NL2019089B1 - Polarization microscope - Google Patents

Polarization microscope Download PDF

Info

Publication number
NL2019089B1
NL2019089B1 NL2019089A NL2019089A NL2019089B1 NL 2019089 B1 NL2019089 B1 NL 2019089B1 NL 2019089 A NL2019089 A NL 2019089A NL 2019089 A NL2019089 A NL 2019089A NL 2019089 B1 NL2019089 B1 NL 2019089B1
Authority
NL
Netherlands
Prior art keywords
light
polarizer
linear polarizer
sample
illumination device
Prior art date
Application number
NL2019089A
Other languages
English (en)
Inventor
Walter Ted Ken Chin Kenneth
Original Assignee
Acad Medisch Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acad Medisch Ct filed Critical Acad Medisch Ct
Priority to NL2019089A priority Critical patent/NL2019089B1/en
Application granted granted Critical
Publication of NL2019089B1 publication Critical patent/NL2019089B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes

Claims (12)

  1. Embodiments
    The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
    The microscope of the invention may be any light microscope which is suitable for polarization microscopy. An important aspect on which the invention is based is the presence of two linear polarizers in a first and a second optical path of the microscope.
    The positions of the linear polarizers in the first and second optical paths are illustrated in Figure 2. Herein, both optical paths 7 and 8 follow a light beam depicted by a dashed line, running in the z direction. The first optical path 7 is defined as running from the illumination device 2 to the sample inspection area 6. The second optical path 8 runs from the sample inspection area 6, to said viewing arrangement 5.
    A first linear polarizer 3 is positioned in said first optical path 7. Said first linear polarizer 3 has a transmission axis 6TAi and allows passing through light having polarization angle θι. The transmission axis ΘΤΑ1 and polarization angle θι are schematically indicated in figure 2 with an arrow. In the example of figure 2, the transmission angle is vertically orientated (thus in y direction of the illustration, 90 degrees from x), but it may be in any orientation. An unpolarized light beam from illumination device 2, after passing said first linear polarizer 3, will become linearly polarized at the same angle as the transmission axis 0TA1. A second linear polarizer 4 is positioned in said second optical path 8. By adjusting the difference in transmission angle between 0TAiand 0TA2, the amount of light having polarization angle θ! can be adjusted.
    Figure 1 shows how this works. Suppose the second linear polarizer 4, whose transmission axis makes an angle θ with that of the first linear polarizer 3. The E vector of the light between the two polarizers 3 and
    5 4 can be resolved into two components, one parallel and one perpendicular to the transmission axis of the second linear polarizer. If we call the direction of transmission of the second linear polarizer y',
    E.r< = E stuff and E„. = Ecosff
    Only the second, / component is transmitted by the second linear polarizer 4. The intensity of light is proportional to the square of the electric field amplitude. Thus the intensity transmitted by both linear 10 polarizers 3 and 4 can be expressed as:
    I (ff) = Ep = E2 Θ
    If Λ, = E~2 js ι-^θ intensity between the two polarizers 3 and 4, the intensity transmitted by both of them would be:
    ƒ ($ ϊ = eos“ d
    15 This equation applies to any two polarizing elements whose transmission axes make an angle θ with each other. When the two linear polarizers 3 and 4 are placed in succession in a beam of light as described here, the transmission is zero when the transmission axes 0TA1and 0TA2are crossed.
    Said first optical path 7 and said second optical path 8 can be in any orientation towards each other. In figure 2, they are in each other's extension, and in figure 3 they are at an angle a.
    20 It is essential that said first transmission axis θΤΑ1 and/or said second transmission axis 0TA2 can be adjusted with respect to said inspection area 6 and do/does not require rotation of a sample present in said inspection area 6. This may be effectuated by various means. For instance, one or both of the linear polarizers 3 and 4 can be provided with rotation means. As shown in figure 2, the first linear polarizer 3 is rotatable, thereby adjusting the first transmission axis ΘΤΑ1 vis-a-vis the sample inspection area 6. In
    25 the embodiment shown in figure 5 and 6, both linear polarizers 3 and 4 are positioned in a rotatable disk 19. By rotating this disk 19, the first transmission axis 6TA1and said second transmission axis θτΑ2 are adjusted in unison.
    In another embodiment, said first transmission axis ΘΤΑ1 can be adjusted using a rotatable beam splitter. Said microscope comprises an assembly (indicated in figure 7 with a dashed box) comprising a beam splitter 11, said first polarizer 3, and illumination device 2, wherein said assembly is rotatably mounted around said second optical axis 8. Said assembly may be connected with each other by a rotatable mounting means. By rotating said mounting means, the polarization angle of said first polarizer 3 towards said sample inspection area 6 can be adjusted.
    In another embodiment, as illustrated in figures 8 and 9, said first transmission axis θΤΑι can be adjusted using a rotatable illumination device. Said microscope 1 comprises an assembly comprising the first linear polarizer 3 and the illumination device 2, which are rotatable in unison around an axis which runs in parallel to the second optical path 8. Said assembly may be connected with each other by a rotatable mounting means. By rotating said mounting means, the polarization angle of said first polarizer 3 towards said sample inspection area 6 can be adjusted.
    By adjustment of the transmission axis of said second linear polarizer 4, any light which has undergone polarization change due to polarization characteristics of a molecule in the sample can be allowed to pass said second linear polarizer 4, while reducing or blocking any light which has a different polarization angle. In a preferred embodiment, the transmission axis θΤΑ2 can be adjusted to allow any light polarized by the sample to pass through said second linear polarizer 4, while blocking or partly blocking light having polarization angle θι which hits the sample and is reflected without changing its polarization angle.
    In another preferred embodiment, the microscope comprises a further light source 12 in the blue spectrum to observe fluorescent behavior of collagen (connective tissue), which is advantageous in a further method to distinguish nerves from collagen.
    The further illumination device 12 is preferably mounted independently from the other light sources. The light from this source does not pass the first linear polarizer 3 or said second linear polarizer 4, and is capable of directly illuminating a sample on the sample inspecting area 6. It is preferred that said further illumination device 12 is disposed of an adjusting means to adjust the illumination angle towards the sample.
    In a preferred embodiment, the illumination device 2 comprises a static white light emitting diode (LEDs). The intensity of the light source 2 can preferably be adjusted by a light adjustment means.
    In a preferred embodiment, the angle of light source 12 is configurable, to provide a variable angle of the illumination with respect to a sample.
    In a preferred embodiment, the center of said disc 19 is about 5 cm in diameter and contains the second linear polarizer 4. The outer rim, preferably about 3.5 cm in width of the same disk 19 is covered with the first linear polarizer 3. An advantage thereof is that the outer rim is broad enough to polarize most light from light source 2. The center of the disk 19 is located in the second optical path 8.
    In a preferred embodiment, the microscope is configured such that the emitted, and preferably collimated light from light source 2 only passes the first polarizer 3 on the outer rim of the disk 19 directly upon the sample inspection area 6, whereas the second polarizer 4 only passes the (preferably collimated) polarized reflected light from a sample in the sample inspection area 6.
    In figure 7, another embodiment of the microscope of the invention is shown. The microscope 1 includes a lens assembly 10, an illumination device 2, a first linear polarizer 3 and a second linear polarizer 4, a beam splitter 11 and an image capturing device 14, viewing arrangement 5 or eyepiece 13.
    As illustrated in figure 7, the microscope according to this embodiment comprises an assembly (indicated in figure 7 with a dashed box) comprising a beam splitter 11, said first polarizer 3, and illumination device 2 connected with each other by a rotatable mounting means. By rotating said assemby, the polarization angle of said first polarizer 3 in relation to the sample inspection area 6 can be adjusted. The first linear polarizer 3 is located in the first optical path 7 of the light. The light passing through the first linear polarizer 3 is reflected via the beam splitter 11 to the sample inspection area 6. The polarized light is then reflected through the beam splitter 11, passing the second linear polarizer 4 leading to the, viewing arrangement 5, which may for example be an image capturing device 14 or eyepiece 13. Preferably, said first polarizer 3 is configured such that is can be rotated vis a vis said beam splitter 11. Said second polarizer 4 is configured so that it can be rotated vis a vis the sample inspection area 6 and independently of said assembly comprising said first linear polarizer 3, illumination device 2 and optional collimator 9 and said beam splitter 11. In another embodiment, said second polarizer 4 is fixed to said ensemble comprising said first linear polarizer 3, illumination device 2, said optional collimator 9 and said beam splitter 11.
    In a preferred embodiment, a further illumination device 12 is mounted separately from the other light sources. The UV or blue light can directly illuminate the sample inspection area 6. When a biological sample is placed, the UV or blue light will allow some tissues to fluoresce, for example connective tissue. In contrast to the light from light source of illumination device 2, the fluorescent light generated by the sample will then pass through the center polarizer 4 and may be detected in the image capturing 5 or projected to the eye via an ocular 13.
    Figure 8 shows another preferred embodiment of the microscope of the invention. This embodiment comprises the first linear polarizer 3 connected to illumination device 2 and optionally a collimator 9. The collimated polarized light directly illuminates the sample. Said first linear polarizer 3, illumination device 2 and optional collimator 9 are connected via a mounting means, to ensure that they can be rotated in unison with respect to the sample.
    Figures 8 and 9 show another preferred embodiment of the microscope of the invention. Herein, said first polarizer 3 and the illumination device 2, the second polarizer 4 and optionally said collimator 9 are connected and attached to a mounting means which can be moved in a circular motion (indicated in Fig. 9 in gray) around optical path 8. This circular motion changes the polarization angle of said first polarizer 3 vis a vis the sample inspection area 6. In a preferred embodiment, said first polarizer 3 is rotatably mounted in said mounting means. This allows further adjustment of the polarization angle towards the sample. Preferably, said second polarizer 4 is rotatably mounted in the housing 18 to allow adjustment of the polarization angle towards the sample.
    As shown in FIG. 4-9, the microscope 1 comprises a illumination device 2, suitable for illuminating a sample. Said illumination device 2 may comprise any light source which is suitable for producing visible light and may include a ring light, a LED, a halogen light, or a tungsten light. As illustrated in figures 4-9, the microscope may comprise a further illumination device 12 comprising light source in the ultraviolet (UV) spectrum (e.g. a 'black light') to observe fluorescent behavior of collagen (connective tissue) as a secondary method to distinguish nerves from collagen.
    Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art.
    CONCLUSIES
    1. Microscoop (1) geschikt om een preparaat te inspecteren, omvattende een belichtings apparaat (2), een eerste lineaire polarisator (3), een tweede lineaire polarisator (4), een observatie inrichting (5) en een inspectieruimte (6):
    5 omvattende een eerste lichtweg (7) die zich uitstrekt tussen het genoemde belichtingsappraat (2) en de inspectieruimte (6) en een tweede lichtweg (8) die zich uitstrekt tussen de inspectieruimte (6) en de genoemde observatie inrichting (5), waarbij de eerste lineaire polarisator (3) is geplaatst in de genoemde eerste lichtweg (7) en de tweede polarisator (4) is geplaatst in de genoemde tweede lichtweg (8),
    10 waarbij de genoemde eerste lineaire polarisator (3) een eerste transmissie-as θΤΑ1 en de genoemde tweede polarisator (4) een tweede transmissie-as ΘΤΑ2 bezit, en waarbij de genoemde eerste transmissie-as 0TAi en/of tweede transmissie-as 0TA2 instelbaar is ten opzichte van de inspectieruimte (6).
  2. 2. Microscoop volgens conclusie 1, omvattende een collimator (9) in de genoemde eerste lichtweg (7)
    15 die geconfigureerd om het licht van het genoemde belichtings apparaat (2) te collimeren.
  3. 3. Microscoop volgens conclusie 1 of 2, omvattende een lens of lens samenstel (10), geplaatst in de tweede lichtweg (8).
  4. 4. Microscoop volgens een der conclusies 1-3, waarbij de genoemde eerste (3) en tweede lineaire polarisator (4) zijn gepositioneerd in een schijf (19) omvattende een perifeer deel, geheel of gedeeltelijk
    20 corresponderend met de eerste lineaire polarisator (3) en een centraal deel, geheel of gedeeltelijk corresponderend met de tweede lineaire polarisator (4).
  5. 5. Microscoop volgens een der conclusies 1-3, voorzien van een bundelsplitser (11) waarbij de microscoop zodanig is ingericht dat de genoemde bundelsplitser (11), de genoemde eerste polarisator (3) en het genoemde belichtings apparaat (2) samen om een as samenvallend met de tweede lichtweg
    25 (8) kunnen roteren in een vlak.
  6. 6. Microscoop volgens een der voorgaande conclusies, dat verder een belichtings apparaat (12) omvat met een ultraviolette of blauwe lichtbron, geconfigureerd om de inspectieruimte (6) te verlichten.
  7. 7. Microscoop volgens conclusie 6, waarbij het genoemde belichtingsapparaat (12) met ultraviolette of blauwe lichtbron is geconfigureerd om de inspectieruimte (6) met ongepolariseerd licht te belichten.
  8. 8. Microscoop volgens een der voorgaande conclusies, waarbij het verschil tussen de eerste transmissieas θΤΑ1 en de tweede transmissie-as ΘΤΑ2 instelbaar is tussen de 80 en 100 graden.
  9. 9. Microscoop volgens een der voorgaande conclusies, waarbij het genoemde belichtings apparaat een wit licht emitterende diode (LED) of een monochromatische lichtbron omvat.
    5
  10. 10. Microscoop volgens een der voorgaande conclusies, waarbij de observatie inrichting (5) een oculair bevat.
  11. 11. Microscoop volgens een der voorgaande conclusies, waarbij de observatie inrichting (5) een beeld opname apparaat bevat.
  12. 12. Microscoop volgens een der voorgaande conclusies, omvattende een object tafel of houder (15).
NL2019089A 2017-06-17 2017-06-17 Polarization microscope NL2019089B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2019089A NL2019089B1 (en) 2017-06-17 2017-06-17 Polarization microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2019089A NL2019089B1 (en) 2017-06-17 2017-06-17 Polarization microscope

Publications (1)

Publication Number Publication Date
NL2019089B1 true NL2019089B1 (en) 2018-12-24

Family

ID=59683995

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2019089A NL2019089B1 (en) 2017-06-17 2017-06-17 Polarization microscope

Country Status (1)

Country Link
NL (1) NL2019089B1 (nl)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3602095A1 (de) * 1985-01-25 1986-07-31 Canon K.K., Tokio/Tokyo Stereomikroskop
EP0610945A1 (en) * 1993-02-12 1994-08-17 Orbotech Ltd Apparatus and method for optical inspection of articles
DE102013219181A1 (de) * 2013-09-24 2015-03-26 Olympus Soft Imaging Solutions Gmbh Vorrichtung und Verfahren zur optischen Bestimmung von Partikeleigenschaften
DE102014114013A1 (de) * 2014-09-26 2016-03-31 Carl Zeiss Meditec Ag Medizinisch optisches Beobachtungsgerät und Verfahren zur Kontrastierung von polarisationsdrehendem Gewebe
US20160103062A1 (en) * 2014-08-21 2016-04-14 Michael Shribak Polychromatic polarization state generator and its application for real-time birefringence imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3602095A1 (de) * 1985-01-25 1986-07-31 Canon K.K., Tokio/Tokyo Stereomikroskop
EP0610945A1 (en) * 1993-02-12 1994-08-17 Orbotech Ltd Apparatus and method for optical inspection of articles
DE102013219181A1 (de) * 2013-09-24 2015-03-26 Olympus Soft Imaging Solutions Gmbh Vorrichtung und Verfahren zur optischen Bestimmung von Partikeleigenschaften
US20160103062A1 (en) * 2014-08-21 2016-04-14 Michael Shribak Polychromatic polarization state generator and its application for real-time birefringence imaging
DE102014114013A1 (de) * 2014-09-26 2016-03-31 Carl Zeiss Meditec Ag Medizinisch optisches Beobachtungsgerät und Verfahren zur Kontrastierung von polarisationsdrehendem Gewebe

Similar Documents

Publication Publication Date Title
KR101857539B1 (ko) 검사용 조명 장치 및 검사 시스템
AU2006293071B2 (en) Optical measuring system
KR100293126B1 (ko) 검사장치
US20050225851A1 (en) Transmitted light bright field illuminating device
US20090015912A1 (en) Total Internal Reflectance Fluorescence (TIRF) Microscope
WO2007050743A2 (en) An optical system for illumination of an evanescent field
AU753282B2 (en) Apparatus for measuring characteristics of optical angle
JP2922185B2 (ja) 共焦点の顕微分光計システム
Bancroft et al. Light microscopy
NL2019089B1 (en) Polarization microscope
JP2000262476A (ja) 眼検査用立体顕微鏡における照明装置及びその方法
KR101418781B1 (ko) 고해상도 광학계에서의 조명 균일화 장치
EP1118033B1 (en) Method and apparatus for producing diffracted-light contrast enhancement in microscopes
JP3318347B2 (ja) 観察、撮像装置などの照明装置
US11561382B2 (en) Lighting device for an imaging optical device, and detection method
JP2000250100A (ja) 光学測定機用照明装置
JP2003177325A (ja) 全反射蛍光顕微鏡
US6995903B1 (en) Microscope, a method for manufacturing a microscope and a method for operating a microscope
JP2004302394A (ja) 棒状又は円筒状円周表面におけるキズ、打痕等を広角度で観る顕微鏡の照明方法とその装置
US11754826B2 (en) TIRFM-capable microscope and method for operating a TIRFM-capable microscope
JPH0783845A (ja) 検査装置
JP2002221665A (ja) 収束光偏光顕微鏡装置および収束光偏光顕微鏡観察方法
KR0120646Y1 (ko) 광축 조정용 오토콜리메이터 장치
JP4445720B2 (ja) 実体顕微鏡用透過照明装置
JP2587437Y2 (ja) 蛍光顕微鏡の光源位置決め装置

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20200701