NL2020684B1 - Mixed 2D seismic wave travel time calculation method - Google Patents

Mixed 2D seismic wave travel time calculation method Download PDF

Info

Publication number
NL2020684B1
NL2020684B1 NL2020684A NL2020684A NL2020684B1 NL 2020684 B1 NL2020684 B1 NL 2020684B1 NL 2020684 A NL2020684 A NL 2020684A NL 2020684 A NL2020684 A NL 2020684A NL 2020684 B1 NL2020684 B1 NL 2020684B1
Authority
NL
Netherlands
Prior art keywords
travel time
node
grid
nodes
seismic
Prior art date
Application number
NL2020684A
Other languages
Dutch (nl)
Other versions
NL2020684A (en
Inventor
Sun Hui
Original Assignee
Univ Southwest Jiaotong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southwest Jiaotong filed Critical Univ Southwest Jiaotong
Publication of NL2020684A publication Critical patent/NL2020684A/en
Application granted granted Critical
Publication of NL2020684B1 publication Critical patent/NL2020684B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • G01V1/305Travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling
    • G01V2210/671Raytracing

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a mixed 2D seismic travel time calculation method comprising inputting relevant parameters and a velocity model; emitting rays in different directions and calculating the information of central rays; calculating the seismic travel time of grid nodes within the ray range by using the wave front construction method; classifying the travel time attributes of grid nodes in the computational area and establishing an initial narrow band; and calculating the seismic travel time of the rest grid nodes by fast marching method. The fast marching method is connected with the wave front construction method through narrow band technology. Seismic travel time calculation precision of a small area near the source is improved by the wave-front construction method. Calculation precision of grid nodes in the rest area is increased by the fast marching method. A 2D seismic travel time calculation method with calculation efficiency and calculation precision is realized.

Description

Mixed 2D seismic travel time calculation method
Technical Field
The present invention relates to the field of seismic travel time calculation, in particular to a mixed 2D seismic travel time calculation method.
Background Art
No. 3, 2009 of Chinese Journal of Engineering Geophysics published “Analysis and Improvement on Calculation Accuracy of Fast Marching Method” by Zhang Shuangjie et al, which introduces two methods for improving the calculation efficiency of the fast marching method: firstly, performing calculating by adopting a high order difference scheme; secondly, performing local precise treatment on grid nodes near the source, so that the high order difference scheme is used for calculation near the source and a low order difference scheme is used for calculation in the rest area. The two methods are also used for calculating the seismic travel time of the homogeneous models, and beneficial experimental results are obtained.
No. 3, 2016 of Global Geology published “Calculation of Fast Marching Method on Seismic Travel-Time Based on Complete Ternary Tree” by Wang Qianlong et al, which introduces an improved fast marching method for calculating seismic travel time. By introducing a complete ternary tree heap sorting method into seismic travel time calculation, the improved method reduces the time to find the minimum travel time in narrow band extension and improves the calculation efficiency of the whole calculation method. Besides, the fast marching method for calculating seismic travel time based on a complete ternary tree is used to calculate the layer model, Marmousi model and Sigsbee 2a models, and beneficial experimental results are obtained.
As seen from the above examples, although through the fast marching method for calculating seismic travel time, the calculation accuracy can be improved to a certain extent, the realization process is complicated and improvement on the calculation accuracy is also limited.
Summary
The present invention aims to solve the technical problem of providing a mixed 2D seismic travel time calculation method by which a wave front construction method for calculating seismic travel time is seamlessly connected with a fast marching method for calculating seismic travel time together by flexibly using the narrow band technology, namely that the wave front construction method with high calculation accuracy is used in a small area near the source, and the fast marching method is used in the rest area to calculate the travel time. While the calculation accuracy of the new method is improved, the high efficiency is still remained.
In order to solve the technical problem, the present invention adopts the technical scheme: 1. a mixed 2D seismic travel time calculation method, comprising the following steps of: step 1: inputting a relevant parameter document and a velocity model, wherein the parameter document contains the grid node number, the grid space and the source position of the velocity model; step 2: emitting rays in different directions from the source and calculating the information of central rays; step 3: calculating the travel time of grid nodes within the ray range by a wave front construction method; step 4: classifying all the grid nodes and dividing the grid nodes into accepted nodes, narrow-band nodes or far-away nodes, namely that if the seismic travel time of one grid node is calculated and all the travel time of surrounding grid nodes is calculated already, then the node is a accepted node, if the seismic travel time of one grid node is calculated but not all the travel time of surrounding grid nodes is calculated, then the node is a narrow-band node, and if the travel time of one node is not calculated yet, the node is the far-away node; step 5: inserting all narrow-band nodes into the narrow band, and establishing an initial narrow band; and step 6: extending the narrow band until the narrow band is empty, wherein in the process, the travel time of the grid nodes is obtained by solving a 2D eikonal equation by the upwind difference method, and the 2D eikonal equation is as shown below:
wherein τ is the seismic travel time, 5 is slowness, V is gradient, and the upwind difference expression of the gradient term in the formula is as shown below:
wherein D~'t , D+*t , ZTjr and D^t are forward or backward difference expressions of travel time at the grid node (z, yj in an x or z direction respectively, and the concrete forms are
respectively.
Further, in step 2, the kinematical ray tracing equations are solved by a Runge-Kutta method to get the information of central rays, as shown below:
wherein x, represents spatial position, pt represents slowness, τ represents seismic travel time, and v represents the velocity value at a discrete node.
Compared with the prior art, the mixed 2D seismic travel time calculation method disclosed by the present invention has the beneficial effects that: because the seismic travel time calculation precision of grid nodes near the source is improved by the wave front construction method, the accuracy of the fast marching method for calculating grid nodes in the area is improved; and the calculation precision of the whole seismic travel time calculation method is greatly improved at the cost of reducing the calculation efficiency a little.
Brief Description of the Drawings
Fig. 1 shows the flow chart of the mixed 2D seismic travel time calculation method of the present invention.
Fig. 2 shows the schematic diagram of area division by the wave front construction method. Fig. 3 shows the relative error in a homogeneous medium by using the fast marching method. Fig. 4 shows the relative error in a homogeneous medium by using mixed seismic travel time calculation method.
Detailed Description
The invention will now be further described in detains in connection with the accompanying drawings and embodiments.
Fig. 1 shows the flow chart of the mixed 2D seismic travel time calculation method of the present invention. In the method, a reaction flow is shown, as shown below: step 1: inputting a relevant parameter document and a velocity model, wherein the parameter document contains the grid node number, the grid space and the source position; 2)emitting rays in different directions from a shot point and calculating the information of central rays, wherein the emission angle range of the rays is from -90 degrees to +90 degrees, the angle interval between every two adjacent rays is from 3 degrees to 10 degrees, and the kinematical ray tracing equations are solved by a Runge-Kutta method to get the information of central rays, as shown below:
wherein y represents spatial position, represents slowness, τ represents seismic travel time, and v represents the velocity value at a discrete node. step 3: calculating the travel time of grid nodes within the ray range by a wave front construction method, wherein the area is divided into multiple trapeziums by adjacent wave front points on adjacent central rays in the calculation process, and the grid nodes in each trapezium are acquired by interpolating vertex information of the corresponding trapezium; step 4: after the wave front construction method is completed, performing attributive classification on all of the grid nodes and specifying that if the seismic travel time of one grid node is calculated and all the travel time of surrounding grid nodes is calculated already, then the node is a accepted node, if the seismic travel time of one grid node is calculated but not all the travel time of surrounding grid nodes is calculated, then the node is a narrow-band node, and if the travel time of one node is not calculated yet, the node is the far-away node; step 5: moving all narrow-band nodes into a narrow band, and establishing an initial narrow band; and step 6: extending the narrow band until the narrow band is empty, wherein in the process, the
travel time of the grid nodes is obtained by solving a 2D eikonal equation by the upwind difference method, and the 2D eikonal equation is as shown below:
wherein τ is the seismic travel time, s is slowness, V is gradient, and the upwind difference expression of the gradient term in the formula is as shown below:
wherein
are forward or backward difference expressions of travel time at the grid node (z, j) in an x or z direction respectively, and the concrete forms are
respectively.
The calculation accuracy and stability of the method in disclosed by the present invention will be analyzed and verified below through a homogeneous medium model.
Fig. 3 and Fig. 4 show the relative errors in the homogeneous medium model respectively by the fast marching method and the mixed seismic travel time calculation method, the size of the homogeneous model is 601*601, the grid space is 10m*10m and the velocity is 1,000 m/s. The maximum length of a single tracked ray in the joint travel time method is 500m. As can be seen from the figure, the calculation precision of the mixed seismic travel time method is greatly improved than that of the fast marching method.
According to the mixed seismic travel time calculation method disclosed by the present invention, the fast marching method is connected with the wave front construction method through a narrow band technology, and the seismic travel time calculation accuracy in a small area near the source is improved by the wave front construction method, so that the accuracy of the fast marching method for calculating grid nodes in the rest area is improved, and a 2D seismic travel time calculation method considering the calculation efficiency and the calculation accuracy is realized.

Claims (2)

1. Een gemengde 2D seismische reistijd berekeningswerkwijze, met het kenmerk dat het de volgende stappen bevat: Stap 1: het invoeren van een relevant parameter document en een snelheidmodel, waarbij het relevante parameter document een roosterknooppunt nummer, een roosteraiime en de bronpositie bevat; Stap 2: het uitzenden van stralen in verschillende richtingen vanuit de bron en het berekenen van de informatie van centrale stralen Stap 3: berekenen van de reistijd voor roosterknooppunten binnen het straalbereik door middel van een golffront constructiewerkwijze Stap 4: classificeren van alle roosterknooppunten en het verdelen van de roosterknooppunten over geaccepteerde knooppunten, smalle-band knooppunten en ver-weg knooppunten, namelijk zo dat indien de reistijd voor een roosterknooppunt berekend ia en alle reistijden voor omringende roosterknooppunten ook reeds berekend zijn, dat dan het knooppunt een geaccepteerd knooppunt is, en indien de reistijd voor een roosterknooppunt berekend is maar nog niet alle reistijden voor omringende roosterknooppunten reeds berekend zijn, dat dan het knooppunt een smalle-band knooppunt is, en indien de reistijd voor een knooppunt nog niet berekend is, het knooppunt een ver-weg knooppunt is, Stap 5: in een smalle band stoppen van alle smalle-band knooppunten en het vaststellen van een initiële smalle band; en Stap 6: het uitwerken van de smalle band totdat de smalle band leeg is, waarbij in de werkwijze, de reistijd voor een roosterknooppunt verkregen wordt door het oplossen van een 2D eikonale vergelijking door een upwind difference werkwijze, en de 2D eikonale vergelijking is als hieronder weergegeven:A mixed 2D seismic travel time calculation method, characterized in that it comprises the following steps: Step 1: entering a relevant parameter document and a speed model, wherein the relevant parameter document contains a grid node number, a schedule anime and the source position; Step 2: emitting rays in different directions from the source and calculating the information from central rays Step 3: calculating the travel time for grid nodes within the ray range by means of a wavefront construction method Step 4: classifying all grid nodes and distributing of the grid nodes across accepted nodes, narrow-band nodes and far-away nodes, namely such that if the travel time for a grid node is calculated and all travel times for surrounding grid nodes are already calculated, then the node is an accepted node, and if the travel time for a grid node is calculated but not all travel times for surrounding grid nodes have already been calculated, that the node is then a narrow-band node, and if the travel time for a node is not yet calculated, the node is a far-away node , Step 5: put all narrow bands in a narrow band nodes and establishing an initial narrow band; and Step 6: working out the narrow band until the narrow band is empty, wherein in the method, the travel time for a grid node is obtained by resolving a 2D eikonal comparison by an upwind difference method, and the 2D eiconal comparison is as shown below: waarin τ de seismische reistijd is, s de traagheid is, V de gradiënt is, and de upwind difference uitdrukking voor de gradiënt term in de formule is als hieronder getoond:where τ is the seismic travel time, s is the inertia, V is the gradient, and the upwind difference expression for the gradient term in the formula is as shown below: waarinin which forward en backward difference uitdrukkingen zijn van de reistijd op een roosterknooppunt (z, yj in een x of z richting respectievelijk, en de concrete vormen respectievelijk zijn.forward and backward difference expressions are of the travel time at a grid node (z, yj in an x or z direction respectively, and the concrete forms are respectively. 2. Een gemengde 2D seismische reistijd berekeningswerkwijze volgens conclusie 1, met het kenmerk, dat de kinematische straal traceer vergelijkingen opgelost worden door een Runge-Kutta werkwijze om de centrale stralen te verkrijgen zoals hieronder getoond:A mixed 2D seismic travel time calculation method according to claim 1, characterized in that the kinematic ray tracing equations are solved by a Runge-Kutta method to obtain the central rays as shown below: waarin x. de ruimtelijk positie weergeeft, yz traagheid weergeeft, τ seismische reistijd weergeeft, en v de waarde voor de snelheid op een bepaald knooppunt weergeeft.wherein x. represents the spatial position, yz represents inertia, τ represents seismic travel time, and v represents the speed value at a given node.
NL2020684A 2018-01-23 2018-03-29 Mixed 2D seismic wave travel time calculation method NL2020684B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810077621.8A CN108072897A (en) 2018-01-23 2018-01-23 It is a kind of to mix computational methods when two-dimensionally seismic wave is walked

Publications (2)

Publication Number Publication Date
NL2020684A NL2020684A (en) 2018-04-20
NL2020684B1 true NL2020684B1 (en) 2018-11-14

Family

ID=61978378

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2020684A NL2020684B1 (en) 2018-01-23 2018-03-29 Mixed 2D seismic wave travel time calculation method

Country Status (4)

Country Link
CN (1) CN108072897A (en)
BE (1) BE1025488B1 (en)
LU (1) LU100751B1 (en)
NL (1) NL2020684B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957538A (en) * 2018-06-21 2018-12-07 成都启泰智联信息科技有限公司 A kind of virtual focus two dimension wavefront construction seimic travel time calculation method
CN115201901A (en) * 2022-06-30 2022-10-18 中铁第四勘察设计院集团有限公司 Method, device and equipment for determining tunnel wave front travel time and readable storage medium
CN117194855B (en) * 2023-11-06 2024-03-19 南方科技大学 Fitting analysis method and relevant equipment for weak anisotropy travel time
CN117607957B (en) * 2024-01-24 2024-04-02 南方科技大学 Seismic wave travel time solving method and system based on equivalent slowness rapid propulsion method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724310A (en) * 1996-10-15 1998-03-03 Western Atlas International, Inc. Traveltime generation in the presence of velocity discontinuities
US6018499A (en) * 1997-11-04 2000-01-25 3Dgeo Development, Inc. Three-dimensional seismic imaging of complex velocity structures
WO2002065159A1 (en) * 2001-02-14 2002-08-22 Hae-Ryong Lim Method of seismic imaging using direct travel time computing
US8094513B2 (en) * 2008-06-03 2012-01-10 Westerngeco L.L.C. Determining positioning of survey equipment using a model
CN106353793A (en) * 2015-07-17 2017-01-25 中国石油化工股份有限公司 Cross-well seismic tomography inversion method on basis of travel time incremental bilinear interpolation ray tracing
CN105425286A (en) * 2015-10-30 2016-03-23 中国石油天然气集团公司 Earthquake time-travelling acquisition method and crosshole earthquake time-travelling tomography method based on the earthquake time-travelling acquisition method

Also Published As

Publication number Publication date
BE1025488A1 (en) 2019-03-18
LU100751B1 (en) 2018-10-01
CN108072897A (en) 2018-05-25
NL2020684A (en) 2018-04-20
BE1025488B1 (en) 2019-03-25

Similar Documents

Publication Publication Date Title
NL2020684B1 (en) Mixed 2D seismic wave travel time calculation method
US10062207B2 (en) Method and system for reconstructing a three-dimensional model of point clouds
CN104933064B (en) The method and apparatus for predicting the kinematic parameter of destination object
CN102692644B (en) Depth domain common-image gather generation method
NL2021354A (en) 2-D Seismic Travel Time Calculation Method Based on Virtual Source Wavefront Construction
Noichl et al. " BIM-to-Scan" for Scan-to-BIM: Generating Realistic Synthetic Ground Truth Point Clouds based on Industrial 3D Models
Gebreiter et al. sbpRAY–A fast and versatile tool for the simulation of large scale CSP plants
CN109255837A (en) A kind of building method of the efficient B-spline surface for laser radar point cloud data processing
EP2917768A1 (en) System and method for analysis of designs of a seismic survey
CN104502967B (en) The method and device of quick obtaining seismic prospecting observation system bin information
Quan et al. Filtering LiDAR data based on adjacent triangle of triangulated irregular network
CN108680968A (en) Complex structural area seismic prospecting data collecting observation system evaluation method and device
CN111076724B (en) Three-dimensional laser positioning method and system
AU739128B2 (en) A method of seismic processing, and in particular a 3D seismic prospection method implementing seismic data migration
CN110687598A (en) Method and device for accelerating microseismic numerical simulation
CN116381650A (en) Laser radar point cloud position and intensity simulation and test method
CN108051854B (en) A kind of multiple dimensioned pseudo- bending ray tracing method
US5265068A (en) Efficient generation of traveltime tables for complex velocity models for depth migration
Nunes et al. Procedural generation of synthetic forest environments to train machine learning algorithms
Schöler et al. Towards an automated 3D reconstruction of plant architecture
CN106556860B (en) The method and apparatus for laying VSP observation systems
CN112308134A (en) Static fusion method based on Gaussian mixture probability hypothesis density filter
Stefanelli et al. Synthetic point cloud generation for class segmentation applications
CN103020999A (en) Method and system for identifying deformation area
Tóth et al. Tree growth simulation based on ray-traced lights modelling

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20210401