in formula (li), ; 3 R~¢—O—M—0—C—R, (1) wherein Ry; and R; are identical to or different from each other, selected from substituted or unsubstituted C;-Cyg alkyl, substituted or unsubstituted C,-Cyo alkenyl, substituted or unsubstituted C3-Cyg cycloalkyl, substituted or unsubstituted Cs-C‚9 aryl, substituted or unsubstituted C;-C29 alkaryl, substituted or unsubstituted C;-C9 aralkyl or substituted or unsubstituted Cio-C29 polycyclic aromatic groups; and M is a divalent linking group, preferably selected from a group consisting of C1-C2 alkylene, C3-C;0 cycloalkylene, Cs-C9 arylene and a combination thereof. The alkylene, cycloalkylene, and/or arylene is optionally substituted with C;-Cyo alkyl, and the substituent is optionally bonded to from one ring or a plurality of rings. A carbon atom or/and a hydrogen atom in M is optionally substituted with nitrogen, oxygen, sulfur, silicon, phosphorus or a halogen atom. According to a preferred embodiment of the present disclosure, M is selected from at least one of the divalent groups as shown in formula (Hi), formula (IV), formula (V), formula (VI), and formula (Vi): Ru, R's oe i, R! R* D D CQ R'7 . _ _ R's Rs R2 RO “Ra “Ry “Rs -6-
-7- Formula (If) Formula (IV) Formula (V) Formula (VI) Formula (VII.
in formula (II), R’s-R’s are identical to or different from each other, selected from hydrogen, halogen, substituted or unsubstituted C:-Ca9 alkyl, substituted or unsubstituted C,-Cyp alkenyl, substituted or unsubstituted C;-Cyo cycloalkyl, substituted or unsubstituted Cs-C29 aryl, substituted or unsubstituted C;-Cyy alkaryl, substituted or unsubstituted C,-Cyo aralkyl, substituted or unsubstituted C10-Cyo polycyclic aromatic groups, or substituted or unsubstituted C;-C,q ester, and R'y and R's are optionally bonded to form a ring or a plurality of rings.
In formula (IV), R!-R° are identical to or different from each other, selected from substituted or unsubstituted C;-Cyg alkyl, substituted or unsubstituted C,-Cyo alkenyl, substituted or unsubstituted C3-Ca9 cycloalkyl, substituted or unsubstituted Cs-C29 aryl, substituted or unsubstituted C7-C29 alkarvi, substituted or unsubstituted C;-Cyg aralkyl, or substituted or unsubstituted C19-C29 polycyclic aromatic groups, and R™-R* are bonded to one ring or a plurality of rings.
In formula (V), formula (VI), and formula {VII}, Rs, Rs, and Rs are independently selected from hydrogen, halogen, substituted or unsubstituted C:-C9 alkyl, substituted or unsubstituted C:-C2 alkenyl, substituted or unsubstituted Cs-Co cycloalkyl, substituted or unsubstituted Cs-Co aryl, substituted or unsubstituted C+-C29 alkaryl, substituted or unsubstituted C;-Cyp aralkyl, or substituted or unsubstituted C19-C20 polycyclic aromatic groups.
in the present disclsure, the term “substituted or unsubstituted” means a hydrogen atom which is bonded to a carbon of the described group can be substituted by a group which is selected from a group consisting of C;-Cyp alkyl, C:-C:9 alkenyl, C:-C9 alkynyl, halogen, nitro group, cyano group, amino-Cy-Cypalkyl and other common substitute groups.
Specifically, the compound as shown in formula (II) is preferably selected from a group consisting of 2,4-pentanediol dibenzoate, 2,4-pentanediol di-n-propyl dibenzoate, 3,5-heptanediol dibenzoate, 3,5-heptanediol di-n-propyl dibenzoate, 4-ethyl3,5 heptanediol dibenzoate, 3,5-heptanediol di-p-methy! benzoate, 3,5-heptanediol di-o-methy! benzoate, 3,5-heptanediol di-p-chloro benzoate, 3,5-heptanediol di-o-chloro benzoate, 3,5-heptanediol di-p-methoxy! benzoate, 3,5-heptanediol di-o-methoxyl benzoate, 3,5-heptanediol di-m-methoxyl benzoate, 2-methyi-3,5-heptanediol dibenzoate, 4-methyl-3,5-heptanediol dibenzoate, 6-methyl-3,5-heptanediol dibenzoate, 4-ethyl-3,5-heptanediol dibenzoate, 5-ethyl-3,5-heptanediol dibenzoate, 4-propyl-3,5-heptanediol -7-
-8- dibenzoate, 4-butyl-3,5-heptanediol dibenzoate, 2,4-dimethyl-3,5-heptanediol dibenzoate, 2,6-dimethyl-3,5-heptanediol dibenzoate, 4,4-dimethyl-3,5-heptanediol dibenzoate, 6,6-dimethyl-3,5-heptanediol dibenzoate, 4,6-dimethyi-3,5-heptanediol dibenzoate, 4,4-dimethyl-3,5-heptanediol dibenzoate, 6,6-dimethyl-3,5-heptanediol dibenzoate, 2-methyl-4-ethyl-3,5-heptanediol dibenzoate, 4-methyl-4-ethyi-3,5-heptanediol dibenzoate, 2-methyl-4-propyl-3,5-heptanediol dibenzoate, 4-methyl-4-propyl-3,5-heptanediol dibenzoate, 6-methyl-2,4-heptanediol di-(p-chlorobenzoic acid)ester, 6-methyl-2,4-heptanediol di-(p-methylbenzoic acid )ester, 6-methyi-2,4-heptanediol di(m-methylbenzoic acid)ester, 2,2,6,6-tetramethyl-3,5-heptanediol dibenzoate, 4-methyl-3,5-octanediol dibenzoate, 4-ethyl-3,5-octanediol dibenzoate, 4-propyl-3,5-octanediol dibenzoate, 4-butyl-3,5-octanediol dibenzoate, 4,4-dimethyl-3,5-octanediol dibenzoate, 4-methyl-4-ethyl-3,5-octanediol dibenzoate, 2-methyl-4-ethyi-3,5-octanediol dibenzoate, 2-methyl-6-ethyi-3,5-octanediol dibenzoate, 5-methyl-4,6 nonanediol dibenzoate, 5-ethyl-4,6 nonanediol dibenzoate, 5-propyl-4,6 nonanediol dibenzoate, 5-butyl-4,6 nonanediol dibenzoate, 5,5-dimethyl-4,6 nonanediol dibenzoate, 5-methyl-4-ethyl-4,6 nonanediol dibenzoate, 5-phenyl-4,6 nonanediol dibenzoate, 4,6-nonanediol dibenzoate, 4-butyl-3,5-heptanediol dibenzoate, 1,2-phenylene dibenzoate, 3-methyl-5-tert-butyl-1,2-phenylene dibenzoate, 3,5-diisopropyl-1,2-phenylene dibenzoate, 3,6-dimethyl-1,2-phenylene dibenzoate, 4-tert-butyl-1,2-phenylene dibenzoate, 1,2-naphthalene dibenzoate, 2,3-naphthalene dibenzoate, dibenzoic acid-1,8-naphthylate, di-4-methyl benzoic acid-1,8-naphthylate, di-3-methyl benzoic acid-1,8-naphthylate, di-2-methyl benzoic acid-1,8-naphthylate, di-4-ethyl benzoic acid-1,8-naphthylate, di-4-n-propyl benzoic acid-1,8-naphthylate, di-4- isopropyl benzoic acid-1,8-naphthylate, di-4-n-butyl benzoic acid-1,8-naphthylate, di-4-isobutyl benzoic acid-1,8-naphthylate, di-4-tert-butyl benzoic acid-1,8-naphthylate, di-4-phenyl benzoic acid-1,8-naphthylate, di-4-fluorobenzoic acid-1,8-naphthylate, di-3-fluorobenzoic acid-1,8-naphthylate, and di-2-fluorobenzoic acid-1,8-naphthylate.
According to a preferred embodiment of the present disclosure, in the catalyst component, a content of magnesium measuring by magnesium element is 10-25wt%; a content of titanium measuring by titanium element is 1-7wt%; a content of compound A is 1-20wt%; and a content of compound B is 1-20wt%. According to a preferred embodiment of the present disclosure, when compound A is di-n-butyl diethyl malonate, and compound B is 2,4-pentanediol di-n-propyl benzoate, the molar ratio of compound A to compound B is (0.6-1.0}:1, and the molar ratio of a total amount of compound A and -8-
-9. compound B to magnesium is (0.1-0.14):1, the obtained catalyst has an extremely high catalytic activity. The catalyst component in the present disclosure can be prepared by a method comprising following steps of contacting a magnesium compound, a titanium compound, the compound as shown in formula (I}, and the compound as shown in formula (Il) with each other so as to obtain the catalyst component. In a specific embodiment of the present disclosure, the catalyst component is prepared by a method comprising following steps.
1) A magnesium compound is dissolved into a system comprising compound A, and a precipitation agent is added so as to precipitate solids.
2) The solids precipitated in step 1) are treated with a titanium compound, and compound B is added therein and/or before a process of treating the solids with the titanium compound.
In step 1), “A magnesium compound being dissolved into a system comprising compound A” comprises two circumstances: a magnesium compound is first dissolved into a solvent system to obtain a solution, and then compound A is added; and a magnesium compound is dissolved into a system made up of compound A and a solvent system together.
in the present disclosure, the magnesium compound may be selected from a group consisting of magnesium dihalide, alkoxy magnesium, alkyl magnesium, a hydrate or an alcohol adduct of magnesium dihalide, or a derivative formed by replacing a halogen atom of the magnesium dihalide with alkoxy or haloalkoxy; and preferably, the magnesium compound is selected from a group consisting of magnesium dihalide or alcohol adduct of magnesium dihalide, such as magnesium dichloride, magnesium dibromide, magnesium diiodide and alcohol adduct thereof.
In the present disclosure, the titanium compound may be a titanium compound represented by formula TiX„(OR’}4n. in the formula, R' is C:-C‚o hydrocarbyl, X is halogen, and 1sm<4. The titanium compound is preferably selected from a group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium tetrabutoxylate, titanium tetraethoxylate, titanium monochlorotriethoxylate, titanium dichlorodiethoxylate, or titanium trichloromonoethoxylate, and is further preferably titanium tetrachloride.
-9-
-10- In the present disclosure, the precipitation agent may be selected from metal halides, such as titanium halides, iron halides, or zinc halides; preferably, the precipitation agent is a titanium halide, such as a titanium tetrachloride or a titanium tetrabromide; and more preferably, the precipitation agent is a titanium tetrachloride.
A solid catalyst component of the present disclosure can be prepared according to a following method, but a method for preparing the catalyst component involved in the present disclosure is not limited to this.
First, a magnesium compound is dissolved into a solvent system consisting of an organic epoxide compound, an organic phosphorus compound, and an inert diluent so as to form a uniform solution. After that, in the presence of a coprecipitation agent having a special structure, i.e., in the presence of compound A as shown in formula (I), the uniform solution obtained is mixed with a precipitation agent (such as a titanium compound). Then, temperature is increased, and a solid precipitates. The solid is treated with an electron donor compound so that the electron donor compound is loaded on the solid. Then, the solid is treated with titanium tetrahalide or with titanium tetrahalide and the inert diluent.
The organic epoxide compound, the organic phosphorus compound, and the coprecipitation agent are disclosed in Chinese Patent CN85100997, and relevant content is hereby cited for reference.
Specifically, the magnesium compound can be dissolved a solvent system consisting of the organic epoxide compound and the organic phosphorus compound. The organic epoxide compound comprises at least one of aliphatic olefin with 2 to 8 carbon atoms, dialkene, halogenated aliphatic olefin, oxide of dialkene, glycidyl ethers and inner ethers. Specific compounds are as follows: ethylene oxide, propylene oxide, butylene oxide, butadiene oxide, butadiene dioxide, epoxy chloropropane, methyl glycidyl ether, diglycidyl ether, and terahydrofuran.
The organic phosphorus compound is at least one selected from trimethyl orthophosphate, triethyl orthophosphate, tributyl orthophosphate, triphenyl orthophosphate, trimethyl phosphite, triethyl phosphite, tributyl phosphite, and triphenylmethy! phosphate.
-10-
-11- In a specific embodiment, the solid catalyst component of the present disclosure is prepared according to a method disclosed in patent CN85100997. First, a magnesium compound is dissolved into a solvent system consisting of an organic epoxide compound, an organic phosphorus compound, and an inert diluent so as to form a uniform solution. After that, the uniform solution obtained is mixed with a titanium compound in the presence of a coprecipitation agent having a special structure, i.e, in the presence of compound A as shown in formula (I). At a temperature in a range of -40-50 °C, at best in a range of -35-0 °C, the titanium compound is dripped into the above magnesium halide solution. Then, temperature of reaction mixture is increased to a range of 60-80 °C, and an electron donor compound is added therein. A suspension liquid is stirred for 0-3 hours at this temperature, and then mother liquor is filtered off. After washing with an inert diluent is performed, a solid is obtained. Then, treating with a mixture of a titanium halide and an inert diluent at a temperature in a range of 60-130 °C is performed for 1 to 5 times. A solid obtained is washed with an inert diluent, and a solid catalyst is obtained after drying is performed. Measuring by magnesium per mole, a dosage of the organic epoxide compound is in a range of 0.2-10 mol; a dosage of the organic phosphorus compound is in a range of 0.1-3 mol; the compound as shown in formula {I} is in a range of 0.001-30 mol, preferably in a range of 0.05-15 mol; a dosage of the titanium compound is in a range of 3-40 mol, preferably in a range of 5-30 mol; and a dosage of the electron donor compound is in a range of
0.005-15 mol, preferably in a range of 0.05-5 mol.
According to a second aspect of the present disclosure, provided is a catalyst for olefin polymerization, comprising a reaction product of the following components.
a. the above catalyst component ; b. an alkylaluminium compound, which is preferably an alkylaluminium compound represented by formula AIR” Xs.,, wherein R” is hydrogen or hydrocarbyl of C;-Cy; X is halogen; and 0<ns3, the alkylaluminium compound can be specifically selected from a group consisting of triethylaluminium, tripropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-octylaluminum, diethylaluminum hydride, diisobutylaluminum hydride, diethylaluminum chloride, diisobutylaluminum chloride, sesquiethyl aluminum chloride, ethylaluminum dichloride, and is preferably selected from triethylaluminium and triisobutylaluminum; -11-
-12- c. optionally, an external electron donor component, which is preferably an organosilicon compound represented by formula (R°>kSi(OR°)a1. In the formula, Osks3; R® is selected from halogen, hydrogen atom, linear or branched alkyt or haloalkyl, C:-C29 cycloalkyl, Cs-C29 aryl or amino; and R° is linear or branched alkyl or haloalkyl, C3-C9 cycloalkyl, Cs-Cyp aryl or amino.
The expression of “optionally, an external electron donor component” means that the external electron donor component can be selected or not as required. When an olefin polymer with high stereoregularity is needed, it is required to add the external electron donor. Specifically, the organosilicon compound includes, but not limited to, trimethylmethoxysilicane, trimethylethyoxyisilicane, dimethyldimethoxysilicane, dimethyldiethyoxylsilicane, diphenyl dimethoxysilicane, diphenyl diethyoxylsilicane, phenyl triethyoxylsilicane, phenyl trimethoxysilicane, and vinyltrimethoxysilicane, cyclohexylmethyldimethoxysilicane and methyltert-butyldimethoxysilicane, preferably selected from cyclohexyimethyldimethoxysilicane and diphenyl dimethoxysilicane.
in the above catalyst system, preferably, a molar ratio of component a and component b measuring by titanium to aluminum is in a range of 1: (5-1000), preferably 1: (25-100); and a molar ratio of component c and component a measuring by the external electron donor to titanium is (0-500}:1, preferably (25-100):1.
According to a third aspect of the present disclosure, provided is a prepolymerization catalyst for olefin polymerization, comprising a prepolymer obtained by prepolymerization of the above catalyst component and/or the above catalyst with olefin. Multiple of the prepolymerization is 0.1-1000 g olefin prepolymer/g catalyst component, and preferably multiple of the prepolymerization is 0.2-500 g prepolymer/g solid catalyst component.
A process of the prepolymerization can be performed at a temperature in a range of -20-80 °C, preferably in a range of 0-50 °C, in gas phase or liquid phase. Steps of the prepolymerization as a part of a process of continuous polymerization can be performed on line, and also can be separately performed in batches.
-12-
-13- According to a fourth aspect of the present disclosure, provided is a method for olefin polymerization, performed in the presence of at least one of the above catalyst component, the above catalyst, and the above prepolymerization catalyst. Preferably, olefin is represented by formula CH,=CHR’. In the formula, R’”’ is hydrogen, C;-Cy; alkyl or Cs-C; aryl. The olefin includes, but not limited to, ethylene, propylene, 1-butylene, 4-methyl-1-amylene, and 1-hexene, and more preferably olefin is ethylene or propylene. The method for olefin polymerization is especially suitable for homopolymerization of propylene or for copolymerization of propylene and other olefin.
The catalyst of the present disclosure can be directly added into a reactor to be used in a polymerization process; or the catalyst can be subjected to prepolymerization so as to obtain a prepolymerization catalyst, in the presence of which subsequent polymerization of olefin can be performed.
The olefin polymerization in the present disclosure can be carried out, according to the known technique, in a liquid phase or a gas phase, or in a stage combination thereof. Common techniques such as a slurry polymerization process and a gas phase fluidized bed process can be used. It is better to use the following reaction conditions: a polymerization temperature is in a range of 0-150°C, preferably in a range of 60-90°C; and a polymerization pressure is in a range of 0.01-10 MPa.
According to the present disclosure, in a process of preparing the catalyst component, when compound A as shown in formula (I} and another Lewis base compound B, in particular a diol ester compound, are added, an obtained catalyst has good fluidity, good particle morphology, uniform particle size distribution and excellent comprehensive performance. When the catalyst is used in olefin polymerization, in particular propylene polymerization, the catalyst has high activity, and an obtained polymer does not contain a phthalate compound.
Other features and advantages of the present disclosure will be further explained in the subsequent detailed description of the embodiments.
-13-
-14-
DETAILED DESCRIPTION OF THE EMBODIMENTS Preferred embodiments will be explained in details in the following description. Although preferred embodiments of the present disclosure are described in the following description, it should be understand that the present disclosure can be implemented in various manners and should not be limited to embodiments elaborated herein. Measuring Method Measurement of xylene soluble substance (XS): Xylene soluble substance is measured according to GB/T24282-2009 standard. Measurement of a content of Lewis base compounds (including compound A and compound B) is as follows. A content of Lewis base compounds in the catalyst is measured by using a waters 600E high performance liquid chromatograph. First, a pretreatment is performed to a sample using an ethyl acetate - dilute hydrochloric acid solution system so as to extract the Lewis base compounds. High performance liquid chromatograph is used to separate the Lewis base compounds and measure a peak area thereof, and an external standard curve is used for correction. Calculation is performed so as to obtain a percentage content of the Lewis base compounds in the sample.
Propylene Polymerization
32.5 mmol of AlEt; and 0.01 mmol of methyl cyclohexyl dimethoxy silicane (CHMMS) were placed into a stainless reactor having a volume of 5 L and replaced sufficiently with propylene gas, and then 10 mg of solid catalyst component prepared according to the following examples and comparative examples and 1.2 L of hydrogen gas were added. Into the resulting mixture was introduced 2.3 L of liquid propylene. The resulting mixture was heated to 70°C and maintained at 70°C for 1 hour. Then, cooling and pressure releasing were performed, so that a PP powder could be obtained. See Table 1 for specific data.
Examples 1-10 and Comparative Examples 1-4 Preparation of Catalyst Component
5.0 g of magnesium chloride, 98 mL of methylbenzene, 4.2 mL of epoxy chloropropane, and 13.0 -14-
-15- mb of tributyl phosphate (TBP} were placed one by one into a reactor replaced sufficiently with high-purity nitrogen.
Under stirring, the resulting mixture was heated to 50°C and kept at this temperature for 2.5 hours.
After a complete dissolution of the solid, a certain amount of compound A was added to the obtained solution.
The solution was kept for 1 hour.
Then, the solution was cooled to a temperature below -25°C. 47 mL of TiCl, was added dropwise to the solution within 1 hour, and the solution was slowly heated to 80°C to precipitate the solid.
Then, a certain amount of compound B was added to the solid.
The obtained mixture was kept for 1 hour at 80°C.
Then, the obtained mixture was filtered, and after that the obtained mixture was washed twice using 70 mL of methylbenzene respectively to obtain solid precipitate.
A solution of 40 mL TiCl,/60mL methylbenzene was added to the solid precipitate.The obtained mixture was heated to 110°C, maintained for 1 hour, and filtered; and same operations were repeated for three times.
Then the obtained mixture was washed twice with hexane at 70°C, and washed twice with hexane at room temperature, respectively, so as to obtain a (solid) catalyst component.
See Table 1 for specific components and dosage of compound A and compound B.
Table 1 Number Compound A Compound B Activity | XS A/B (A+B}/Mg KgPP/gcat/ | % | mol/mol | mol/mol hr Example 1 diethyl 2,4-pentanediol 92.3 1.5 0.13 di-n-butylmalonate | di-n-propyl benzoate Example 2 diethyl di-n-butyl 2,4-pentanediol 80.3 2.3 0.5 0.08 malonate dibenzoate Example3 diethyl di-n-butyl 3,5-heptanediol 74.7 2.5 1.4 0.20 malonate dibenzoate Example4 diethyl diallyl 3,5-heptanediol 79.0 1.9 0.14 malonate dibenzoate Examples diethyl diisobutyl 3,5-heptanediol me fis ae | ow -15-
-16- Example6 diethyl 3,5-heptanediol 2.8 0.4 0.05 di-n-butylmalonate dibenzoate Example? diethyl 3,5-heptanediol 70.5 2.9 1.0 0.05 diisobutylmalonate dibenzoate Example 8 diethyl diisobutyl 3,5-heptanediol 68.7 2.3 1.0 0.14 malonate dibenzoate Example 9 diethyl diisobutyl 3,5-heptanediol 67.8 2.5 0.5 malonate dibenzoate Example 10 | diethyl di-n-butyl | 4-ethyl-3,5-heptane 65.1 2.7 0.7 0.10 malonate diol dibenzoate Comparative diethyl 3,5-heptanediol 39.2 2.0 1.0 0.28 Example 1 | diisobutylmalonate dibenzoate Comparative diethyl 3,5-heptanediol 35.4 3.5 1.0 0.02 Example 2 | diisobutyimalonate dibenzoate Comparative diethyl 3,5-heptanediol 53.7 2.7 0.05 Example 3 | diisobutyimalonate dibenzoate Comparative diethyl 3,5-heptanediol 38.2 2.9 0.3 0.015 Example 4 | diisobutylmalonate dibenzoate Comparative diethyl 3,5-heptanediol 32.1 2.6 2.3 0.21 Example 5 | diisobutylmalonate dibenzoate In Table 1, A/B represents a molar ratio of compound A to compound B, and (A+B)/Mg -16-
217 - represents a molar ratio of a total amount of compound A and compound B to magnesium. It can be seen from data in Table 1 that a catalyst having high activity is obtained by controling the molar ratio of the total content of the malonate compound and another internal electron donor compound to magnesium in the catalyst component in the specific range, a catalyst having a higher activity can be obtained. Furthermore, by controling the molar ratio of the malonate compound to the another internal electron donor compound in the catalyst component in the specific range, the activity of the catalyst can be improved also. In addition, the ploymer obtained by using the catalyst component or the according to catalyst does not contain a phthalate compound.
it should be noted that the embodiments above are provided only for illustrating the present disclosure, rather than restricting the present disclosure. Amendments can be made to the present disclosure based on the disclosure of the claims and within the scope and spirit of the present disclosure. While the above descriptions about the present disclosure involve particular methods, materials, and implementing examples, it does not means that the present disclosure is limited to the presently disclosed examples. On the contrary, the present disclosure can be extended to other methods and applications having same functions as those of the present disclosure. -17-

Claims (13)

ConclusiesConclusions 1. Katalysatorcomponent voor alkeenpolymerisatie, omvattende magnesium, titaan, halogeen, een Lewis-baseverbinding A zoals getoond in formule (1) en nog een Lewis-baseverbinding B, waarbij een molaire verhouding van verbinding A tot verbinding B (0,21-2,0):1 is en een molaire verhouding van een totale hoeveelheid van verbinding A en verbinding B tot magnesium in het gebied van (0,03- 0,20):1 ligt, COOR:A catalyst component for olefin polymerization, comprising magnesium, titanium, halogen, a Lewis base compound A as shown in formula (1) and a further Lewis base compound B, wherein a molar ratio of compound A to compound B (0.21-2, 0): 1 and a molar ratio of a total amount of Compound A and Compound B to magnesium is in the range of (0.03-0.20): 1, COOR: RR COOR, waarbij R, en Ry, die identiek aan elkaar of verschillend van elkaar kunnen zijn, worden gekozen uit een groep bestaande uit gesubstitueerd of ongesubstitueerd C1-C25-alkyl, gesubstitueerd of ongesubstitueerd C:-C10-alkenyl, gesubstitueerd of ongesubstitueerd C3-Ci9-cycloalkyl, gesubstitueerd of ongesubstitueerd Cs-Cx-aryl, gesubstitueerd of ongesubstitueerd C7-C29-alkaryl, gesubstitueerd of ongesubstitueerd C7-Cx-aralkyl of gesubstitueerde of ongesubstitueerde Cio-Coo- polycyclische aromatische groepen, bij voorkeur gekozen uit een groep bestaande uit gesubstitueerd of ongesubstitueerd C1-C10-alkyl, gesubstitueerd of ongesubstitueerd Cs-Cs-cycloatkyl, gesubstitueerd of ongesubstitueerd Cs-C10-aryl, gesubstitueerd of ongesubstitueerd C;-C1-alkaryl of gesubstitueerd of ongesubstitueerd C7-C15-aralkyl en met meer voorkeur gekozen uit een groep bestaande uit gesubstitueerd of ongesubstitueerd C:-Cs-alkyl; R en Ra, die identiek aan elkaar of verschillend van elkaar kunnen zijn, worden gekozen uit een groep bestaande uit waterstof, gesubstitueerd of ongesubstitueerd C1-C>9-alkyl, gesubstitueerd of ongesubstitueerd C:-C20-alkenyl, gesubstitueerd of ongesubstitueerd Cs-Cao-cycloalkyl, gesubstitueerd of ongesubstitueerd Cs-Cao-aryl, gesubstitueerd of ongesubstitueerd C7-C20-alkaryl, gesubstitueerd of ongesubstitueerd C7-C1-aralkyl of gesubstitueerde of ongesubstitueerde C:0-C0-polycyclische aromatische groepen, bij voorkeur gekozen uit een groep bestaande uit gesubstitueerd of ongesubstitueerd C:1-C10-alkyl, gesubstitueerd of ongesubstitueerd C-Ci-alkenyl, gesubstitueerd of ongesubstitueerd Cs-Cio-cycloalkyl, gesubstitueerd of ongesubstitueerd Cs-C10-aryl, gesubstitueerd of ongesubstitueerd C7-C1-alkaryl, gesubstitueerd of ongesubstitueerd C7-C1-aralkyl of gesubstitueerde of ongesubstitueerde C19-C15-polycyclische aromatische groepen, met meer voorkeur gekozen uit een groep bestaande uit gesubstitueerd of ongesubstitueerd C:-Cs-alkyl, gesubstitueerd of ongesubstitueerd C:-Cs-alkenyl, gesubstitueerd of ongesubstitueerd Cs-Cs-aryl of gesubstitueerd of ongesubstitueerd C7-C19-aralkyl; en R- en Ry eventueel met elkaar kunnen zijn verbonden zodat een ring wordt gevormd.RR COOR, where R 1 and Ry, which may be the same or different from each other, are selected from a group consisting of substituted or unsubstituted C 1 -C 25 alkyl, substituted or unsubstituted C 1 -C 10 alkenyl, substituted or unsubstituted C3 -C19 -cycloalkyl, substituted or unsubstituted C5-Cx-aryl, substituted or unsubstituted C7-C29-alkaryl, substituted or unsubstituted C7-Cx-aralkyl, or substituted or unsubstituted C10-Coo-polycyclic groups, preferably consisting of an aromatic group from substituted or unsubstituted C 1 -C 10 -alkyl, substituted or unsubstituted C 5 -C 8 -cycloatkyl, substituted or unsubstituted C 5 -C 10 aryl, substituted or unsubstituted C 1 -C 1 -alkaryl or substituted or unsubstituted C 7 -C 15 -alkyl and more preferably selected from a group consisting of substituted or unsubstituted C 1 -C 8 alkyl; R and Ra, which may be identical to or different from each other, are selected from a group consisting of hydrogen, substituted or unsubstituted C 1 -C 9 alkyl, substituted or unsubstituted C 1 -C 20 alkenyl, substituted or unsubstituted C 8 - Cao-cycloalkyl, substituted or unsubstituted C5-Cao aryl, substituted or unsubstituted C7-C20alkaryl, substituted or unsubstituted C7-C1-aralkyl or substituted or unsubstituted C: O-C0 polycyclic aromatic groups, preferably selected from one consisting of substituted or unsubstituted C: 1-C10 alkyl, substituted or unsubstituted C 1 -C 1 alkenyl, substituted or unsubstituted C 5 -C 10 cycloalkyl, substituted or unsubstituted C 3 -C 10 aryl, substituted or unsubstituted C 7 -C 1 -alkaryl or unsubstituted C7-C11 aralkyl or substituted or unsubstituted C19-C15 polycyclic aromatic groups, more preferably selected from a group consisting of ges ubstituted or unsubstituted C 1 -C 8 alkyl, substituted or unsubstituted C 1 -C 8 alkenyl, substituted or unsubstituted C 5 -C 8 aryl, or substituted or unsubstituted C 7 -C 19 aralkyl; and R and Ry may optionally be joined together to form a ring. 2. Katalysatorcomponent volgens conclusie 1, waarbij een molaire verhouding van verbinding A tot (0,3-1,6):1, met meer voorkeur (0,4-1,5}:1 en met de meeste voorkeur (0,5-1,4):1, zoals 0,6:1, 0,7:1, 0,8:1,0,9:1, 1,0:1, 1,1:1, 1,2:1, 1,3:1 of 1,4:1, is.The catalyst component of claim 1, wherein a molar ratio of compound A to (0.3-1.6): 1, more preferably (0.4-1.5}: 1 and most preferably (0.5 -1.4): 1, such as 0.6: 1, 0.7: 1, 0.8: 1.0, 9: 1, 1.0: 1, 1.1: 1, 1.2: 1 , 1.3: 1 or 1.4: 1. 3. Katalysatorcomponent volgens conclusie 1 of 2, waarbij de molaire verhouding van de totale hoeveelheid van verbinding A en verbinding B tot magnesium (0,03-0,17):1 en bij voorkeur (0,04- 0,14):1, zoals 0,03:1, 0,04:1, 0,05:1, 0,06:1, 0,07:1, 0,08:1, 0,09:1, 0,10:1, 0,11:1, 0,12:1, 0,13:1, 0,14:1,0,15:1, 0,16:1, 0,17:1, 0,18:1, 0,19:1 of 0,20:1, is.Catalyst component according to claim 1 or 2, wherein the molar ratio of the total amount of compound A and compound B to magnesium is (0.03-0.17): 1 and preferably (0.04-0.14): 1 , such as 0.03: 1, 0.04: 1, 0.05: 1, 0.06: 1, 0.07: 1, 0.08: 1, 0.09: 1, 0.10: 1, 0.11: 1, 0.12: 1, 0.13: 1, 0.14: 1.0.15: 1, 0.16: 1, 0.17: 1, 0.18: 1, 0, 19: 1 or 0.20: 1. 4. Katalysatorcomponent volgens een van de conclusies 1 tot 3, waarbij verbinding B ten minste één verbinding gekozen uit een groep bestaande uit etherverbindingen, monocarbonzuuresterverbindingen en dicarbonzuuresterverbindingen is; waarbij bij voorkeur verbinding B ten minste één verbinding gekozen uit een groep bestaande uit 1,3- dietherverbindingen, polyol{polyfenol)esterverbindingen en barnsteenzuuresterverbindingen is.The catalyst component of any one of claims 1 to 3, wherein Compound B is at least one compound selected from the group consisting of ether compounds, monocarboxylic acid ester compounds and dicarboxylic acid ester compounds; wherein preferably compound B is at least one compound selected from a group consisting of 1,3-diether compounds, polyol (polyphenol) ester compounds, and succinic ester compounds. 5. Katalysatorcomponent volgens conclusie 4, waarbij verbinding B ten minste één verbinding zoals getoond in formule (II) is: 9 0 Rd —O0—M—0—C—R, (1), waarbij R1 en Ry, die identiek aan elkaar of verschillend van elkaar zijn, worden gekozen uit een groep bestaande uit gesubstitueerd of ongesubstitueerd C;-Cao-alkyl, gesubstitueerd of ongesubstitueerd C:-C20-alkenyl, gesubstitueerd of ongesubstitueerd C3-C10-cycloalkyl, gesubstitueerd of ongesubstitueerd Cs-C2-aryl, gesubstitueerd of ongesubstitueerd C;-C20-alkaryl, gesubstitueerd of ongesubstitueerd C7-C2x-aralkyl of gesubstitueerde of ongesubstitueerde Cio-Coo- polycyclische aromatische groepen; en M een tweewaardige verbindingsgroep is, die bij voorkeur wordt gekozen uit een groep bestaande uit C1-C25-alkyleen, C:-C2-cycloalkyleen, Cs-C20-aryleen en een combinatie daarvan en het alkyleen, cycloalkyleen en/of aryleen eventueel is gesubstitueerd met Ci-Cooalkyl en de substituent eventueel is gebonden zodat één ring of een veelvoud aan ringen wordt gevormd en waarbij een koolstofatoom en/of een waterstofatoom in M eventueel is gesubstitueerd door stikstof, zuurstof, zwavel, silicium, fosfor of een halogeenatoom.The catalyst component of claim 4, wherein compound B is at least one compound as shown in formula (II): 90 Rd -O0-M-O-C-R, (1), wherein R1 and Ry, which are identical to each other or are different from each other, are selected from a group consisting of substituted or unsubstituted C 1 -C 10 alkyl, substituted or unsubstituted C 1 -C 20 alkenyl, substituted or unsubstituted C 3 -C 10 cycloalkyl, substituted or unsubstituted C 1 -C 2 aryl , substituted or unsubstituted C 1 -C 20 alkaryl, substituted or unsubstituted C 7 -C 2 aralkyl, or substituted or unsubstituted C 10 -C 10 polycyclic aromatic groups; and M is a divalent linking group, preferably selected from a group consisting of C 1 -C 25 alkylene, C 1 -C 2 cycloalkylene, C 5 -C 20 arylene and a combination thereof and the alkylene, cycloalkylene and / or arylene is optionally substituted with C 1 -C 100 alkyl and the substituent is optionally bonded to form one ring or a plurality of rings and wherein a carbon atom and / or a hydrogen atom in M is optionally substituted by nitrogen, oxygen, sulfur, silicon, phosphorus or a halogen atom. 6. Katalysatorcomponent volgens conclusie 5, waarbij M een tweewaardige verbindingsgroep zoals getoond in formule (1), formule {IV}, formule (V}, formule (V1) of formule (Vil} is; Ry R's ra 14 Ln . R! R* Ny TRY TN R'7 / [ ï ] 7 1 ) Rs Rs Rr2 RS Rs SER, EDR, (HI) (IV) {V) (Vi) (Vii) in formule {II} R’;-R’s, die identiek aan elkaar of verschillend van elkaar zijn, worden gekozen uit een groep bestaande uit waterstof, halogeen, gesubstitueerd of ongesubstitueerd C1-C29-alkyl, gesubstitueerd of ongesubstitueerd C--Cx-alkenyl, gesubstitueerd of ongesubstitueerd C:-C20- cycloalkyl, gesubstitueerd of ongesubstitueerd Cs-C20-aryl, gesubstitueerd of ongesubstitueerd C7-C2- alkaryl, gesubstitueerd of ongesubstitueerd C;-C20-aralkyl, gesubstitueerde of ongesubstitueerde Cio C20-polycyclische aromatische groepen of gesubstitueerde of ongesubstitueerde C:-C2o.ester en R'7 en R's eventueel aan een ring of een veelvoud aan ringen zijn gebonden; in formule (IV) R-R, die identiek aan elkaar of verschillend van elkaar zijn, worden gekozen uit een groep bestaande uit waterstof, halogeen, gesubstitueerd of ongesubstitueerd C:-C20-alkyl, gesubstitueerd of ongesubstitueerd C:-C0-alkenyl, gesubstitueerd of ongesubstitueerd C3-C29- cycloalkyl, gesubstitueerd of ongesubstitueerd Cs-C20-aryl, gesubstitueerd of ongesubstitueerd C;-Cao- alkaryl, gesubstitueerd of ongesubstitueerd C7-C20-aralkyl of gesubstitueerde of ongesubstitueerde Cio-C20-polycyclische aromatische groepen en R-R° aan één ring of een veelvoud aan ringen zijn gebonden; en in formule {V), formule (V1) en formule (Vit) Rs, Rs en Rs onafhankelijk worden gekozen uit een groep bestaande uit waterstof, halogeen, gesubstitueerd of ongesubstitueerd C1-C20-alkyl, gesubstitueerd of ongesubstitueerd C:-Cx-alkenyl, gesubstitueerd of ongesubstitueerd C3-C20- cycloalkyl, gesubstitueerd of ongesubstitueerd Cs-C20-aryl, gesubstitueerd of ongesubstitueerd C7-C2- alkaryl, gesubstitueerd of ongesubstitueerd C7-C2-aralkyl of gesubstitueerde of ongesubstitueerde Cio-Ca-polycyclische aromatische groepen.Catalyst component according to claim 5, wherein M is a divalent linking group as shown in formula (1), formula {IV}, formula (V}, formula (V1) or formula (V1}; Ry R's ra 14 Ln R 1 R * Ny TRY TN R'7 / [ï] 7 1) Rs Rs Rr2 RS Rs SER, EDR, (HI) (IV) {V) (Vi) (Vii) in formula {II} R '; - R's, which are identical or different from each other, are selected from a group consisting of hydrogen, halogen, substituted or unsubstituted C 1 -C 29 alkyl, substituted or unsubstituted C 1 -C 12 alkenyl, substituted or unsubstituted C 1 -C 20 cycloalkyl, substituted or unsubstituted C 5 -C 20 aryl, substituted or unsubstituted C 7 -C 2 alkaryl, substituted or unsubstituted C 1 -C 20 aralkyl, substituted or unsubstituted C 10 -C 20 polycyclic aromatic groups, or substituted or unsubstituted C 1 -C 20 ester. and R's are optionally attached to a ring or a plurality of rings; in formula (IV) RR, which are identical or different from each other, are selected from a group consisting of hydrogen, halogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 1 -C 0 alkenyl, substituted or unsubstituted C3-C29-cycloalkyl, substituted or unsubstituted C5-C20-aryl, substituted or unsubstituted C8-C10alkaryl, substituted or unsubstituted C7-C20 aralkyl or substituted or unsubstituted C10-C20 polycyclic groups on one R R ring or a plurality of rings are bonded; and in formula {V), formula (V1) and formula (Vit) Rs, Rs and Rs are independently selected from a group consisting of hydrogen, halogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 1 -C x- alkenyl, substituted or unsubstituted C 3 -C 20 cycloalkyl, substituted or unsubstituted C 5 -C 20 aryl, substituted or unsubstituted C 7 -C 2 alkaryl, substituted or unsubstituted C 7 -C 2 aralkyl or substituted or unsubstituted C 7 -C 20 aralkyl polycyclic groups. 7. Katalysatorcomponent volgens een van de conclusies 1-6, waarbij in de katalysatorcomponent een gehalte aan magnesium, gemeten als magnesiumelement, 10-25 gew.% is; een gehalte aan titaan, gemeten als titaanelement, 1-7 gew.% is; een gehalte aan verbinding A 1-20 gew.% is; en een gehalte aan verbinding B 1-20 gew.% is.Catalyst component according to any one of claims 1-6, wherein in the catalyst component a content of magnesium, measured as magnesium element, is 10-25% by weight; a content of titanium, measured as titanium element, is 1-7% by weight; a content of compound A is 1-20% by weight; and a content of compound B is 1-20% by weight. 8. Katalysatorcomponent volgens een van de conclusies 1-7, waarbij de katalysatorcomponent wordt bereid met een werkwijze omvattende de volgende stappen: 1) het oplossen van een magnesiumverbinding in een systeem dat verbinding A omvat en het toevoegen van een neerslagmiddel om vaste stoffen neer te slaan; en 2) het behandelen van de in stap 1) neergeslagen vaste stoffen met een titaanverbinding en het toevoegen van verbinding B tijdens en/of vóór een proces voor het behandelen van de vaste stoffen met de titaanverbinding.Catalyst component according to any of claims 1-7, wherein the catalyst component is prepared by a process comprising the following steps: 1) dissolving a magnesium compound in a system comprising compound A and adding a precipitant to precipitate solids. to beat; and 2) treating the solids precipitated in step 1) with a titanium compound and adding compound B during and / or before a process for treating the solids with the titanium compound. 9. Katalysatorcomponent volgens conclusie 8, waarbij de magnesiumverbinding wordt gekozen uit een groep bestaande uit magnesiumdihalogenide, alkoxymagnesium, atkylmagnesium, een hydraat of een alcoholadduct van magnesiumdihalogenide, of een derivaat dat is gevormd door het vervangen van een halogeenatoom van het magnesiumdihalogenide door alkoxy of halogeenalkoxy; en bij voorkeur de magnesiumverbinding wordt gekozen uit een groep bestaande uit magnesiumdihalogenide of alcoholadduct van magnesiumdihalogenide; de titaanverbinding een formule TiXm(OR'}a-m heeft, waarbij R' C1-Coo-hydrocarbyl is, X halogeen is en 15ms4 en waarbij de titaanverbinding bij voorkeur wordt gekozen uit een groep bestaande uit titaantetrachloride, titaantetrabromide, titaantetrajodide, titaantetrabutoxylaat, titaantetraethoxylaat, titaanmonochloortriethoxylaat, titaandichloordiethoxylaat of titaantrichloormonoethoxylaat en met meer voorkeur titaantetrachloride is; en het neerslagmiddel wordt gekozen uit metaalhalogenide, bij voorkeur titaanhalogenide en met meer voorkeur titaantetrachloride.The catalyst component of claim 8, wherein the magnesium compound is selected from a group consisting of magnesium dihalide, alkoxy magnesium, alkyl magnesium, a hydrate or an alcohol adduct of magnesium dihalide, or a derivative formed by replacing a halogen atom of the magnesium dihalide with alkoxy or haloalkoxy. ; and preferably the magnesium compound is selected from a group consisting of magnesium dihalide or alcohol adduct of magnesium dihalide; the titanium compound has a formula TiXm (OR '} am, where R' is C1-Coo-hydrocarbyl, X is halogen and 15ms4 and wherein the titanium compound is preferably selected from a group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium tetrabutoxylate, titanium tetraethoxylate, titanium monochlorotriethoxylate, titanium dichloro diethoxylate or titanium trichloro monoethoxylate, and more preferably is titanium tetrachloride, and the precipitant is selected from metal halide, preferably titanium halide, and more preferably titanium tetrachloride. 10. Katalysator voor alkeenpolymerisatie, omvattende een reactieproduct van de volgende componenten: a.de katalysatorcomponent volgens een van de conclusies 1-9; b.een alkylaluminiumverbinding, die bij voorkeur een alkylaluminiumverbinding is, die wordt voorgesteld door de formule AIR" Xs.,, waarbij R”’ waterstof of C:-C20-hydrocarbyl is, X halogeen is en 0<ns3;en c. eventueel een externe elektrondonorcomponent, die bij voorkeur een organosilicium- verbinding is, die wordt voorgesteld door de formule (R®)Si(OR®)a, waarbij 0<k<3; R° wordt gekozen uit een groep bestaande uit halogeen, een waterstofatoom, ongesubstitueerd C1-C20-alkyl of C1-C20- halogeenalkyl, gesubstitueerd of ongesubstitueerd C:-C20-cycloalkyt, gesubstitueerd of ongesubstitueerd Cs-C29-aryl of amino; en R® ongesubstitueerd C1-C20-alkyl of C1-Co-halogeenalkyl, gesubstitueerd of ongesubstitueerd C:-C20-cycloalkyt, gesubstitueerd of ongesubstitueerd Cs-C20-aryl of amino is,A catalyst for olefin polymerization comprising a reaction product of the following components: a. The catalyst component according to any one of claims 1 to 9; b) an alkyl aluminum compound, which is preferably an alkyl aluminum compound, represented by the formula AIR "Xs." wherein R "'is hydrogen or C 1 -C 20 hydrocarbyl, X is halogen and O <ns 3; and c. optionally an external electron donor component, which is preferably an organosilicon compound, represented by the formula (R®) Si (OR®) a, where 0 <k <3; R ° is selected from the group consisting of halogen, a hydrogen atom , unsubstituted C 1 -C 20 alkyl or C 1 -C 20 haloalkyl, substituted or unsubstituted C 1 -C 20 cycloalkyl, substituted or unsubstituted C 5 -C 29 aryl or amino, and R® unsubstituted C 1 -C 20 alkyl or C 1 -C 20 haloalkyl , substituted or unsubstituted C 1 -C 20 cycloalkyt, substituted or unsubstituted C 5 -C 20 aryl or amino, 11. Katalysator volgens conclusie 10, waarbij een molaire verhouding van component a en component b, gemeten als titaan tot aluminium, in een gebied van 1:(5-1000), bij voorkeur 1:(25- 100) ligt; en een molaire verhouding van component c en component a, gemeten als externe elektrondonor tot titaan, in het gebied van (0-500):1, bij voorkeur (25-100):1 ligt.Catalyst according to claim 10, wherein a molar ratio of component a and component b, measured as titanium to aluminum, is in a range of 1: (5-1000), preferably 1: (25- 100); and a molar ratio of component c and component a, measured as external electron donor to titanium, is in the range of (0-500): 1, preferably (25-100): 1. 12. Prepolymerisatiekatalysator voor alkeenpolymerisatie, omvattende een prepolymeer dat is verkregen door een prepolymerisatie van de katalysatorcomponent volgens een van de conclusies 1- 9 en/of de katalysator volgens conclusie 10 of 11 met alkeen en veelvoud van de prepolymerisatie in een gebied van 0,1-1000 g alkeenprepolymeer/g katalysatorcomponent ligt.A prepolymerization catalyst for olefin polymerization, comprising a prepolymer obtained by a prepolymerization of the catalyst component according to any one of claims 1 to 9 and / or the catalyst according to claim 10 or 11 with olefin and multiple of the prepolymerization in a range of 0.1 ~ 1000 g olefin prepolymer / g catalyst component. 13. Werkwijze voor alkeenpolymerisatie, omvattende het uitvoeren van alkeenpolymerisatie bij aanwezigheid van ten minste één van de katalysatorcomponent volgens een van de conclusies 1-9, de katalysator volgens conclusie 10 of 11 en de prepolymerisatiekatalysator volgens conclusie 12, waarbij bij voorkeur het alkeen wordt voorgesteld door formule CH,=CHR’”, waarbij R””’ waterstof, gesubstitueerd of ongesubstitueerd C1-C:2-alkyl of gesubstitueerd of ongesubstitueerd Cs-C:2-aryl is en met meer voorkeur het alkeen etheen of propeen is.A process for olefin polymerization, comprising carrying out olefin polymerization in the presence of at least one of the catalyst component according to any one of claims 1 to 9, the catalyst according to claim 10 or 11 and the prepolymerization catalyst according to claim 12, preferably representing the olefin by formula CH1 = CHR '”, wherein R” ”' is hydrogen, substituted or unsubstituted C 1 -C 2 alkyl, or substituted or unsubstituted C 1 -C 2 aryl, and more preferably the alkene is ethylene or propylene.
NL2021838A 2017-10-19 2018-10-19 Catalyst component, catalyst, and prepolymerization catalyst for olefin polymerization, and method for olefin polymerization NL2021838B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710996877.4A CN109678997B (en) 2017-10-19 2017-10-19 Catalyst component and catalyst for olefin polymerization, prepolymerized catalyst and olefin polymerization method

Publications (2)

Publication Number Publication Date
NL2021838A NL2021838A (en) 2019-04-24
NL2021838B1 true NL2021838B1 (en) 2020-09-25

Family

ID=64959025

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2021838A NL2021838B1 (en) 2017-10-19 2018-10-19 Catalyst component, catalyst, and prepolymerization catalyst for olefin polymerization, and method for olefin polymerization

Country Status (5)

Country Link
CN (1) CN109678997B (en)
BE (1) BE1025913B1 (en)
ES (1) ES2723148B2 (en)
MY (1) MY190068A (en)
NL (1) NL2021838B1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1006071B (en) 1985-04-01 1989-12-13 中国石油化工总公司 Catalyst system for olefin polymerization and copolymerization
US8211819B2 (en) * 2009-12-21 2012-07-03 Basf Corporation Internal and external donor compounds for olefin polymerization catalysts
US20130131290A1 (en) * 2010-08-05 2013-05-23 Basell Poliolefine Italia, s.r.l. Catalyst components for the polymerization of olefins
WO2014132806A1 (en) * 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
KR102060850B1 (en) * 2013-02-27 2020-02-11 도호 티타늄 가부시키가이샤 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
TWI639626B (en) * 2013-09-30 2018-11-01 中國石油化工科技開發有限公司 Catalyst composition for olefin polymerization and application thereof
CN104558293B (en) * 2013-10-28 2017-02-15 中国石油化工股份有限公司 Catalyst component for olefin polymerization and catalyst
US10208145B2 (en) * 2014-04-24 2019-02-19 China Petroleum & Chemical Corporation Catalyst component for olefin polymerization, and catalyst containing the same
US9593184B2 (en) * 2014-10-28 2017-03-14 Formosa Plastics Corporation, Usa Oxalic acid diamides as modifiers for polyolefin catalysts
CN106608940B (en) * 2015-10-27 2019-06-28 中国石油化工股份有限公司 The preparation method of catalytic component for olefinic polymerization
WO2017117439A1 (en) * 2015-12-31 2017-07-06 Braskem America, Inc. Non-phthalate catalyst system and its use in the polymerization of olefins

Also Published As

Publication number Publication date
ES2723148B2 (en) 2020-07-31
BE1025913B1 (en) 2020-02-12
MY190068A (en) 2022-03-24
CN109678997A (en) 2019-04-26
RU2018136949A3 (en) 2021-10-04
ES2723148A1 (en) 2019-08-21
RU2018136949A (en) 2020-04-21
NL2021838A (en) 2019-04-24
BE1025913A1 (en) 2019-08-07
CN109678997B (en) 2021-11-19

Similar Documents

Publication Publication Date Title
US9951157B2 (en) Spherical carriers for olefin polymerization catalyst, catalyst components, catalyst, and preparation methods therefor
CN110016094B (en) Solid catalyst component and catalyst system for olefin polymerization and olefin polymerization process
CA2527357A1 (en) Process for the preparation of a catalyst component and components therefrom obtained
JP2004527633A (en) Method for producing olefin polymer and selected catalyst
CN103012632B (en) Preparation method of propylene polymer
JP2019090051A (en) Catalyst composition for olefin polymerization and application of the same
CN104761664A (en) Catalyst composition used in olefin polymerization and application thereof
CN107840907B (en) Solid catalyst component for olefin polymerization, catalyst system and prepolymerization catalyst
CN109526217B (en) Olefin polymerization catalyst containing cyclotri veratrum hydrocarbon and derivatives thereof
US20100144991A1 (en) Electron Donor Composition For A Solid Catalyst, Solid Catalyst Composition Used In The Polymerisation Of A-Olefins, And Process For The Production Of A Polymer Consisting Of A-Olefin Units Using The Solid Catalyst Composition
CN112654648A (en) Process for producing prepolymerized solid ziegler-natta catalyst
NL2021838B1 (en) Catalyst component, catalyst, and prepolymerization catalyst for olefin polymerization, and method for olefin polymerization
CN110734510A (en) Olefin polymerization catalyst containing cyclotri veratrum hydrocarbon and its derivatives
RU2661873C1 (en) Catalyst components for polymerisation of olefins
CN104610476A (en) Catalysis system for olefin polymerization reaction
CN110016096B (en) Catalyst carrier for olefin polymerization and preparation method thereof, solid catalyst component, catalyst system and olefin polymerization method
CN107840906B (en) Solid catalyst component for olefin polymerization, catalyst system and prepolymerization catalyst
CN103012631A (en) Preparation method of propylene polymer
CN105315390A (en) Catalyst composition for olefin polymerization and application thereof
RU2776708C2 (en) Catalyst component, catalyst, and pre-polymerization catalyst intended for olefin polymerization, and method for olefin polymerization
US20090005524A1 (en) Catalysts for ethylene polymerization, main catalyst components thereof and process for preparing the same
CN107840916B (en) Solid catalyst component for olefin polymerization, catalyst system and prepolymerization catalyst
CN109678996B (en) Catalyst component and catalyst system for olefin polymerization, prepolymerized catalyst system and olefin polymerization method
JPH0125768B2 (en)
CN110903417B (en) Solid catalyst component for olefin polymerization, catalyst and application thereof