NL194557C - MWD-systeem waarbij middels tweezijdige elektromagnetische gegevenscommunicatie de boormotor wordt overbrugd. - Google Patents

MWD-systeem waarbij middels tweezijdige elektromagnetische gegevenscommunicatie de boormotor wordt overbrugd. Download PDF

Info

Publication number
NL194557C
NL194557C NL9220014A NL9220014A NL194557C NL 194557 C NL194557 C NL 194557C NL 9220014 A NL9220014 A NL 9220014A NL 9220014 A NL9220014 A NL 9220014A NL 194557 C NL194557 C NL 194557C
Authority
NL
Netherlands
Prior art keywords
electromagnetic
signal
data
module
motor
Prior art date
Application number
NL9220014A
Other languages
English (en)
Other versions
NL194557B (nl
NL9220014A (nl
Inventor
Louis Harold Rorden
Patrick E Dailey
Charles Dwain Barron
Original Assignee
Baker Huges Inc
Halliburton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Huges Inc, Halliburton Co filed Critical Baker Huges Inc
Publication of NL9220014A publication Critical patent/NL9220014A/nl
Publication of NL194557B publication Critical patent/NL194557B/nl
Application granted granted Critical
Publication of NL194557C publication Critical patent/NL194557C/nl

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Earth Drilling (AREA)

Description

* , 1 194557 MWD-systeem waarbij middels tweezijdige elektromagnetische gegevenscommunicatie de boormotor wordt overbrugd
De uitvinding heeft betrekking op een op elektromagnetische communicatie gebaseerd systeem voor het 5 onder in een boorgat overbrengen van een elektromagnetisch gegevenssignaal in de aanwezigheid van een motororgaan aangebrachte middelen voor het waarnemen van parameters en voor het opwekken van een daarvoor indicatief uitgangssignaal, van onder het motororgaan aangebrachte overbrengmiddelen voor het ontvangen van het uitgangssignaal van de waarneemmiddelen en voor het opwekken van het elektromagnetische gegevenssignaal en van een boven het motororgaan opgesteld regelorgaan voor gegevens-10 communicatie, welk regelorgaan een ontvangorgaan omvat voor het ontvangen van het elektromagnetische gegevenssignaal.
De uitvinding heeft eveneens betrekking op een werkwijze voor het overbrengen van onder in het boorgat gemeten parameters naar een eerste punt boven een motororgaan, omvattend het waarnemen van een parameter, het zenden van een elektromagnetisch gegevenssignaal, dat een indicatie geeft van de 15 waargenomen parameter over een verhoudingsgewijs korte afstand vanaf een tweede punt onder de motor, het ontvangen van het elektromagnetische gegevenssignaal op het eerste punt boven de motor op de verhoudingsgewijs korte afstand van het tweede punt, en het analyseren van het elektromagnetische gegevenssignaal voor het terugwinnen van informatie, welke een aanduiding geeft van de waargenomen parameter.
20 Een dergelijk systeem en een dergelijke werkwijze zijn beschreven in de ter inzage gelegde, zich op een eerdere prioriteitsdatum beroepende, Nederlandse octrooiaanvrage 9101441, voorzover de inhoud daarvan is terug te voeren op de Canadese prioriteitsaanvrage 2024061.
De middelen voor het waarnemen van parameters, in het vervolg ook wel sensors of sensoren genoemd, zijn geplaatst in een moduul tussen de motor en de boorbeitel voor het bewaken van de werking en de 25 richting van de motor en boorbeitel evenals van omgevingsomstandigheden in de nabijheid van de boorbeitel. De sensormoduul omvat een overbrenger voor het overbrengen van een elektromagnetisch signaal, dat een aanduiding geeft van de door de verschillende sensoren waargenomen parameters, ook wel gemeten gegevens genoemd. De tijdstippen waarop de informatie door de overbrengmiddelen naar het ontvangorgaan in het regelorgaan voor het ontvangen van het elektromagnetische gegevenssignaal worden 30 gestuurd zijn vastgelegd in de overbrengmiddelen. Dat heeft als nadeel dat niet verzekerd is dat de door de overbrengmiddelen verzonden gegevenssignalen ook daadwerkelijk worden ontvangen.
Doel van de uitvinding is het verschaffen van een systeem en werkwijze waarbij dat wel het geval kan zijn.
Een systeem volgens de uitvinding wordt daartoe gekenmerkt doordat de overbrengmiddelen ontvangst-35 middelen omvatten en het regelorgaan zendmiddelen omvat zodat tweezijdige elektromagnetische communicatie tussen de overbrengmiddelen en het regelorgaan wordt gerealiseerd.
Een werkwijze volgens de uitvinding is daartoe gekenmerkt door het zenden van een elektromagnetisch signaal vanaf het eerste punt boven de motor, en het ontvangen en analyseren van dit elektromagnetisch signaal op het tweede punt onder de motor, waardoor tweezijdige elektromagnetische communicatie tussen 40 het eerste en het tweede punt wordt gerealiseerd.
Daardoor is bereikt dat het overbrengen van gegevenssignalen kan worden gerelateerd aan de beschikbaarheid van het ontvangorgaan voor het ontvangen van het elektromagnetische gegevenssignaal voor ontvangst van de gegevenssignalen.
Een voorkeursuitvoeringsvorm van een systeem volgens de uitvinding Is gekenmerkt doordat voor de 45 tweezijdige elektromagnetische communicatie het regelorgaan is ingericht voor het verzenden van een elektromagnetisch signaal op meer dan één frequentie en doordat de overbrengmiddelen zijn ingericht voor het analyseren van het ontvangen elektromagnetische signaal voor het bepalen van een voorkeursfrequentie voor het overbrengen van het elektromagnetische gegevenssignaal naar het regelorgaan voor gegevenscommunicatie.
50 Daardoor is bereikt dat telkens als het regelorgaan voor gegevenscommunicatie een elektromagnetisch signaal verzendt naar de overbrengmiddelen tevens door de overbrengmiddelen wordt geanalyseerd op welke frequentie bij voorkeur de tweezijdige communicatie kan plaatsvinden.
Een verder voorkeursuitvoeringsvorm van een systeem volgens de uitvinding wordt gekenmerkt doordat het regelorgaan is ingericht voor het verzenden van het elektromagnetische signaal op meer dan één 55 frequentie met een opeenvolging van frequentiestappen.
Daardoor is bereikt dat een beperkt aantal frequenties door de overbrengmiddelen behoeft te worden geanalyseerd voor het bepalen van een voorkeursfrequentie, hetgeen de constructie van de overbreng- 194557 2 middelen vereenvoudigd.
Een andere voorkeursuitvoeringsvorm van een systeem volgens de uitvinding wordt gekenmerkt doordat het regelorgaan is ingericht voor het verzenden van het elektromagnetische signaal op meer dan één frequentie door middel van een doorlopende frequentieveging.
5 Daardoor wordt bereikt dat geen enkele frequentie tussen een minimale en een maximale frequentie wordt overgeslagen bij de bepaling van de voorkeursfrequentie.
Een verdere voorkeursuitvoeringsvorm van een systeem volgens de uitvinding wordt gekenmerkt doordat het elektromagnetische signaal een peilsignaal is.
Daardoor wordt bereikt dat een specifiek signaal, het peilsignaal, wordt gebruikt voor het bepalen van de 10 voorkeursfrequentie, waardoor geen verwarring met andere signalen hoeft op te treden.
Een nog verdere voorkeursuitvoeringsvorm van een systeem volgens de uitvinding wordt gekenmerkt doordat het elektromagnetisch signaal een commandosignaal is. Daardoor is bereikt dat geen tijd verloren hoeft te gaan met het uitzenden van een voor de overbrengmiddelen betekenisloos signaal voor het bepalen van de voorkeursfrequentie, gevolgd door het uitzenden van een commandosignaal.
15 Een verdere voorkeursuitvoeringsvorm van een systeem volgens de uitvinding wordt gekenmerkt doordat de overbrengmiddelen zijn voorzien van middelen voor het ontcijferen van het commandosignaal voor het bepalen van de gewenste parameter.
Daardoor is bereikt dat de overbrengmiddelen met één en hetzelfde signaal zowel de voorkeursfrequentie kunnen bepalen als reeds, zonder tijdverlies, kunnen overgaan tot het bepalen van de gewenste 20 parameter.
Een uitvoeringsvorm van een werkwijze volgens de uitvinding wordt gekenmerkt door het overbrengen van een elektromagnetisch signaal op meer dan één frequentie, het bepalen van een voorkeursfrequentie, op grond van het op het tweede punt ontvangen elektromagnetische signaal, voor de overbrenging vanaf het eerste punt naar het tweede punt en het overbrengen van het elektromagnetische gegevenssignaal 25 vanaf het tweede punt naar het eerste punt bij de voorkeursfrequentie.
Daardoor is bereikt dat het overbrengen van het elektromagnetische gegevenssignaal steeds kan plaatsvinden bij een frequentie welke, op grond van het door de overbrengmiddelen ontvangen elektromagnetische signaal, de voorkeur verdient.
Een verdere uitvoeringsvorm van een werkwijze volgens de uitvinding wordt gekenmerkt door een 30 elektromagnetisch commandosignaal als het elektromagnetische signaal van het eerste punt en door het ontcijferen op het tweede punt van het elektromagnetische commandosignaal voor het bepalen van een gewenste parameter en het waarnemen van de gewenste parameter.
Daardoor is bereikt dat slechts die parameters worden waargenomen en als elektromagnetisch gegevenssignaal door de overbrengmiddelen naar het ontvangorgaan voor gegevenscommunicatie worden 35 verstuurd waaraan, blijkens het commandosignaal, behoefte bestaat op dat moment.
De voordelen van het verkrijgen van gegevensmetingen onder in het boorgat vanaf de motor en boorbeitel tijdens boorhandelingen zijn duidelijk voor de vakman. De mogelijkheid meet gegevens te verkrijgen tijdens het boren, in het bijzonder die, die betrekking hebben op de werking van de boorbeitel en motor en de omgevingsomstandigheden in het gebied van de boorbeitel maken economischer en efficiënter 40 boren mogelijk. Enkele primaire voordelen zijn dat het gebruik van werkelijke tijdoverbrenging van beitel-temperaturen werkelijk tijdinstellingen in boorparameters mogelijk maakt voor het optimaliseren van de prestaties van de boor, evenals voor het maximaliseren van de levensduur van de boor. Soortgelijke metingen van boorschok en trilling maken afstelling van "afstelparameters” mogelijk om langs de meest gewenste baan te boren of bij de ’’zachtste plaats”, waardoor de levensduur van de booronderdelen wordt 45 geoptimaliseerd en verlengd. Metingen van de hellingshoek in de nabijheid van de boorbeitel vergroten de boorregeling gedurende het in een bepaalde richting boren.
Een voordeel van standsensors dichter bij de beitel wordt duidelijk gemaakt in het volgende, in figuur 1 afgebeeide voorbeeld.
Figuur 1 toont een formatie onder bij een boorgat met een olie producerende zone, welke een diepte 50 heeft van ongeveer 7,50 meter. Een gebruikelijk te sturen boorsamenstel is afgebeeld in figuur 1 en is voorzien van een boorbeitel, een motor en een sensorhulpstuk, welke is opgesteld tussen 7,50-15 meter boven de boorbeitel. Zoals afgebeeld in figuur 1 zijn de boorbeitel en motor nagenoeg bewogen door de olie producerende zone, voordat de sensors dicht genoeg erbij zijn om deze zone waar te nemen. Als resultaat wordt tijd verspild in het opnieuw opstellen en opnieuw richten van het onder in het boorgat gelegen 55 samenstel. Dit is in het bijzonder duur in een situatie, waar het beoogde putplan is het stuurbare systeem in figuur 1 te gebruiken om horizontaal in de zone te boren.
Indien de sensors waren opgesteld in of dichter bij de beitel zouden de sensors de zone spoediger 3 194557 hebben waargenomen en kon de richting van het boorsamenstel in figuur 1 eerder zijn gewijzigd om in een - ' meer horizontale richting te boren om in de olie producerende zone te blijven.
Dit is uiteraard slechts een voorbeeld van de voordelen van het plaatsen van de sensors in of zeer dicht bij de beitel. Andere voordelen voor het terugwinnen van gegevens betrekking hebbende op de boorbeitel 5 en motor zullen duidelijk zijn voor de vakman.
In de stand van de techniek zijn er een aantal systemen, welke informatie met betrekking tot parameters onder in het boorgat trachten over te brengen naar het oppervlak. Deze bekende systemen kunnen beschrijvend worden gekenmerkt als: (1) boorsuspensie-drukimpuls; (2) harde draadverbinding; (3) akoestische golf; en (4) elektromagnetische golven.
10 In een boorsuspensie-drukimpulssysteem wordt de druk van de boorsuspensie in de boorstreng gemoduleerd door middel van een klep en regelmechanisme, dat is aangebracht in een speciale impulskraag boven de boorbeitel en motor (indien er en wordt gebruikt). De drukimpuls beweegt omhoog langs de kolom boorsuspensie op of nabij de geluidssnelheid in de boorsuspensie, welke ongeveer 1200-1500 meter per seconde is. De overbrengingssnelheid van gegevens is echter verhoudingsgewijs langzaam tengevolge 15 van impulsspreiding, beperkingen van modulatiewaarde, en andere verstorende krachten, zoals het omgevingsgeluid in de boorstreng. Een gebruikelijke impulsfrequentie is in de orde van een impuls per seconde.
Harde draad verbindingsorganen zijn ook voorgesteld voor het verschaffen van een harde draad verbinding vanaf de beitel naar het oppervlak. Er zijn een aantal voor de hand liggende voordelen bij 20 gebruikmaking van draad of kabelsystemen, zoals bijvoorbeeld de mogelijkheid tot het overbrengen met een hoge gegevenssnelheid, de mogelijkheid om vermogen naar onder in het boorgat te sturen, en de mogelijkheid tot tweewegverbinding.
De overbrenging van akoestische of seismische signalen door een boorpijp of de grond (in tegenstelling met de boorsuspensie) biedt een andere mogelijkheid voor communicatie. In een dergelijk systeem is een 25 akoestische of seismische generator nabij of in de boorkraag onder in het boorgat opgesteld. Een grote hoeveelheid vermogen wordt onder in het boorgat vereist voor het opwekken van een signaal met voldoende intensiteit om bij het oppervlak te worden waargenomen. De enige manier om voldoende vermogen onder in het boorgat te verschaffen (anders dan het voeren van een harde draad verbinding naar onder in het boorgat) is een grote vermogensvoorraad onder in het boorgat aan te brengen. Een voorbeeld 30 van een akoestisch afstandsmetingssysteem onder in het boorgat staat beschreven in de Houston Chronicle van 7 mei 1990, bladzijde 3B.
Een verdere bekende techniek omvat de overbrenging van elektromagnetische ("EM”) golven door een boorpijp en de grond. In dit type systeem worden gegevens van onder in het boorgat ingevoerd in een in een boorkraag onder in het boorgat opgestelde antenne. Gebruikelijk is een groot opneemsamenstel of 35 lusantenne opgesteld rondom de boorinstallatie aan het oppervlak om het EM-signaal dat wordt overgebracht door de onder in het boorgat gelegen antenne, op te nemen.
Het grootste probleem met de bekende EM-systemen is dat een grote hoeveelheid vermogen noodzakelijk is voor het overbrengen van een signaal, dat op het oppervlak kan worden waargenomen. Voortplanting van EM-golven wordt gekenmerkt door een toename in demping bij een toename in afstand, gegevens-40 snelheid en geleidbaarheid van grond. De afstand tussen de onder in het boorgat gelegen antenne en de antenne aan het oppervlak kan tussen de 1500 en 3000 meter liggen. Als resultaat treedt een grote mate van demping op van het EM-signaal waardoor een krachtigere EM-golf noodzakelijk is. De geleidbaarheid van de grond en de boorsuspensie kan ook aanzienlijk variëren langs de lengte van de boorstreng, waardoor vervorming en/of demping van het EM-signaal wordt veroorzaakt. Daarnaast veroorzaakt de grote 45 hoeveelheid ruis in de boorstreng interferentie met de EM-golf.
De eerste manier om de vereiste hoeveelheid vermogen, noodzakelijk voor het overbrengen van de EM-golf naar het oppervlak, te leveren is een grote vermogensvoorraad onder in het boorgat aan te brengen of een harde draadgeleider naar onder In het boorgat te voeren.
In de stand van de techniek zijn er pogingen gedaan de effecten van demping, die optreden tijdens de 50 overbrenging van een EM-signaal vanaf onderin nabij het onder in het boorgat gelegen boorsamenstel naar het oppervlak te verminderen, zoals bijvoorbeeld het gebruik van herhalingsstations om laag frequente signalen naar en van sensors nabij het boorsamenstel over te brengen, het gebruik van herhalingsstations voor het vergroten van gegevenswaarde, of het gebruik van herhalingsstations om informatie vanaf onder in het boorgat naar het oppervlak te transporteren.
55 Ruimte onder de motor is bijzonder beperkt, zodat er niet voldoende ruimte is voor een vermogensbron om signalen op te wekken met de noodzakelijke intensiteit om het oppervlak te bereiken. Dit geldt in het bijzonder in een stuurbaar systeem, dat een gebogen huis heeft, zoals afgebeeld in figuur 2B. Indien de 194557 4 lengte van het samenstel onder het gebogen huis te lang wordt, worden de zijkrachten op de boorbeitel overmatig voor de momentarm tussen het gebogen huis en de boorbeitel. Indien de motor in bedrijf is en de boorstreng draait, dat wil zeggen dat het systeem op een rechte manier aan het boren is, wordt verder de lengte tussen de boorbeitel en het gebogen huis kritisch. Hoe groter deze lengte, hoe groter de diameter zal 5 zijn van het gat dat zal worden geboord.
De sensors zijn bij de onderhavige uitvinding geplaatst in een moduul tussen de motor of andere component en de boorbeitel voor het bewaken van de werking en richting van de motor of andere component en boorbeitel, evenals van omgevingsomstandigheden in de nabijheid van de boorbeitel.
Sensors kunnen ook in de boorbeitel zijn opgesteld en elektrisch verbonden met circuits in de sensor-10 moduul. De sensormoduul omvat een overbrenger voor het overbrengen van een elektromagnetisch gegevenssignaal, dat een aanduiding geeft van de door de verschillende sensors verkregen gemeten gegevens. De sensormoduul kan ook een verwerkingsorgaan omvatten om de gegevens te conditioneren en om de gegevenswaarden voor daaropvolgende terugwinning in geheugen op te slaan. Verder kan de sensormoduul een ontvanger omvatten voor het ontvangen van bevelen vanaf een bovenaan een boorgat 15 gelegen regelmoduul.
De sensormoduul kan in de aandrijfas van de motor zijn opgesteld of in een losmaakbaar hulpstuk, opgesteld tussen de motor en de boorbeitel. In ieder van deze standen zijn de sensors in de sensormoduul in dichte nabijheid tot zowel de boorbeitel en motor en zijn dus in staat om gegevens te verkrijgen met betrekking tot gewenste beitel- en/of motorparameters.
20 De sensormoduul is ook elektrisch aangesloten op de sensors in de boorbeitel om elektrische signalen te ontvangen van de beitel, die representatief zijn voor omgevingsparameters en werkparameters van de beitel. De sensormoduul behandelt deze signalen en brengt de behandelde informatie over aan de regelmoduul.
De regelmoduul is op een verhoudingsgewijs korte afstand opgesteld in een regel-zend-25 ontvangerhulpstuk, hetzij boven of onder de boorsuspensie-impulskraag. De regelmoduul omvat een zender en ontvanger voor hef overbrengen van commandosignalen en voor het ontvangen van signalen, die een aanduiding geven van waargenomen parameters aan en vanaf de sensormoduul. De regel-zend-ontvanger ontvangt de elektromagnetische signalen vanaf de sensoroverbrenger en brengt de gegevenssignalen over aan verwerkingscircuits in de regelmoduul welke de gegevens formatteert en/of opslaat. De regelmoduul 30 brengt elektrische signalen over aan een gastheermoduul, die is aangesloten op alle componenten voor meten-tijdens-boren (”MWD”) onder in het boorgat om de werking van alle sensors onder in het boorgat te regelen, leder van de onder in het boorgat gelegen sensors omvat zijn eigen microprocessor om commando's te ontvangen van de gastheermoduul en om signalen, die een aanduiding geven van de waargenomen gegevens, over te brengen.
35 De gastheermoduul omvat een batterij om al de microprocessors van de sensors en bijbehorend circuit van vermogen te voorzien.
De gastheermoduul verzorgt dus ook vermogen voor het EM-regelmoduulcircuit. De gastheermoduul is aangesloten op een boorsuspensie-impulsorgaan, dat op zijn beurt boorsuspensie-impulsen, die enkele of alle waargenomen gegevens weerspiegelen, naar een ontvanger aan het oppervlak overbrengt.
40 Zowel de sensormoduul als de regelmoduul omvat een antenne-opstelling waardoor de EM-signalen worden verzonden en ontvangen. De antennes zijn voorzien van strippen uit gelamineerde ijzer/ nikkellegering, die in een ringvormige omzettingskern zijn gewikkeld met isolatie geplaatst tussen iedere gelamineerde strip. De sensors of onder in het boorgat gelegen antenne is strategisch aangebracht op de buitenzijde van een hulpstuk of verlengde aandrijfas, en de regel- of boven aan het boorgat opgestelde 45 antenne is aangebracht op de buitenzijde van het regel-hulpstuk.
De huidige uitvinding kan worden gebruikt met een groot aantal motoren, waaronder boorsuspensie-motoren, met of zonder een gebogen huis, boorsuspensieturbines en andere inrichtingen, die beweging hebben bij een einde ten opzichte van het andere.
De huidige uitvinding kan ook worden gebruikt in omstandigheden, waar geen motor wordt gebruikt, om 50 gegevens over te brengen vanaf de boorbeitel, een korte afstand in een onder in een boorgat gelegen samenstel, zoals bijvoorbeeld rondom een boorsuspensie-impulsorgaan. Het systeem kan ook telemetrie-systemen anders dan een boorsuspensie-impulsorgaan gebruiken om de gemeten gegevens over te brengen naar het oppervlak.
Omdat het EM-signaal slechts een verhoudingsgewijs korte afstand behoeft af te leggen, kan een 55 verhoudingsgewijs kleine vermogensbron, zoals een batterij, worden gebruikt. De onder in het boorgat nabij de sensor opgelegde batterij verschaft vermogen aan de overbrenger, de sensors en het verwerkingsorgaan. Evenals de sensormoduul kan de batterij hetzij in de aandrijfas van de motor zijn opgesteld of in 5 194557 een afzonderlijk verwijderbaar hulpstuk (zoals beschreven in de voorkeursuitvoeringsvorm).
Omdat de geleidbaarheid een of meer ordes van grootte kan variëren, is de huidige uitvinding in staat tot het werken over een groot gebied van frequenties. Het systeem werkt door bepaling van de frequentie, - -welke het beste werkt voor een gegeven formatie en geeft signalen af bij die frequentie om de signaalruis-5 verhouding maximaal te maken. Deze en verschillende andere kenmerken en voordelen van de huidige uitvinding zullen gemakkelijk duidelijk worden voor de vakman bij het lezen van de volgende gedetailleerde beschrijving.
Korte beschrijving van de tekeningen 10 Voor een gedetailleerde beschrijving van de voorkeursuitvoeringsvorm van het systeem zal nu worden verwezen naar de tekeningen, waarin: figuur 1 een perspectivisch aanzicht is van een bekend samenstel voor het gericht boren, dat door een grondformatie boort; figuur 2A een perspectivisch aanzicht van een bekend draaibaar boorsysteem Is; 15 figuur 2B een gedeeltelijk vooraanzicht in doorsnede van een bekend te sturen boorsysteem is; figuur 3 een schematische weergave is van het de voorkeur gegeven uitvoeringsvoorbeeld van een korte stap telemetriesysteem voor gegevens van het huidige systeem, welke gebruik maakt van een uitstekend hulpstuk tussen de motor en boorbeitel; figuur 4 een schematische weergave is van een alternatieve uitvoeringsvorm van het korte stap 20 telemetriesysteem voor gegevens van figuur 3, welke gebruik maakt van een verlengde aandrijfas in plaats van het uitstekende hulpstuk; figuur 5 een schematische weergave is van een alternatief uitvoeringsvoorbeeld van het korte stap telemetriesysteem voor gegevens van het huidige systeem, gevormd voor gebruik met een onder in het boorgat gelegen motor; 25 figuur 6 een gedeeltelijk schematisch perspectivisch deelaanzicht van het in figuur 3 afgebeelde korte stap systeem; figuur 7 een gedeeltelijk verticaal doorsnede-aanzicht is van een boorbeitel voor gebruik in het korte stap systeem van figuur 3; figuur 8A een aanzicht, gedeeltelijk in verticale doorsnede en gedeeltelijk in aanzicht is van het 30 uitstekende hulpstuk dat is afgebeeld in figuur 3; figuur 8B een vergroot aanzicht is, gedeeltelijk in verticale doorsnede en gedeeltelijk in aanzicht, van het middengedeelte van het in figuur 8 weergegeven uitstekende hulpstuk; figuur 9, gedeeltelijk in verticale doorsnede en gedeeltelijk in aanzicht een weergave is van de onderlinge verbinding van het uitstekende hulpstuk en de beitel; 35 figuren 10A-B aanzichten zijn, gedeeltelijk in verticale doorsnede en gedeeltelijk in aanzicht van de bovenste resp. onderste gedeelten van het hulpstuk voor de regel-zend-ontvanger, weergegeven n het de voorkeur gegeven uitvoeringsvoorbeeld van figuur 3; figuur 10C is een vergroot aanzicht, gedeeltelijk in verticale doorsnede, gedeeltelijk in aanzicht en met sommige delen weggebroken, van het middengedeelte van de in figuur 10A weergegeven inrichting is; 40 figuur 11 een perspectivisch aanzicht is van het bovenste gedeelte van het zend-ontvanger hulpstuk van figuur 10A; figuur 12 een gedeeltelijk aanzicht is, gedeeltelijk in doorsnede en met sommige delen weggebroken, van de EM-regelmoduul van figuur 10A; figuur 13 een schematische weergave is van het sensormoduulcircuit; 45 figuur 14 een schematische weergave is van het regelmoduulcircuit; figuur 15 een blokschema is, dat de elektronische en telemetrie-onderdelen van het korte stap telemetriesysteem voor gegevens van figuur 3 weergeeft; figuur 16 een gedeeltelijk aanzicht is, gedeeltelijk in doorsnede, met enige delen weggebroken, van de EM-sensomnoduul van figuur 6.
50
Gedurende het verloop van de volgende beschrijving worden de uitdrukkingen "bovenaan het gat”, "bovenste”, "boven” en dergelijke synoniem gebruikt om stand in een putbaan aan te duiden waar het oppervlak van de put het bovenste punt is. Op soortgelijke wijze worden de uitdrukkingen "bodemgat”, "onder in het gaf’, "onderste”, "onder" en dergelijke ook gebruikt om te verwijzen naar een positie in een 55 putbaan waar de bodem van de put het verst langs de putbaan vanaf het oppervlak geboorde punt is. Zoals de vakman zich zal realiseren, kan een put aanzienlijk afwijken van de verticaal en kan in feite soms horizontaal zijn. De bovenstaande uitdrukkingen moeten dus niet worden beschouwd als betrekking te 194557 6 hebben op diepte of verticale ligging, maar moeten in plaats daarvan worden verstaan als betrekking te hebben op de plaats in de putbaan tussen het oppervlak en de bodem van de put.
Gedetailleerde beschrijving van het de voorkeur gegeven uitvoeringsvoorbeeld 5 I. Boorsysteem voor onder in een boorgat
Twee bekende boorsystemen zijn afgebeeld in de figuren 2A en 2B. Figuur 2A toont een bekend boorsysteem, dat slechts werkt in een draaiende wijze, terwijl figuur 2B een bekend te sturen boorsysteem toont, dat zowel recht als in een bepaalde richting boren toestaat. Het draaibare in figuur 2A afgebeelde boorsysteem omvat een boorbeitel met een impulskraag voor het overbrengen van gegevens naar het oppervlak 10 via boorsuspensie-impulsen. Boven de impulskraag is een sensorhulpstuk, dat een aantal sensors omvat voor het meten van parameters in de nabijheid van de boorkraag, zoals soortelijke weerstand, gamma, gewicht op beitel en koppel op beitel. De sensor brengt gegevens over op het impulsorgaan, dat op zijn beurt een boorsuspensie-drukimpuls naar het oppervlak overbrengt. Een niet-magnetische boorkraag is opgesteld boven de sensormodules. Gebruikelijk omvat de boorkraag een richting-sensorsonde. De 15 boorkraag sluit aan op de boorstreng, welke zich naar het oppervlak uitstrekt.
Boren vindt plaats in een draaibare wijze door draaien van de boorstreng bij het oppervlak, waardoor veroorzaakt wordt dat de beitel onder in het boorgat draait. Boorsuspensie wordt door het inwendige van de boorstreng gestuwd om de beitel te smeren en spanen bij de bodem van de put te verwijderen. De boorsuspensie circuleert dan terug naar het oppervlak door langs de buitenzijde van de boorstreng te 20 stromen. Het boorsuspensie-impulsorgaan ontvangt gegevens die een aanduiding geven van omstandigheden nabij, maar niet op de bodem van de put en moduleert de druk van de boorsuspensie hetzij binnen of buiten de boorstreng. De schommelingen in de boorsuspensiedruk worden aan het oppervlak door een ontvanger waargenomen.
Het bekende in figuur 2B afgebeelde, stuurbare systeem heeft de toegevoegde mogelijkheid om hetzij in 25 een rechte wijze of in bepaalde richting of "schuif’wijze te boren. Het stuurbare systeem omvat een motor, welke werkt om de beitel in werking te stellen. In de bekende motor, omvat de motor een motorhuis, een gebogen huis en een legerhuis. Het motorhuis omvat bij voorkeur een stator, die is vervaardigd uit een aan het inwendige oppervlak van de huis gehecht elastomeer en een met de stator samenpassende rotor. De stator heeft een aantal spiraalholtes n, die een aantal spiraalvormige groeven begrenzen over de lengte van 30 het motorhuis. De rotor heeft een schroeflijnvormige vormgeving met n-1 spiralen, die schroeflijnvormig om zijn hartlijn zijn gewikkeld.
Gedurende boorwerkzaamheden wordt boorfluïdum door het motorhuis in de stator gedrongen. Indien het fluïdum door de stator beweegt wordt de rotor gedwongen om te draaien en van zijkant naar zijkant binnen de stator te bewegen waardoor een excentrische draaiing tot stand wordt gebracht bij het ondereinde van 35 de rotor.
Het gebogen huis omvat een uitgaande as of verbindingsstaaf, welke door een universele verbinding of kruiskoppeling is aangesloten op de rotor. In overeenstemming met gebruikelijke technieken vergemakkelijkt het gebogen huis een boren in een bepaalde richting. Om te werken in een richtingswijze wordt de beitel opgesteld om in een bepaalde richting te wijzen door de bocht in het gebogen huis in een specifieke richting 40 te oriënteren. De motor wordt dan in werking gesteld door boorsuspensie daardoorheen te dringen, waardoor werking van de boorbeitel wordt veroorzaakt. Zo lang de boorstreng stationair blijft (hij draait niet) zal de boorbeitel in de gewenste richting boren in overeenstemming met de krommingsbocht, tot stand gebracht door de mate van buiging in het gebogen huis, de oriëntatie van de bocht en andere factoren, zoals gewicht op beitel. In sommige gevallen kan de mate van bocht in het gebogen huis instelbaar zijn om 45 verschillende maten van kromming toe te staan. Gebruikelijk is ook een concentrisch stabilisatie-orgaan aangebracht om bij te dragen in het geleiden van de boorbeitel.
Om in een rechte wijze te werken wordt de boorstreng op hetzelfde tijdstip gedraaid als de motor in werking wordt gesteld, waardoor veroorzaakt wordt dat een putboring met een vergrote diameter wordt geboord. De diameter van de putboring is rechtstreeks afhankelijk van de mate van bocht in het gebogen 50 huis en de plaats van de bocht. Hoe kleiner de mate van buiging en hoe dichter de plaatsing van de bocht tot de boorbeitel is, hoe kleiner de diameter van de geboorde putboring zal zijn.
Het legerhuis bevat de aandrijfas, welke door een tweede universele of scharnierverbinding aansluit op de uitgaande as. De excentrische draaiing van de motor wordt omgezet op de aandrijfas door de kruiskoppelingen en de uitgaande as, die veroorzaken dat de aandrijfas draait. Vanwege de geweldige hoeveelheid 55 krachten, die werken op de onder in het boorgat gelegen motor, zijn radiale en duwlegers in het legerhuis aangebracht. Een van de functies van de legers is de aandrijfas concentrisch te houden binnen het legerhuis. De noodzaak om legers te hebben in het huis van de aandrijfas draagt aanzienlijk bij aan de 7 194557 moeilijkheid een afstandsmetingssysteem te ontwikkelen dat gegevens door of om een motor overbrengt.
II. Korte stap gegevens venveringssysteem
Nu verwijzend naar figuren 3 en 6, omvat het korte stap gegevens verwervingssysteem, gevormd in 5 overeenstemming met de voorkeursuitvoeringvorm gegeven, een onder in het boorgat gelegen samenstel met een boorbeitel 50, een motor 100 met een met de boorbeitel 50 verbonden uitstekend hulpstuk 200, een sensorantenne 25 aangebracht op de buitenzijde van het hulpstuk 200, een binnen het uitstekende hulpstuk 200 opgestelde sensormoduul 125, een boven de motor 100 opgestelde impulskraag 35, een nabij de impulskraag 35 in een hulpstuk 45 opgestelde regelmoduul 40 (figuur 10A), een gastheermoduul 10, een 10 op het uitwendige van regelhulpstuk 45 aangebrachte regelantenne 27 en een beschermingshulpstuk 70. Een boorkraag (85 in figuur 5, niet weergegeven in figuren 3 en 4) en de (niet weergegeven) boorstreng verbinden het onder in het boorgat gelegen samenstel met de (niet weergegeven) boorinstallatie in overeenstemming met gebruikelijke technieken. Andere hulpstukken 15 en/of sensorhulpstukken 80 kunnen in het onder in het boorgat gelegen systeem worden opgenomen.
15 In een alternatief in figuur 4 weergegeven uitvoeringsvoorbeeld is de sensormoduul opgenomen in een uitstekende aandrijfas 400 onder de motor 100. (Niet weergegeven) legers zijn aangebracht op het inwendige oppervlak van het legerhuis van de motor in overeenstemming met gebruikelijke technieken om de aandrijfas 400 concentrisch binnen het legerhuis te houden. Zoals een vakman zich zal realiseren kunnen verschillende legers worden gebruikt. Het alternatieve uitvoeringsvoorbeeld van figuur 4 is bij 20 voorkeur op dezelfde wijze vervaardigd als de voorkeursuitvoeringsvorm van figuur 3, behoudens dat de sensormoduul 125 en antenne 25 zijn opgenomen in de uitstekende aandrijfas 400 in plaats van het hulpstuk 200. Met dit verschil in gedachte zal een vakman zich realiseren, dat de volgende beschrijving met betrekking tot het de voorkeur gegeven uitvoeringsvoorbeeld van figuur 3 eveneens toepasbaar is in het alternatieve uitvoeringsvoorbeeld van figuur 4.
25 In nog een ander alternatief uitvoeringsvoorbeeld, afgebeeld in figuur 5 kan de huidige uitvinding worden gebruikt met een motor voor het overbrengen van signalen over een korte afstand onder in het boorgat rond bepaalde componenten, zoals een boorsuspensie-impulsorgaan 35. In een dergelijk scenario is de sensormoduul 125 opgenomen in een sensorhulpstuk 450, dat bij voorkeur verwisselbaar is met het sensorhulpstuk 200 van figuur 3. Zoals een vakman zich zal realiseren vindt de huidige uitvinding ook 30 toepassing in gebieden anders dan MWD-systemen in situaties, waar het gewenst is om informatie over een korte afstand rondom een onder in het boorgat gelegen component te transporteren.
A. Motor en uitstekend hulpstuk
Weer verwijzend naar figuur 3 omvat de motor 100 bij voorkeur een positieve verplaatsingsmotor met een 35 gebogen huis zoals hierboven in deel I boorsysteem onder in het boorgat. Andere motoren, waaronder boorsuspensieturbines, boorsuspensiemotoren, Moineau motoren, kruiprupsbanden en andere inrichtingen, die beweging bij een einde ten opzichte van het andere opwekken, kunnen worden gebruikt zonder buiten de principes van het huidige systeem te gaan.
Nu verwijzend naar figuren 3 en 6, is de motor 100 in overeenstemming met de voorkeur gegeven 40 uitvoeringsvoorbeeld verbonden met een uitstekend hulpstuk 200, dat een sensormoduul 125 en zijn bijbehorende antenne 25 opneemt. Een bijzonder voordeel van dit uitvoeringsvoorbeeld is dat het uitstekende hulpstuk 200 kan worden verwijderd en uitwisselbaar gebruikt in een aantal onder in het boorgat te gebruiken samenstellen.
Nu verwijzend naar figuren 8A en 9 omvat het uitstekende hulpstuk 200 bij voorkeur een holle cilindri-45 sche kamer met een inwendige ruimte begrensd door een eerste in diameter verkleind boringgedeelte 33, een achterste boringgedeelte 47 met grotere diameter en een tussengelegen boringgedeelte 43, dat voorziet in een trapsgewijze overgang vanaf het boringgedeelte 33 met verkleinde diameter tot het vergrote achterste boringgedeelte 47. Het onderste of onder in het boorgat gelegen einde 38 van het achterste boringgedeelte 47 is inwendig van schroefdraad voorzien voor het vormen van een doosverbinding 88, 50 terwijl het boveneinde 36 van het boringgedeelte 33 met kleinere diameter eindigt in een penverbinding. Het tussengelegen boorgedeelte 43 omvat een eerste hellend oppervlak 52, dat het achterste boringgedeelte 47 verbindt met het tussengedeelte 43 en een tweede hellend oppervlak 54, dat het tussengedeelte 43 verbindt met het boringgedeelte 33 met verkleinde diameter.
Het uitwendige van het hulpstuk 200 omvat bij voorkeur een algemeen cilindrische vormgeving en is 55 voorzien van een ringvormige schouder 221 op ongeveer het langsmiddenpunt voor het ondersteunen van de sensorantenne 25. Een dwars verlopend boorgat 29 is opgenomen in het tussengedeelte 43 voor het verschaffen van een doortocht voor de elektrische verbinding vanaf het inwendige van het hulpstuk 200 194557 8 naar de antenne 25.
Het boorgat 29 strekt zich vanaf de buitenzijde van het hulpstuk 200, nabij schouder 221, uit in het tussengelegen boringgedeelte 43 van het hulpstuk. Het boorgat 29 omvat een buitenste van schroefdraad voorzien uitsparingsgedeelte voor het opnemen van een drukdoorvoer 190. De doorvoer 190 omvat een 5 doorvoeropneemorgaan 183 en een contactdeel 186. Het doorvoeropneemorgaan 183 omvat bij voorkeur een as 84 en een kop 89. De kop 89 van het opneemorgaan 183 omvat uitwendige schroefdraad voor passing op het van schroefdraad voorziene uitsparingsgedeelte van boorgat 29. Bij voorkeur omgeven een aantal 0-ringen de as 84 van opneemorgaan 183 om het boorgat 29 af te dichten tegen het opneemorgaan 183. Het inwendige van het opneemorgaan 183 omvat een teflonmantel of een soortgelijk isolatie-orgaan, 10 dat de elektrisch geleidende contactsteel 186, welke daarin is gelegen, omgeeft. Het binneneinde van de contactsteel 186 omvat een banaanmantelverbindingsorgaan 149, dat is opgenomen in een vrouwtjes-opneemorgaan 192 in een isolatie-orgaan 161 binnen hulpstuk 200. Het buiteneinde van de contactsteel 186 sluit aan op een elektrische geleider 60, die de winding vormt van de antenne 25. Een pijpplug 69 is ingebed in het hulpstuk 200 nabij de doorvoer 190 voor het verkrijgen van toegang tot het door schouder 15 221 begrensde gebied.
Het hulpstuk 200 omvat ook drie dwars verlopende tandemboringen 72, die op gelijke afstand van elkaar zijn gelegen om de omtrek van het hulpstuk 200 bij ongeveer het langsmiddenpunt van het boorsteun-gedeelte 47. De boringen 72 verlopen vanaf de buitenzijde van het hulpstuk 200 naar het boorsteungedeelte 47 en omvatten een vergrote, van schroefdraad voorziene uitsparing 134 op hun buiteneinden.
20 1. Drukfles
Nu verwijzend naar figuren 6 en 8A strekt de drukfleshouder 99 zich uit door het inwendige van het uitstekende hulpstuk in het boringgedeelte 33 met verkleinde diameter, het tussengelegen boringgedeelte 43 en het achterste boringgedeelte 47. Zoals de naam aangeeft, heeft de drukfleshouder 99 een gecontroleerde druk voor het verschaffen van een verontreinigingsvrije omgeving voor het daarin opgenomen 25 sensormoduulcircuit.
De drukfleshouder 99 lijkt in uiterlijk ruwweg op een fles met lange nek en neemt de EM-sensormoduul 125 en het bijbehorende batterijpakket 55 op. Het inwendige van de drukfleshouder 99 omvat bij voorkeur een moduulhuis 141 met grote diameter en een flesnekgedeelte 147 met kleine diameter. De overgang tussen het moduulhuis 141 en het flesnekgedeelte 147 omvat twee schouders 171, 173 voor het verschaf-30 fen van twee inwendige stappen tussen het inwendige van het moduulhuis 141 en het inwendige van het flesnekgedeelte 147.
De bovenste of naar de bovenzijde van het boorgat gerichte uitwendige van het flesnekgedeelte 147 omvat een steunspinopstelling 111, welke aangrijpt op het inwendige van het boringgedeelte 33 met verkleinde diameter van het hulpstuk 200 om te voorzien in zijdelingse ondersteuning voor de houder 99 35 binnen het inwendige van het hulpstuk 200. Radiaal naar buiten verlopend gedeelte 98 is ook aangebracht in het moduulhuis 141 met grotere diameter. Het onderste uitstekende gedeelte 98 grijpt aan op het inwendige van het hulpstuk 200 voor het verschaffen van zijdelingse torsie-ondersteuning voor de drukfleshouder 99.
In aanvulling zijn drie blinde dwars verlopende uitsparingen opgesteld in het uitwendige vlak van het 40 uitstekend gedeelte 98, in lijn met dwarsboringen 72 in het hulpstuk 200, voor het opnemen van de binneneinden van de elektrisch geleidende ankerpennen 257, die zijn geschroefd in uitsparingen 134 en zich uitstrekken door de boringen 72. In aanvulling op het oriënteren van en steun verschaffen voor de drukfleshouder 99, voorzien de ankerpennen 257 ook in een stroombaan vanaf de buitenzijde van het hulpstuk naar de drukfleshouder 90 door de ringvormige rib 98, zoals vollediger hierna zal worden 45 beschreven.
De houder 99 omvat een tussengelegen schoudergebied 96 op zijn uitwendig oppervlak voor aangrijpen op het tussengelegen boringgedeelte 43 van het hulpstuk 200. Het tussengelegen schoudergebied 96 omvat daardoorheen een boorgat 148 voor het opnemen van de doorvoer 190. Het moduulhuis 141 van de drukhouder 99 omvat twee oriëntatie-geleidingspennen 101, die in het huis 141 bij het boveneinde daarvan 50 zijn bevestigd. Het bodem of onder in het boorgat gelegen einde van het moduulhuis 141 omvat inwendige schroefdraad voor het opnemen van een fleskaptegenhoudorgaan 105.
2. Batterijpakket
Opgenomen binnen het flesgedeelte van drukhouder 99 is het batterijpakket 55 voor het leveren van vermogen aan de sensorcircuits. Het batterijpakket 55 omvat bij voorkeur een ’’stapel” van twee ’’dubbel D” 55 (DD) afmeting lithium batterijcellen, opgesloten in een glasvezelbuis 131 met epoxy-afsluiting, voorzien van lijnen voor toe- en afvoer van vermogen die eindigen bij een enkel aansluitorgaan 119 op het onderste of onder in het boorgat gelegen einde van het batterijpakket 55. In het de voorkeur gegeven uitvoerings- 9 194557 voorbeeld omvat het verbindingsorgaan 119 een MDM-verbindingsorgaan. Het batterijpakket 55 omvat bij voorkeur de gebruikelijke integrale kortsluitbescherming (niet weergegeven) evenals een enkele integrale serie diode (niet weergegeven) als bescherming tegen onbeoogd opladen, en shunt diodes over iedere cel (niet weergegeven) voor bescherming tegen omgekeerd laden, zoals het de vakman algemeen bekend is.
5 Het boveneinde van de sensormoduul 125 is bij voorkeur zodanig gevormd, dat het batterijpakket zowel mechanisch als elektrisch kan worden aangesloten en losgekoppeld op een terreinplaats voor de eerste doeleinden van inschakelen en uitschakelen van batterijvermogen en voor het vervangen van gebruikte batterijpakketten.
3. EM-sensormoduul 10 Verwijzend naar figuren 8A, 8B en 16 omvat de in overeenstemming met het de voorkeur gegeven uitvoeringsvoorbeeld vervaardigde EM-sensormoduul 125 een algemeen cilindrische vormgeving, uit aluminium, met een niet geleidende bedekking vervaardigd zoals glasvezel.
De sensormoduul 125 is in hoofdzaak gelegen binnen de achterste boringgedeelte 47 van het hulpstuk 200 en neemt de sensors en bijbehorende verwerkingscircuits op. De sensormoduul 125 omvat bij het 15 bovenste of naar het boveneinde van het gat gerichte einde een plugtype verbindingsorgaan 210, dat zich uitstrekt in het flesgedeelte van de houder 99 om te passen op het batterijpakket 55. Zoals afgebeeld in figuur 8A houden een voorste klem 213 en een achterste klem 217 het batterijpakket 55 in contact met het verbindingsorgaan 210.
In aanvulling op het plugtype verbindingsorgaan 210 omvat het boveneinde van de sensormoduul 125 20 ook bij voorkeur twee boorgaten 114,116, welke de in het moduulhuis 141 van de fleshouder 99 aangebrachte oriëntatie-geleidingspennen 101 opnemen. De oriëntatie-geleidingspennen 101 brengen de oriëntatie van de sensormoduul 125 tot stand bij het insteken in de drukhouder 99 en verschaffen ook ondersteuning voor de sensormoduul 125 tijdens bedrijf.
Een derde boorgat 107, ook in het boveneinde van de sensormoduul 125, begrenst het vrouwtjes-25 opneemorgaan 76 voor een banaanmantelverbindingsorgaan 135, dat deel uitmaakt van de elektrische verbinding tussen de sensormoduul 125 en antenne 25. De vormgeving van de geleidingspennen 101 en de passend banaanmantelverbindingsorgaan 135 is bij voorkeur zodanig, dat de sensormoduul 125 slechts op één manier kan passen in de drukfleshouder 99. Een moduulhuis-isolatieorgaan 161 verschaft isolatie en stabiliteit voor de EM-sensormoduul 125. Het isolatieorgaan 161 omvat een cilindrisch gedeelte 159 met een 30 flens 182 bij het onderste of onder in het boorgat gelegen einde. De flens 182 omvat bij voorkeur twee gaten waardoor de registratiegeleidingspennen 101 worden opgenomen en vier aanvullende gaten voor het opnemen van bouten om het isolatieorgaan 161 aan de fleshouder 99 bij schouder 171 te bevestigen.
Het isolatieorgaan 161 omvat een banaanmantelverbindingsorgaan 135 welke loodrecht vanaf de flens uitsteekt. Het banaanmantelverbindingsorgaan 135 sluit elektrisch aan op een (elektrische) geleider 115, die 35 is ingebed in het cilindrische gedeelte 159 en zich in langsrichting langs de lengte van het cilindrische gedeelte uitstrekt naar een elektrische klem 192. In de voorkeursuitvoeringsvorm omvat de elektrische klem 192 bij voorkeur een vrouwtjesopneemorgaan voor een tweede banaanmantelverbindingsorgaan 149. De elektrische klem 92 is opgesteld op het isolatieorgaan 161 om rechtstreeks tegenover het banaan-verbindingsorgaan 149 van de drukdoorvoer 190 te liggen. Het banaanmantelverbindingsorgaan 149 sluit 40 aan op elektrische klem 192 en op de elektrische steel 186 van de drukdoorvoer 190. De elektrische steel 186 is op zijn beurt elektrisch verbonden met geleiderwinding 60 van de antenne 25.
Het onderste of onder in het boorgat gelegen einde van de sensormoduul 125 omvat een plug-verbindingsorgaan 288 voor het verschaffen van een elektrische invoer/afvoerklem naar de bitsensors. Verder omvat het ondereinde van de sensormoduul 125 een geleidende ring 11w die deel uitmaakt van een 45 terugvoerstroombaan vanaf de antenne 25.
Binnen de sensormoduul 125 zijn de sensors en verschillende ondersteunende elektrische componenten opgenomen. De sensors omvatten bij voorkeur omgevingsversnellingssensors, een hellingmeter en een temperatuursensor.
De omgevingsversnellingssensors meten in overeenstemming met in de techniek algemeen bekende 50 technieken bij voorkeur schok en trillingsniveaus in de zijdelingse (x-as), axiale (y-as) en draaiing (z-as) gebieden. Het zijdelingse gebied (Ax) omvat informatie met betrekking tot lineaire versnelling ten opzichte van het hulpstuk in een vaste dwarsas oriëntatie. Het axiale gebied (Ay) omvat informatie met betrekking tot lineaire versnelling in de richting van de hartlijn van het hulpstuk. Het draaigebied (aj omvat informatie met betrekking tot hoekversnelling om de hartlijn van het hulpstuk.
55 De eveneens algemeen in de techniek bekende hellingmeter omvat bij voorkeur een drie assen systeem van traagheids-servo-versnellingsmeters, welke de hellingshoek van de hartlijn van het hulpstuk (of hartlijn van de aandrijfas in het alternatieve uitvoeringsvoorbeeld van figuur 4) meet onder de motor 100 en zeer 194557 10 dicht bij de bodem van de put. De versnellingsmeters zijn vast en zo loodrecht aangebracht, dat een as (z) evenwijdig is uitgelijnd met de hartlijn van het hulpstuk en de andere twee (x en y) radiaal ten opzichte van het hulpstuk zijn georiënteerd. De hellingmeter heeft bij voorkeur de mogelijkheid om hellingshoeken tussen 0 en 180 graden te meten.
5 Nu verwijzend naar figuren 8 en 9 wordt de sensormoduul 125 bij voorkeur in positie gehouden binnen de drukfleshouder 99 door een veermechanisme 205, dat bij voorkeur is voorzien van een belastingflens 103, een tegenhoudring 109, een belastingring 118, een stapel schotelveren 122, en een fleskaptegenhoud-orgaan 105.
De belastingflens 103 heeft bij voorkeur een L-vormige dwarsdoorsnede-vormgeving met een cilindrisch 10 lichaam 106 en een radiaal naar buiten verlopende ringvormige flens 39 om zijn boveneinde. De ringvormige flens 39 omvat acht gaten 31, die in omtreksrichting op afstand van elkaar zijn gelegen op de flens 39 om bouten 32 met sluitringen op te nemen. De belastingflens 103 is aan de geleidende ring 112 op het ondereinde van de sensormoduul 125 bevestigd door de bouten 32 met grendelringen. Het cilindrisch lichaam 106 verloopt binnen tegenhoudring 109, belastingring 118 en schotelveren 122 in het inwendige van 15 het fleskaptegenhoudorgaan 105. De belastingring 118 heeft bij voorkeur een bovenste lichaam van ringvormige vormgeving en een radiaal naar buiten verlopende schouder of flens 123 om zijn ondereinde, die tezamen met de boringwand van het fleskaptegenhoudorgaan 105 een ringvormige ruimte begrenst waarin de tegenhoudring 109 is gelegen.
Het fleskaptegenhoudorgaan 105 heeft bij voorkeur een algemeen trechtervormige vormgeving met een 20 langgestrekte onderste tuit met een centrale axiale boring 117 daardoorheen, in verbinding met een boring 128 met grotere diameter door het trechterlichaam gevormde boveneinde. De centrale axiale boring 117 en de boring 128 met grotere diameter begrenzen daartussen een schouder 113. De bovenste buitenzijde 108 van het fleskaptegenhoudorgaan omvat een uitwendig van schroefdraad voorziene penverbinding welke past op de inwendige schroefdraad bij het onderste einde van de drukfles 99. Het kaptegenhoudorgaan 105 25 omvat ook een ringvormig uitgespaarde gleuf 129 binnen de boring 128 met grotere diameter voor het opnemen van tegenhoudring 109. Het fleskaptegenhoudorgaan omvat ook groeven voor het opnemen van 0-ringen om het kaptegenhoudorgaan 105 af te dichten tegen de drukfleshouder 99. Verder omvat het fleskaptegenhoudorgaan groeven 247, 248 voor het opnemen van 0-ringen 238, 239 om het kaptegenhoudorgaan 105 af te dichten tegen het tegenhoudorgaan 305 van de boorbeitel 50.
30 Het veermechanisme 215 wordt opgebouwd door het concave oppervlak 28 van iedere schotelveer 26 zo te oriënteren, dat het concave oppervlak is gelegen tegenover het concave oppervlak van een naburige veer, zodat de stapel schotelveren 122 wordt bepaald door paren tegenover elkaar liggende schotelveren. De stapel schotelveren 122 wordt dan binnen het fleskaptegenhoudorgaan 105 geplaatst om aan te komen liggen tegen het ondervlak van flens 123 van belastingring 118. De tegenhoudring 109, welke een 35 C-vormige of gespleten ring omvat, wordt opgesteld binnen de sleuf 129 in fleskaptegenhoudorgaan 105 om de schotelveren 122 en de belastingring 118 via de schotelveren binnen het kaptegenhoudorgaan 105 te borgen. Het fleskaptegenhoudorgaan 105 wordt dan geschroefd in de drukfleshouder 99 waarbij schouder 130 de belastingring 118, via de schotelveren, in contact dwingt met de belastingflens 103, en de stapel schotelveren 122 onder druk plaatst.
40 Nog steeds verwijzend naar figuren 8A en 9 zijn het fleskaptegenhoudorgaan 105, de schotelveren 26, de belastingring 118 en belastingflens 103 alle elektrisch geleidend en vormen deel van een stroombaan vanaf de antenne 25 naar de geleidende ring 112 op het ondereinde van de sensormoduul 125. Zoals later zal worden besproken omvat de rest van de stroombaan het antennescherm 65, het hulpstuk 200 en de ankerpennen 257.
45 4. Sensorcircuit
Nu verwijzend naar figuur 13, omvat het EM-sensormoduulcircuit 300 bij voorkeur een microprocessor 250, een zender 205 en ontvanger 230, die beide elektrisch aansluiten op de sensorantenne 25, signaal-conditioneercircuit 220, een geregelde vermogensbron 225, die verbonden is met het batterijpakket 55, en verschillende sensors voor het meten van omgevingsversnelling, helling en temperatuur.
50 Het EM-sensormoduulcircuit 300 omvat bij voorkeur de volgende sensors binnen de EM-sensormoduul 125: (1) drie hellingmetersensors, weergegeven als X, Y, Z in figuur 13; (2) drie omgevingsversnellingssen-sors, weergegeven als Αχ, Ay, Α^ en (3) een temperatuursensor 235. Verder kan het sensorcircuit 300 tot aan zes ingangssignalen ontvangen vanaf in de beitel opgestelde sensors. In de voorkeursuitvoèringsvorm meten de beitelsensors temperatuur en slijtage in de beitel.
55 Nog steeds verwijzend naar figuur 13 worden de uitgangssignalen van de hellingmetersensors en omgevingsversnellingssensors toegevoerd aan een gebruikelijk signaal conditionerend circuit 220 om de signalen te versterken en interferentie uit het signaal te verwijderen. De signalen worden tezamen met het 11 194557 uitgangssignaal van de temperatuursensor 235 toegevoerd aan een multiplexor 245. In de voorkeursuitvoeringsvorm omvat de multiplexor 245 een 8:1 multiplexor.
De multiplexor 245 kiest een van de uitgangssignalen in overeenstemming met gebruikelijke technieken en sluit het uitgekozen signaal aan op een 12-bit analoog-naar-digitaal omzetter 240. Het digitale signaal 5 van de analoog-naar-digitaal omzetter 240 wordt toegevoerd aan de microprocessor 250.
Op soortgelijke wijze worden de uitgangssignalen van de beitelsensors als ingangssignalen geleverd aan het signaal conditionerende circuit 220 en dan overgebracht naar een multiplexor 260. De multiplexor 260 kan een in cascade opgesteld multiplexorcircuit omvatten met twee 4:1 multiplexors, in serie met een 2:1 multiplexor.
10 Het uitgangssignaal van de multiplexor 260 wordt toegevoerd aan een 8 bit analoog-naar-digitaal omzetter 265, waarvan de uitvoer is aangesloten op de microprocessor 250. In het de voorkeur gegeven uitvoeringsvoorbeeld zijn multiplexor 260 en analoog-naar-digitaal omzetter 265 opgenomen als deel van de inwendige hardware en software van de microprocessor 250.
De ontvanger 230 is elektrisch aangesloten op antenne 25 voor het opnemen van bedieningssignalen 15 vanaf de EM-regelmoduul 40. De uitgang van de ontvanger 230 is elektrisch aangesloten op de ingang van de multiplexor 260, welke in het de voorkeur gegeven uitvoeringsvoorbeeld opgenomen is in de microprocessor 250. Het bedieningssignaal wordt omgezet in een digitaal signaal in analoog-naar-digitaal omzetter 265 en wordt dan door de microprocessor 250 behandeld om de vanaf de regelmoduul 40 overgebrachte boodschap terug te winnen.
20 Op soortgelijke wijze worden de signalen van de EM-moduulsensors en beitelsensor gedigitaliseerd en verwerkt door de microprocessor 250 en de behandelde signalen worden dan in een geheugen opgeslagen totdat zij benodigd worden. De verwerking omvat bij voorkeur het opmaken en coderen van de signalen om de bitafmeting van het signaal te minimaliseren. Aanvullend geheugen kan zijn opgenomen in het sensor-circuit 300 om al de waargenomen signalen op te slaan voor terugwinning indien de sensormoduul 125 25 wordt teruggehaald uit het boorgat.
Indien het eenmaal is bepaald dat de behandelde sensorsignalen naar boven in het boorgat moeten worden overgebracht, hetgeen bij voorkeur is op commando van de regelmoduul 40, wint de microprocessor 250 enige of alle behandelde signalen terug, voert enige aanvullende verwerking of decodering uit, zoals noodzakelijk kan zijn en geeft het gewenste signaal af aan de zender 205. De zender 205 is elektrisch 30 aangesloten op antenne 25 en verschaft een signaal voor de antenne 25, met een frequentie bepaald door de EM-sensormicroprocessor, welke op zijn beurt de overbrenging van een EM-signaal veroorzaakt, dat wordt ontvangen bij de regelantenne 27.
Vermogen voor het EM-sensorcircuit 300 wordt verkregen vanuit de geregelde vermogensvoorraad 225. De vermogensvoorraad 225 is aangesloten via het batterijpakket 55 en ontvangt daarvan gelijkstroom-35 vermogen. De vermogensvoorraad 225 zet het batterijvermogen om op een acceptabel niveau voor gebruik door de digitale circuit. In de voorkeursuitvoeringsvorm levert de batterij 55 6,8 volt gelijkstroom.
5. Antenne
Nu verwijzend naar figuren 6,8A en 8B is een sensorantenne 25 aangebracht op de buitenzijde van het hulpstuk 200, op ringvormige schouder 221. De met omzetter gekoppelde, geïsoleerde spleetantenne 25 is 40 dus blootgesteld aan de boorsuspensiestroom binnen de putboring.
Zoals in de techniek algemeen bekend is omvat de omzetter een kern 63 en een om de kern gewikkelde winding 60. De kern 63 van de antenne 25 is bij voorkeur vervaardigd uit een hoog permeabel materiaal, zoals een ijzer/nikkel legering. In de de voorkeur gegeven constructie is de legering gevormd in gelamineerde platen die bedekt zijn met isolatie, zoals magnesiumoxide, gewikkeld om een doom voor het vormen 45 van de kern, en met warmte behandeld voor maximale aanvankelijke permeabiliteit.
Nog steeds verwijzend naar figuur 6 is de elektrische geleider 60 om de kern 63 gewikkeld voor het vormen van de windingen van de antenne 25. In het de voorkeur gegeven uitvoeringsvoorbeeld omvat de geleider 60 een dunne koperen strip, met een breedte van ongeveer 3,2 mm en een dikte van ongeveer 0,05 mm, ommanteld met een geschikt diëlektrisch materiaal.
50 Weer verwijzend naar figuren 6, 8A en 8B is de sensorantenne 25 bij voorkeur onder vacuüm opgesloten in een isolerende epoxy en opgesteld nabij de schouder 221 van hulpstuk 200. De elektrische geleider 60 verloopt door de epoxy om elektrisch aan te sluiten op de contactsteel 186 van de drukdoorvoer 190. Een ringvormige beschermende afdekking of scherm 65 neemt de antenne 25 op.
De beschermende afdekking 65 is bij voorkeur vervaardigd uit staal of enig ander geschikt geleidend 55 materiaal en de antenne 25 is gehecht aan de afdekking of scherm 65 door een geschikte isolerende epoxy. De elektrische geleider 60 verloopt, nadat hij om kern 63 is gewikkeld, door de epoxy en sluit aan op het scherm 65. De beschermende afdekking of scherm 65 is op zijn plaats op het hulpstuk 200 gelast of op 194557 12 andere wijze bevestigd. Het kan gewenst zijn het inwendige van het scherm 65 te isoleren van de putboringomgeving door geschikte afdichtingen of andere isoleermiddelen.
6. Verbindingssamenstel
Nu verwijzend naar figuur 9 voorziet een bij het ondereinde van de EM-sensormoduul 125 aangebracht 5 verbindingssamenstel 280 in de elektrische verbinding tussen de boorbeitel 50 en de EM-sensormoduul 125. Het verbindingssamenstel 280 is bij voorkeur vervaardigd om aansluiting of loskoppeling van beitelsen-sors in een terreinomgeving, zoals vereist voor het onderling verwisselen van boorbeitels, EM-sensormodules en/of batterijpakketten, toe te staan.
Het verbindingssamenstel 280 omvat bij voorkeur een hulpverbindingshulpsamenstel 315, samenhan-10 gend met het sensorhulpstuk 200, en een beitelverbindingshulpsamenstel 335, samenhangend met de boorbeitel 50. Het hulpverbindingshulpsamenstel 315 omvat bij voorkeur het mannetjesgedeelte van een verbindingsorgaan 320, een schroefveer 270, een aanpasstuk 287, een belastingflens 296 en een tegenhoudring 289.
Het aanpasstuk 287 is bevestigd aan het cilindrisch lichaam 106 van belastingflens 103 door een bout 15 291. De bout verloopt door een langssleuf 277 in het lichaam 106 van belastingflens 103 en is opgenomen in een van schroefdraad voorziene uitsparing in het aanpasstuk 287. Ofschoon bevestigd aan belastingflens 103 kan het aanpasstuk 287 in lengterichting bewegen indien de bout 291 in de sleuf 277 beweegt.
De schroefveer 270 omgeeft de belastingflens 103, met zijn boveneinde dragend tegen het flensgedeelte 39 van belastingflens 103. De schroefveer 207 is gelegen binnen de schotelveren 122 en strekt zich uit in 20 de centrale boring van het fleskaptegenhoudorgaan 105. De belastingflens 296 omgeeft het aanpasstuk 287, en het radiaal naar buiten verlopende flensgedeelte 271 van belastingflens 296 ligt aan tegen de onderzijde van schroefveer 270. De tegenhoudring 289 ligt aan tegen en ondersteunt de belastingflens 296 en is op zijn plaats bevestigd in een uitsparing in het uitwendig oppervlak van aanpasstuk 287.
Indien de boorbeitel 50 geheel aangebracht is op het sensorhulpstuk 200, draagt het tegenhoudorgaan 25 305 van de boorbeitel 50 tegen de tegenhoudring 289, waardoor de bout 291 wordt gedwongen om in langsrichting omhoog te schuiven in sleuf 277. Indien de bout 291 omhoog beweegt, beweegt ook het aanpasstuk 287 en belastingflens 296 omhoog, waardoor de schroefveer 270 onder druk wordt geplaatst.
Op deze wijze is het verbindingssamenstel verend belast.
Het mannetjesgedeelte van het verbindingsorgaan 320 is bevestigd binnen de centrale boring van 30 aanpasstuk 287 door een steunflens 282, waarvan het flensgedeelte 289 is gelegen in schouder 290 van aanpasstuk 287 en een grendelring 283, die draagt tegen flensgedeelte 298. De grendelring 283 heeft een trapgewijze inwendige en uitwendige vormgeving. Het uitwendige gedeelte van de grendelring 283 is van schroefdraad voorzien om aan te grijpen op inwendige schroefdraad in het onderste dooseinde van aanpasstuk 287. De grendelring 283 sluit een uitwendig uitstekende flens 287 op het mannetjesgedeelte 35 van het verbindingsorgaan 320 op tussen zijn inwendige schouder en het onderste flensgedeelte 298 van steunflens 282. Het mannetjesgedeelte van het verbindingsorgaan 320 omvat pencontacten bij zijn boveneinde, die elektrisch aansluiten op een harnas van geïsoleerde elektrische geleiders 307, welke op hun beurt aansluiten op het verbindingsorgaan 288 van de EM-sensormoduul 125.
Het beitelverbindingshulpsamenstel 235 omvat bij voorkeur een tegenhoudorgaan 305, een het 40 vrouwtjesgedeelte van een verbindingsorgaan 285 vastzettend opneemorgaan 310, een koppelings-verbindingsorgaan 312, een hoge drukdoorvoer 317 en een contactblok 302.
Het koppelingsverbindingsorgaan 312 is gedeeltelijk gelegen binnen de boorbeitel 50 en omvat een grijpoppervlak 322, groeven 326, 327 en een inwendige boring 344 langs zijn langshaiDijn. Het contactblok 302 is in de boorbeitel 50 bevestigd binnen de inwendige boring 324 van het koppelingsverbindingsorgaan 45 312. Het contactblok 302 neemt elektrische geleiders op, die aansluiten op de zes sensors in de boorbeitel 50.
Het opneemorgaan 310 is gedeeltelijk gelegen binnen de inwendige boring 324 van het koppelingsverbindingsorgaan met het ondereinde van het opneemorgaan 310 dragend tegen het contactblok 302. Het boveneinde van het opneemorgaan 310 steekt uit de inwendige boring 324 om binnen het tegenhoudorgaan 50 305 te liggen. Het opneemorgaan 310 omvat een centrale boring 322 waarin het vrouwtjesgedeelte van het verbindingsorgaan 285 en drukdoorvoer 317 zijn gelegen.
Twee 0-ringen 333, 334 zijn gelegen in groeven 313, 314 in doorvoer 317 om de doorvoer 317 binnen de centrale boring 322 van het opneemorgaan 310 af te dichten. De drukdoorvoer 317 sluit aan op een elektrische geleider 329 bij zijn boveneinde en op contactblok 302 bij zijn ondereinde, en omvat een 55 contactsteel voor het verschaffen van een elektrische verbinding tussen de geleider 329 en het contactblok 302. De geleider 329 sluit elektrisch aan op het vrouwtjesgedeelte van het verbindingsorgaan 285.
Het tegenhoudorgaan 305 omvat een axiale boring, die zich in lengterichting daardoorheen uitstrekt en 13 194557 waarin het opneemorgaan 310 en verbindingsorgaan 285 zijn gelegen. Het tegenhoudorgaan omvat ook een aantal 0-ringen bevattende groeven en een legeroppervlak 328 bij zijn boveneinde.
Indien de boorbeitel 50 is aangesloten op het sensorhulpstuk 200 verloopt tegenhoudorgaan 305 binnen de centrale boring 117 van fleskaptegenhoudorgaan 105, met he bovenste eindoppervlak van tegenhoud-5 orgaan 305 aangrijpend op de tegenhoudring 289, waardoor wordt veroorzaakt dat de belastingflens 296 omhoog beweegt met aanpasstuk 287 en bout 291 onder het onder druk plaatsen van schroefveer 270. Tegelijkertijd past het vrouwtjesgedeelte van het verbindingsorgaan 285 op het mannetjesgedeelte 320 onder het voltooien van een elektrische verbinding tussen de beitel 50 en het hulpstuk 200.
Het verbindingssamenstel 280 wordt bij voorkeur in een droge omgeving gehouden, beschermd tegen 10 werkdrukken van de omgeving. Verder is het verbindingssamenstel 280, zoals beschreven, bij voorkeur verend belast voor het behouden van de samenhang van de verbinding met de boorbeitel. Het verbindingssamenstel 280 is elektrisch verbonden met het EM-sensormoduulsamenstel 125. De bedrading van het verbindingsorgaan en geleidervormgeving staan aansluiting en loskoppeling van het verbindingsorgaan toe terwijl de moduul wordt bekrachtigd, zonder enige beschadiging aan de EM-sensormoduul 125 te veroorza-15 ken.
7. Werking van EM-sensor
Nu verwijzend naar figuren 6, 8A, 8B en 13 functioneert de EM-sensormoduul 125 voor het ontvangen van commando’s van de regelmoduul 40 via de EM korte stap verbinding en verkrijgt gegevenssignalen vanaf de verschillende sensors in de sensormoduul 125 en de boorbeitel. De sensormoduul 125 codeert en 20 formeert de gegevens, zoals noodzakelijk en brengt de gegevens over naar de regelmoduul 40.
De stroombaan tussen de EM-sensormoduul 125 en sensorantenne 25 is als volgt. De zender 205 (en ontvanger 230) sluiten via een (niet weergegeven) geleider aan op het vrouwtjesopneemorgaan 76 en de EM-sensormoduul 125. Een banaanmantelverbindingsorgaan 135, die uitsteekt vanaf isolatie-orgaan 161, past op het vrouwtjesopneemorgaan 76. Het banaanmantelverbindingsorgaan 135 sluit aan op de in het 25 isolatie-orgaan 161 ingebedde elektrische geleider 115 en sluit aan op een vrouwtjesopneemorgaan 192. Banaanmantelverbindingsorgaan 149 past op het opneemorgaan 192 en sluit aan op de contactsteel 186 in de drukdoorvoer 190. De contactsteel 186 sluit aan op de elektrische geleider 60, welke verloopt door de epoxy en is gewikkeld om de ringvormige kern 63. De geleider 60 verloopt door de epoxy om aan te sluiten op het beschermende schild 65.
30 Stroom keert terug naar de sensormoduul door te lopen vanaf het schild 65 naar het hulpstuk 200 via de ankerpennen 257, naar de drukfleshouder 99. De stroom beweegt door de houder 99 naar kaptegenhoud-orgaan 105, schotelveren 122, belastingring 118 en laadflens 103, terug in de sensormoduul 125 naar een geschikte aarding binnen de sensormoduul 125.
35 B. Regelhulpstuk
Nu verwijzend naar figuren 3,10A, 10B, 10C, 11 en 12 omvat het in overeenstemming met de voorkeursuitvoeringsvorm vervaardigde regelhulpstuk en zend- en ontvangerhulpstuk 45, met een daarop aangebrachte regelantenne 27 en een regelmoduul 40, die aangrijpt op en zich uitstrekt vanaf het zend- en ontvangerhulpstuk 45. In de voorkeursuitvoeringsvorm is een beschermingshulpstuk 70 aangebracht aan de 40 onderzijde van het zend- en ontvangerhulpstuk 45.
1. Zend- en ontvangerhulpstuk
Het zend- en ontvangerhulpstuk 45 omvat bij voorkeur een standaardpenverbinding 81 bij het onderste einde 83, welke met schroefdraad aangrijpt op een doosverbinding 94 op de bovenzijde van het beschermingshulpstuk 70. Het boveneinde 97 van het zend- en ontvangerhulpstuk 45 omvat ook bij 45 voorkeur een penverbinding 93 voor passing op een sensorhulpstuk 80, zoals een gamma, weerstand of gewicht-op-beitel hulpstuk. Alternatief kan het zend- en ontvangerhulpstuk 45 met zijn boven- of ondereinde passen op een gastheerhulpstuk, een telemetriehulpstuk, zoals een boorsuspensie-impulsorgaan of met een boorkraag. Het onderste einde van het beschermhulpstuk (niet weergegeven) omvat een standaardpenverbinding welke bij voorkeur aangrijpt op de boorsuspensie-impulskraag 35.
50 Nu verwijzend naar figuren 10A, 10B, 10C en 11 heeft het zend- en ontvangerhulpstuk 45 bij voorkeur een algemeen cilindrische uitwendige vormgeving, behoudens dat hulpstuk 45 een dubbele schouder 48, 49 en twee ribgedeelten 51, 53 in zijn middengedeelte omvat. De dubbele schouder omvat bij voorkeur een ringvormige gekromde schouder 48 nabij een ringvormige hoekige schouder 49. Gebogen schouder 48 neemt bij voorkeur de regelantenne 27 op, terwijl de hoekige schouder 49 een antennescherm 75 opneemt. 55 De ribgedeelten 51, 53 omvatten beiden langsribben voor het verkrijgen van een grijpoppervlak gedurende het gereed maken en ook om te voorzien in ondersteuning voor het hulpstuk 45 onder in het boorgat.
Het inwendige van het zend- en ontvangerhulpstuk 45 omvat een centrale boring 62, die zich vanaf het 194557 14 onderste einde ongeveer halverwege langs de langslengte van het hulpstuk 45 uitstrekt naar een punt ongeveer in het gebied van de dubbele schouder 48, 49. Zes boringen 59, die op gelijke afstand van elkaar zijn geplaatst in een cirkelvormig patroon, verlopen in langsrichting van het bovenste eindvlak 67 van de penverbinding 93 van zend- en ontvanghulpstuk 45 om de centrale boring 62 te snijden, leder van de 5 boringen 59 is dus in fluïdumverbinding met de centrale boring 62.
Het bovenste eindvlak 67 van zend- en ontvangerhulpstuk 45 omvat bij voorkeur een daarvan verlopende holle as 57. De holle as 57 verloopt vanaf het midden van bovenste eindvlak 67, binnen het door boringen 59 bepaalde cirkelvormige patroon. De as 57 omvat een onderste segment 64 met grotere diameter, dat door een schouder gescheiden is van een bovenste gedeelte 68 met kleinere diameter. Het segment 64 met 10 grotere diameter is integraal verbonden met het zend- en ontvangerhulpstuk 45 en omvat bij de basis uitsparingen om zijn uitwendig oppervlak voor het opnemen van 0-ringen, en uitwendige schroefdraad voor passing op de EM-regelmoduul 40. Het segment 68 met kleinere diameter omvat ook uitwendige schroefdraad.
Een kleine boring 77 verloopt in langsrichting door het hart van de holle as 57, en door het hart van het 15 zend- en ontvangerhulpstuk 45 naar een punt nabij de centrale boring 62. Het zend- en ontvangerhulpstuk 45 omvat ook een boring 92, die vanaf de kleine boring 77 verloopt onder ongeveer een hoek van 45° om uit te komen bij een hellende uitsparing, die in verbinding staat met de gebogen schouder 48. Een drukdoorvoer 82, overeenkomend met doorvoer 190 in het sensorhulpstuk 200 is gelegen in boring 92 voor het verschaffen van een elektrische verbinding vanaf boring 77 naar de regelantenne 27.
20 Een elektrische geleider 86, die bij voorkeur een uit meerdere draden bestaande, in teflon ommantelde koperen draad omvat, is in de boring 77 opgesteld. De geleider 86 sluit aan op het inwendig contact van de drukdoorvoer 82 en strekt zich over de lengte van de boring 77 uit naar een andere drukdoorvoer 91 op een plaats binnen de holle as 57. Bij voorkeur is katoen aangebracht binnen de boring 77 om isolatie te verschaffen en de geleider te ondersteunen om een overmatige trilling te verhinderen.
25 Drukdoorvoer 91 past binnen een ringvormige groef in boring 77, waarbij een 0-ring een juiste afdichting tussen de doorvoer 91 en de wand van de boring 77 waarborgt. De doorvoer 91 sluit aan op een elektrische geleider 216, welke op zijn beurt is aangesloten op de EM-regeimoduul 40.
2. EM-regelmoduul en huis
Nu verwijzend naar figuren 10A, 10C en 12 is de EM-regelmoduul 40 bij voorkeur opgenomen binnen 30 een langgestrekte druktrommel 175, en mechanisch en elektrisch verbonden met het zend- en ontvangerhulpstuk 45 door een verbindingssamenstel 180. De druktrommel 175 heeft een gelijkmatige buisvormige vormgeving, bij voorkeur vervaardigd uit staal of een overeenkomstig geleidend materiaal. In het de voorkeur gegeven uitvoeringsvoorbeeld zijn zowel het bovenste einde 177 en het onderste einde 178 van de trommel 175 inwendig van schroefdraad voorzien, met een ringvormige lip in langsrichting naar buiten 35 verlopend vanaf het van schroefdraad voorziene gebied.
De EM-regelmoduul 40 is bij voorkeur vervaardigd uit aluminium, met de uitwendige oppervlakken zwart geanodiseerd. Het aluminium huis is bij voorkeur opgenomen in een afdekbuis uit glasvezels of een soortgelijke isolatie-orgaan. De regelmoduul 40 neemt het EM-regelcircuit op.
De EM-regelmoduul 40 omvat bij voorkeur een MDM-verbindingsorgaan 195 bij zijn onderste einde voor 40 aansluiting op de elektrische geleider 216 van de regelantenne 27 en een elektrisch verbindingsorgaan 217 bij zijn bovenste einde voor aansluiting op een gastheermoduul of ander MWD gereedschap. Het onderste einde van de regelmoduul omvat twee gebogen uitsteeksels 196 welke het verbindingsorgaan 195 opnemen.
Het onderste einde van de EM-regelmoduul omvat een naafgedeelte met eerste en tweede radiaal 45 verlopende ringvormige flenzen 172, 174. De eerste ringvormige flens 172 omvat twee boorgaten 173, die daardoorheen verlopen. In de de voorkeur gegeven uitvoeringsvorm zijn de twee boorgaten 173 opgesteld buiten de gebogen gedeelten 196 en ten opzichte van elkaar over ongeveer 160° versprongen. Een gespleten tegenhoudring 187, die om zijn buitenzijde een 0-ring 184 opneemt, is opgesteld tussen tweede ringvormige flens 174 en het lichaam van de regelmoduul.
50 De regelmoduul 40 omvat ook twee naburige ringvormige groeven 197, die ieder een 0-ring 153 opnemen. Een ringvormig naafgedeelte 164 is ook aangebracht bij het bovenste einde van de moduul. Naaf 164 neemt een gespleten tegenhoudring 137, die een 0-ring 244 bevat, op.
3. Regelcircuit
Verwijzend naar figuur 10A sluit de EM-regelmoduul 40 bij voorkeur aan op de gastheermoduul door een 55 enkele geleiderdraadlijnkabel. Nu verwijzend naar figuur 14 omvat de regelmoduul 40 een signaal gereedmakend circuit voor het conditioneren van de EM-gegevenssignalen, die worden ontvangen vanaf de sensormoduul via antenne 27. De geconditioneerde signalen worden toegevoerd aan een signaal- 15 194557 behandelingsorgaan, welke de gecodeerde signalen van de sensormoduul ontcijferd. De gecodeerde signalen worden dan naar behandelingsorgaan voor algemeen doel gestuurd, welke de gegevenssignalen overstuurt naar de gastheermoduul. De systeembehandelingsinrichting brengt ook de overbrenging van signalen via het overbrengingscircuit naar de sensormoduul op gang. Vermogen voor het regelmoduulcircuit 5 wordt door een batterijmoduul en een geregelde vermogenstoevoer geleverd.
Zoals weergegeven in figuur 15 omvat de EM-regelmoduul bij voorkeur een verbinding uit harde draad met de standaard bus van de gastheer-MWD-moduul, welke ook aansluit op alle andere MWD-sensors. Elektrisch vermogen voor de EM-regelmoduul wordt toegevoerd via de bus.
De regelmoduul brengt commandosignalen via de EM-gegevensschakel over naar de sensormoduul om 10 de sensormoduul te bevelen gegevens te verwerven van sommige of alle sensors, die in de moduul of beitel zijn opgenomen en die gegevens terug over te brengen (via dezelfde EM-schakel). Deze gegevens worden bij voorkeur gemiddeld, opgeslagen en/of geformatteerd voor presentatie aan de commandomoduul, welke op zijn beurt de gegevens opnieuw formatteerd voor opname in een boorsuspensie-impulsoverbrengingswijze indeling en gegevensstroom. Gegevens van hogere frequentie die moeten worden 15 opgeslagen in de onder in het boorgat gelegen regelmoduul, kunnen worden gekopieerd en/of teruggespeeld aan het oppervlak nadat de moduul uit het gat is getrokken.
Verbinding wordt tot stand gebracht met de EM-sensormoduul zoals hierboven in deel II. A, 7 ’’werking van EM-sensor” is beschreven.
4. Samenstel voor onderlinge verbinding 20 Het samenstel 180 voor onderlinge verbinding verbindt mechanisch en elektrisch het zend- en ontvanger-hulpstuk 45 met de EM-regelmoduul 40. Nu verwijzend naar figuren 10A, 10B en 10C is het in overeenstemming met de voorkeursuitvoeringsvorm vervaardigde samenstel 180 voor onderlinge verbinding geheel gelegen binnen het drukvat 175 en voorzien van een aanpasstuk 207, een afstandsorgaan 223, een klem 211, een verbindingsorgaan 195, een binnen een polytetrafluorethyleen (’teflon’) buis 204 opgesteld 25 elektrisch verbindingsorgaan 216, een drukdoorvoer 91 en een een klem omvattende schroef met ronde kop.
Zoals hierboven vermeld omvat de bovenste zijde van het zend- en ontvanghulpstuk 45 een holle as 57 die een onderste segment 64 met grotere diameter omvat, dat van een bovenste gedeelte 68 met kleinere diameter is gescheiden door een schouder. De drukdoorvoer 91 is aangebracht binnen de boring 77 van 30 holle as 57 en aangesloten op de elektrische geleider 86 van de regelantenne 27. De elektrische geleider 216 sluit bij een einde aan op de bovenzijde van doorvoer 91 en bij het tegenoverliggende einde aan het verbindingsorgaan 195. Het verbindingsorgaan 195, dat bij voorkeur een MDM-verbindingsorgaan omvat, is gelegen binnen een isolerende polytetrafluorethyleen (‘teflon’) buis 204.
Het afstandsorgaan 223 omvat bij voorkeur een lichaam en een flens, met het lichaamsgedeelte de buis 35 204 binnen de holle as 57 omgevend, en dragend tegen een tussen het ondereinde van het afstandsorgaan en de doorvoer 91 opgestelde belastingring.
Het aanpasstuk 207 omvat bij voorkeur een gedeelte 231 met volledige diameter bij het ondereinde, een gedeelte 232 met verkleinde diameter bij het boveneinde, en een tussen gedeelten 231 en 232 begrensde groef 233. Het gedeelte 231 met volledige diameter omvat inwendige schroefdraad voor passing op de 40 uitwendige schroefdraad op het segment 68 met kleinere diameter van holle as 57. De overgang tussen het gedeelte 232 met verkleinde diameter en de groef 233 omvat een hellend oppervlak.
De klem 211 klemt het aanpasstuk 207 op de schouder 181 van regelmoduul 40 en omvat een uitsteeksel 241 op het in groef 233 gelegen ondereinde, en een uitsteeksel 243 op het tussen flenzen 172, 174 gelegen boveneinde. De klem 211 wordt in positie gehouden door het inwendige oppervlak van de 45 druktrommel.
De schroef 277 met ronde kop is aangebracht op het inwendige van het gedeelte 232 met verkleinde diameter van aanpasstuk 207 en omvat een geïsoleerde elektrische draad, die aansluit op het MDM-verbindingsorgaan 212.
5. Regelantenne 50 Nu verwijzend naar figuren 3, 6 en 10B is een sterk op de antenne 25 voor de sensormoduul 125 lijkende regelantenne 27 aangebracht op de buitenzijde van het zend- en ontvangerhulpstuk 45. Het grootste verschil tussen de regelantenne 27 en de EM-sensorantenne 25 is dat de regelantenne 27 bij voorkeur twee afzonderlijke kernen 252, 254 omvat, die een kleinere breedte hebben dan de in de sensorantenne 25 gebruikte kern 63. De kernen 252, 254 zijn in het de voorkeur gegeven uitvoerings-55 voorbeeld smaller omdat er minder ruimte beschikbaar is tussen het zend- en ontvanghulpstuk 45 en de wand van het boorgat, dan bestaat tussen het sensorhulpstuk 200 en de boorgatwand.
Omdat de kernen 252, 254 smaller moeten zijn dan kern 63 om in de put te passen, wordt bij voorkeur 194557 16 een kern die axiaal langer is gebruikt om de dunnere kern te compenseren. Voor het gemak van vervaardiging wordt het de voorkeur gegeven dat twee korte kernen 252, 254 worden gebruikt voor het verkrijgen van de noodzakelijke lengte.
De kernen 252, 254 zijn aangebracht op de schouder 48 van het zend- en ontvangerhulpstuk 45. In het 5 de voorkeur gegeven uitvoeringsvoorbeeld is een isolatie-orgaan 258 opgesteld tussen de gestapelde kernen 252, 254. Een elektrische geleider 264 is gewikkeld om de gestapelde kernen 252, 254, zodat kernen 252, 254 als een enkele kemconstructie zijn behandeld.
De kernen 252, 254 zijn bij voorkeur vervaardigd uit een sterk permeabel materiaal zoals een ijzer/ nikkellegering. In de voorkeur gegeven constructie is de legering gevormd in gelamineerde platen, bedekt 10 met isolerend materiaal, zoals magnesiumoxide, gewikkeld om een doorn voor het vormen van de kernen, en met warmte behandeld om aanvankelijke permeabiliteit maximaal te maken.
In het de voorkeur gegeven uitvoeringsvoorbeeld omvat de geleider 264 een dunne koperen strip met een breedte van ongeveer 3,2 mm en een dikte van ongeveer 0,05 mm, ommanteld in een geschikt diëlektrisch materiaal.
15 De regelantenne 27 is bij voorkeur onder vacuüm opgesloten in een isolerende epoxy 229 en opgesteld nabij de schouder 48 van zend- en ontvangerhulpstuk 45. De elektrische geleider 264 verloopt door de epoxy 229 om elektrisch aan te sluiten op de drukdoorvoer 82.
Een ringvormige beschermende afdekking of scherm 75, opgesteld in schouder 49 van het zend- en ontvangerhulpstuk 45 neemt de antenne 27 op. De beschermende afdekking 75 is bij voorkeur vervaardigd 20 uit staal of enig ander geschikt geleidend materiaal en de antenne 27 is aan de afdekking of scherm 75 gehecht door een geschikte isolerende epoxy 279. De elektrische geleider 264 verloopt, nadat hij om kernen 252, 254 is gewikkeld door epoxy 279 en sluit aan op het scherm 75. De beschermende afdekking of scherm 75 is op het zend- en ontvangerhulpstuk 45 op zijn plaats gelast of op andere wijze bevestigd. Het inwendige van het scherm 75 kan weer van de omgeving van de omgevende putboring zijn geïsoleerd.
25 C. MWD gastheermoduul
Nu verwijzend naar figuren 3 en 15 omvat de MWD gastheermoduul 10 bij voorkeur een op een microprocessor gebaseerd regelorgaan voor het bewaken en regelen van al de MWD onderdelen onder in het boorgat. Zoals in de voorkeursuitvoeringsvorm van figuur 15 weergegeven, ontvangt dus de gastheermoduul 30 gegevenssignalen van de EM-regelmoduul, een gammasensor, een richtingsensor, een weerstandsensor, een gewicht-op-beitel/koppel-op-beitel (”WOB/TOB”) sensor, en andere onder in het boorgat gebruikte MWD-sensors, die allen hun eigen microprocessor omvatten. Een bus is bij voorkeur aangebracht om de MWD gastheermoduul te verbinden met de EM-regelmoduul en de andere MWD-sensors. Verder omvat de gastheermoduul bij voorkeur een batterij om de gastheermoduul, en de MWD-sensors door de buslijn van 35 vermogen te voorzien.
De gastheermoduul brengt bij voorkeur regelsignalen over aan de sensors, zoals de EM-regelmoduul, de sensors aanzettend om gegevenssignalen te verkrijgen en/of te verzenden. De gastheermoduul ontvangt de gegevenssignalen en voorziet in enig aanvullend formatteren en coderen van de gegevenssignalen, hetgeen noodzakelijk kan zijn. In het de voorkeur gegeven uitvoeringsvoorbeeld omvat de gastheermoduul bij 40 voorkeur aanvullend geheugen voor het opslaan van de gegevenssignalen voor latere terugwinning. De gastheermoduul is bij voorkeur verbonden met een boorsuspensie-impulsorgaan en brengt gecodeerde gegevenssignalen over aan het boorsuspensie-impulsorgaan, die via het boorsuspensie-impulsorgaan naar het oppervlak worden verzonden.
45 D. Boorbeitel
Nu verwijzend naar figuren 3 en 7 kan de boorbeitel 50 zijn voorzien van ieder aantal gebruikelijke beitels, waaronder een rollenconus (of rots) beitel of een beitel van het diamanttype. Ter wille van deze bespreking zal een rotsbeitel worden besproken. De vakman zal zich realiseren, dat de leer ook toepasbaar is bij andere types boorbeitels. Onafhankelijk van het gebruikte type beitel omvat de beitel bij voorkeur een 50 lichaam 50 en een beitelvlak 145, dat dienst doet als het boor- of snijmechanisme. Zoals algemeen bekend is voor de vakman kan het beitelvlak 145 aanzienlijk variëren afhankelijk van het gebruikte type beitel en de hardheid van de formatie.
Nu verwijzend naar figuren 7 en 9 omvat de boorbeitel 50 bij voorkeur een penverbinding 136 aan zijn boveneinde, dat aansluit op het sensorhulpstuk 200. De beitel 50 omvat bij voorkeur een boring 156 aan 55 zijn boveneinde, welke over een korte afstand in het lichaam 150 van de beitel 50 verloopt.
In overeenstemming met de in figuur 7 afgebeelde voorkeursuitvoeringsvorm omvat de boorbeitel 50 een aantal temperatuursensors 170 voor het bewaken van de werking van de beitel 50, een elektrisch contact- 17 194557 blok 302 en een in een verdeelstuk 162 opgenomen elektrisch harnas, dat de sensors 170 met het contactblok 302 verbindt. De temperatuursensors 170 bevatten bij voorkeur zes thermistors die in staat zijn tot het meten van temperaturen tussen 38°C en 316°C met een absolute nauwkeurigheid van ± 8°C. In overeenstemming met de voorkeursuitvoeringsvorm worden doorlopend monsters genomen met 10 5 seconden tussenruimte en de gemiddelden van de genomen monsters gedurende de tussenruimte worden berekend. De temperatuursensors 170 zijn strategisch aangebracht in de boorbeitel 50, bij voorkeur dicht bij het beitelvlak 145. Al de temperatuursensors 170 en samenhangende elektrische bedradingen 138, 139 zijn opgenomen binnen geïsoleerde buizen 191 met kleine diameter, die zijn afgedicht en in staat zijn de uitwendige boorsuspensiedruk en corrosie te weerstaan. De buizen 191 zijn gelegen in boringen 179, die 10 zich uitstrekken door het lichaam 150 van beitel 50. In de voorkeursuitvoeringsvorm zijn de geïsoleerde buizen 191 opgenomen binnen een stalen buis 157. Twee elektrische draden 138,139 zijn bij voorkeur aangesloten op iedere sensor 170 voor het verkrijgen van een signaalleiding en een retourleiding. De einden van bedrading 138,139 verlopen vanaf buizen 191 en zijn met hoge temperatuur gesoldeerd aan de thermistors 170. Beide thermistors 170 en de einden van de draden 138,139 zijn opgenomen in een 15 isolerende epoxy 143. Een plug 158 is gebruikt voor het afdichten van de boring 179.
Alternatief kunnen de sensors en draden lopen in een omgeving van niet-geleidend vet, dat is gecompenseerd op de druk van de boorsuspensie die anders dergelijke holtes zou vullen, of beschermd door een hybride-combinatie van deze twee methoden onder het gebruikmaken van afdichtingen en drukdoorvoeren, daar waar vereist.
20 De elektrische draden 138,139 van de sensors 170 verlopen naar een elektrisch harnas 165, dat is opgesteld in verdeelstuk 162. Het verdeelstuk 162 is aangebracht op de hartlijn van de boring 156 en omvat bij voorkeur een aantal openingen voor het opnemen van de elektrische draden 138, 139 vanaf ieder van de thermistors 170. De bedrading 138,139 van iedere sensor zijn fysisch samengebonden in het harnas 165 en aangesloten op een contactblok 302 en drukdoorvoerluik 317, dat bij voorkeur ten minste zeven pennen 25 of verbindingsorganen omvat. Indien slechts zeven verbindingsorganen zijn aangebracht in de doorvoer 317, dan worden zes van de verbindingsorganen gebruikt voor de zes signaallijnen naar de temperatuursensors 170 en een verbindingsorgaan wordt gebruikt als een terugvoerleiding of aarde. Indien slechts zeven lijnen zijn aangebracht, in overeenstemming met de voorkeursuitvoeringsvorm, dan bestaat dus een gemeenschappelijke aarde in het harnas 165 voor het aarden van de terugvoer van iedere thermistor 170. Het 30 verdeelstuk 162 is bij voorkeur in staat tot het uitwendig handhaven van de omgevingsdruk. De bevestigingsconstructie aan het ondereinde van het verdeelstuk 162 is bij voorkeur zodanig opgesteld, dat het kan worden aangepast aan een een middenstraat vereisende boorbeitel 50.
Het ondereinde van de doorvoer 317 sluit elektrisch aan op het contactblok 302, terwijl het boveneinde aansluit op geleider 329 (figuur 9), welke op zijn beurt aansluit op de vrouwtjeshelft van een verbindings-35 orgaan 285.
De voorgestelde inrichting kan worden gebruikt met alle beschikbare afmetingen rotsbeitels, diament-beitels of beitels met kunstdiamanten. In kleinere boorbeitels, waar de ruimte beperkter is, kan het noodzakelijk zijn de sensors 170 in het sensorhulpstuk 200 op te stellen. In aanvulling op gebruikmaken van temperatuursensors in de boorbeitel 50 kunnen ook slijtsensors en andere sensors worden gebruikt.
40 De lengte vanaf de penschouder naar het vlak van de beitel is bij voorkeur minder dan 33 cm. Sommige beitels, die langer zijn, zoals de diamentbeitels, zijn bij voorkeur gewijzigd om een nieuwe bovenschacht (met een penverbinding passend op het uitstekende hulpstuk of aandrijfas) te omvatten, of zijn alternatief gewijzigd voor het omvatten van een speciale kort bovenste schachtgedeelte en gebruiken een speciale beitelbreker, die de maatbladen draagt van de te vervangen beitel.
45 E. Impulskraag
Weer verwijzend naar figuren 3, 4 en 5 kan de impulskraag 35 door een wisselhulpstuk, een gebogen hulpstuk of een zwevend hulpstuk verbonden zijn met het motorsamenstel in overeenstemming met gebruikelijke technieken. Iedere gebruikelijke impulskraag kan in de voorgestelde inrichting worden gebruikt. 50 Alternatief kunnen andere afstandsmetingsystemen worden gebruikt voor het overbrengen van de van bitmotormoduul ontvangen gegevens naar het oppervlak. Ofschoon de impulskraag 36 in figuren 3, 4 en 5 is gelegen onder het regelzend- en ontvangerhulpstuk 45, is het voor de vakman duidelijk dat de impulskraag ook boven het regelhulpstuk kan zijn gelegen. De impulskraag kan bijvoorbeeld bovenop de boorkraag 85, afgebeeld in figuur 5, zijn gelegen of op een andere plaats boven regelhulpstuk 45 of gastmoduul 10.
194557 18 F. Systeemwerking
Verbinding tussen de sensormoduul 125 en de regelmoduul 40 wordt bewerkstelligd door elektromagnetische (EM) voortplanting door de omgevende, geleidende grond. Iedere moduul bevat zowel een overbrengend als een ontvangend circuit, hetgeen een twee-richting verbinding toestaat. In bedrijf wekt de 5 overbrengende moduul een gemoduleerde signaal op, bij voorkeur in het frequentiegebied van 100 tot 10.000 Hz. De signaalspanning wordt aangebracht over een geïsoleerde axiale spleet in de buitendiameter van het gereedschap, gerepresenteerd door de antennes, hetzij door transformatiekoppeling of door rechtstreekse aandrijving over een geheel geïsoleerde spleet in het samenstel.
De oppervlakgeleide EM-golf, opgewekt door de antenne, plant zich voort door de omgevende, 10 geleidende grond, vergezeld door een stroom in de metalen boorstreng. Indien de EM-golf zich voortplant langs de streng wordt hij gedempt door spreiding en verspreiding in de geleidende aarde in overeenstemming met de algemeen begrepen principes. Het algemeen bekende huideffect resulteert uit de verstrooiende demping, welke snel toeneemt met toenemende frequentie en geleidbaarheid. Daarom zal, indien geleidbaarheid van een formatie toeneemt (weerstand neemt af) de maximale frequentie met acceptabele 15 demping afnemen.
Tegelijkertijd reduceert toenemende geleidbaarheid de belastingweerstand over de spleten, waardoor het mogelijk wordt om hogere stroom te injecteren in de formatie voor een gegeven overbrengingsvermogen of omgekeerd hogere stroom beschikbaar te stellen aan de ontvanger. Verder verlaagt de gereduceerde belastingweerstand de onderbrekingsfrequentie tengevolge van de inductantie van een transformator-20 gekoppelde spleet, hetgeen efficiënte overbrengingwerking bij lagere frequenties toestaat. Omgekeerd neemt bij hogere weerstand de minimaal bruikbare frequentie toe, maar de gereduceerde demping staat werking bij hogere frequenties toe.
Aangezien de onderhavige inrichting bestemd is om te werken met weerstanden lopende over verschillende ordes van grootte, welke in een enkele punt kunnen optreden, is het duidelijk van voordeel en 25 mogelijk noodzakelijk te voorzien in werking over een breed gebied van frequenties. Het moet ook zelf-aanpassend zijn in het kiezen van de juiste werkingsfrequentie van tijd tot tijd indien de formatie-weerstand wijzigt.
De EM-sensor is ontworpen om de stroom-afname van het sensorbatterijpakket 55 minimaal te maken. Terwijl het gereedschap naar de bodem wordt gevoerd, is de EM-sensormoduul in een lage vermogens 30 "slaap” wijze. Iedere paar minuten schakelt een inwendige klok in de sensormicroprocessor 250 de processor 250 en zijn bijbehorend circuit gedurende een paar seconden in, lang genoeg om een vooraf bepaalde peilingsignaal van de regelmoduul 40 waar te nemen. Indien een dergelijk signaal niet wordt waargenomen door het EM-sensorcircuit gaan de microprocessor en bijbehorend circuit terug in de ’’slaap” wijze tot aan de volgende bekrachtigingsperiode.
35 Indien verbinding wordt gewenst door de regelmoduul 40, gebaseerd op enige conditie, zoals een vooraf bepaalde druk onder in het boorgat, boorsuspensiestroming, draaiing, enz., zal de commandomoduul periodieke overbrenging van peilingsignalen op gang brengen om antwoord van de sensormoduul te commanderen. In de voorkeursuitvoeringsvorm bestaan deze signalen uit overgebrachte impulsen van een paar seconden, afwisselend met ontvangstintervallen van een soortgelijke duur om te luisteren naar een 40 antwoord van de sensormoduul.
Iedere overgebrachte impuls concentreert energie bij alle kandidaatfrequenties (bij voorkeur vanaf 100 tot 10.000 Hz), bij voorkeur door een opeenvolging van frequentiestappen. Andere middelen voor het overbrengen van signalen bij de verschillende frequenties kunnen door de vakman worden gebruikt, waaronder een doorlopende frequentieveging zonder buiten de principes van de huidige inrichting te gaan.
45 Iedere overbreng/ontvangkringloop van de regelmoduul vindt plaats binnen de tijdsperiode dat de EM-sensormoduul ontvangt, waardoor regeloverbrenging gedurende sensorontvangst wordt gegarandeerd.
Bij het waarnemen van een peilingsignaal bepaalt de sensormoduul welke frequentie de beste signaal-ruisverhouding heeft en reageert door het overbrengen van een signaal naar de regelmoduul met die frequentie. Deze overbrenging gaat door voor een duur van ten minste een volle kringloop van regelmoduul-50 overbrenging, om te garanderen dat een signaal vanaf de sensormoduul wordt verzonden terwijl de regelmoduul luistert.
Indien eenmaal een twee-richting verbinding tot stand is gebracht, worden daaropvolgende overbrengingen geheel geregeld bij de meest voordelige frequentie. Indien verbinding wordt verbroken of indien condities onder in het boorgat wijzigen, keren beide modules terug naar de peiiingsroutine.
55 De sensormoduul 125 bewaakt bij voorkeur alle zes thermistors in de boorbeitel en alle in het sensor-hulpstuk 200 opgestelde sensors, en brengt aflezingen met betrekking tot iedere sensor over naar de regelmoduul 40, welke bij voorkeur sommige of al deze signalen overbrengt naar het oppervlak via de

Claims (10)

19 194557 gastheermoduul en boorsuspensie-impulsorgaan, met een maximale snelheid van eenmaal per iedere vijf minuten. Indien vereist wordt dat gegevens met een aanzienlijk hogere snelheid worden opgenomen dan door boorsuspensie-impulsen kunnen worden overgebracht, kunnen gegevens worden opgeslagen in een onder in het boorgat gelegen geheugen of de gegevens kunnen onder in het boorgat worden gesorteerd 5 en/of overgebracht naar het oppervlak met een snelheid die verenigbaar is met de mogelijkheden van de boorsuspensie-impulsen, of de mogelijkheden van het afstandsmetingoverbrengsysteem dat wordt gebruikt. Indien sensors worden in- en uitgeschakeld (voor besparing van batterijen) en indien een ’’inschakel" overgang instelperiode wordt vereist, wordt voldoende tijd verschaft, zodanig dat er geen van belang zijnd doen afwijken van de monstergemiddelden tengevolge van deze overgangen is. 10 De plaatsing van de sensormoduul onder de motor maakt het mogelijk gegevens te verkrijgen met betrekking tot een aantal van belang zijnde en van praktische toepassing zijnde parameters. Deze parameters omvatten schokken en trillingen in de hooromgeving, hellingshoek van het boorgat dicht nabij de bodem, en werktemperaturen en slijtage van beitel en motor. De sensormoduul neemt gegevens op, voert iedere vereiste middeling en formattering van de gegevens 15 uit en brengt deze gegevens langs motor (en misschien de boorimpulsie-overbrenger) over een afstand van ongeveer 15 meter, via een elektromagnetische (EM) schakel over naar de EM-regelmoduul, die is opgesteld nabij andere MWD-sensors, in overeenstemming met de in deel II, A,k 7, ’’Werking van EM-sensor” beschreven techniek. Deze regelmoduul voert op zijn beurt verdere vereiste vermindering, plaatselijke opslag en formattering van gegevens uit voor presentatie aan de onder in het boorgat opge-20 stelde MWD gastheermoduul, welke ook alle MWD-sensors onder in het boorgat regelt. De gastheermoduul formatteert of codeert alle via boorsuspensie-impulsen aan het oppervlak overgebrachte gegevens. De EM-gegevensschakel werkt met een snelheid tot aan ongeveer 1 Kbaud (1000 bits per seconde), terwijl de boorsuspensie-impulssnelheid ongeveer 1 bit per. seconde is. Tijdens bedrijf worden, indien de EM-sensormoduul 125 wordt geregeld door de EM-regelmoduul 40, alle 25 sensors (waaronder die in de beitel) van vermogen voorzien. De EM-sensormoduul 125 meet en verwerkt gegevens en brengt deze over via de EM-schakel. Onder deze omstandigheid zal het verwachte batterij-vermogen onttrokken uit het batterijpakket 55 ongeveer 2 Watt zijn. Vijfenzeventig procent van deze hoeveelheid wordt vereist om de drie versnellingsmeters (hellingmeter) van vermogen te voorzien. De vermogens-aan/uitverhouding voor de EM-sensor omvat bij voorkeur een maximum van een 30 gegevensverkrijgingsvolgorde, bestaande uit een opwarmperiode van 5 seconde en een monstemeem-periode van 1 seconde voor iedere vijf minuten van systeemwerking. Dit is gelijk aan een maximale vermogens-aan/uitverhouding van slecht 2%, met het gemiddelde vermogensvereiste van de hellingmeter slechts 30 mW (maximum) zijnde. Onder deze aannames is dan ook het totale vermogenvereiste voor het gehele systeem 530 mW. Dit staat in wederkerige betrekking met een 72 mA stroom onttrokken bij een 35 effectieve batterijpakketspanning van 7,4 volt. Indien het batterijpakket is verbonden met de EM-sensormoduul, doch zich in de ’’gereedstaan” bevindt waarbij hij een commando afwacht van de EM-regelmoduul, wordt het systeem niet geheel bekrachtigd, maar ”in slaap” gehouden. Het voor deze wijze van werking vereiste vermogen is slechts dat dat noodzakelijk is om de met zijn gereedstandfunctie samenhangende logica in leven te houden. Het systeem keert 40 normaal terug naar deze wijze van werking bij verbinding met het batterijpakket. Onder deze omstandigheden zal het verwachte batterijvermogenvereiste ongeveer 250 mW zijn. Dit correleert met een onttrokken stroom van ongeveer 34 mA bij de effectieve batterijpakketspanning van 7,4 volt. Deze onttrokken stroom komt overeen met een batterijlevensduurschatting (20 ampere uur gebruikend) van 588 uur. De de voorkeur gegeven werktemperatuur voor de batterijen ligt tussen 0°C en 150°C. 45
1. Op elektromagnetische communicatie gebaseerd systeem voor het onder in een boorgat overbrengen 50 van een elektromagnetisch gegevenssignaal in de aanwezigheid van een motororgaan onder in het boorgat, welk systeem is voorzien van onder het motororgaan aangebrachte middelen voor het waarnemen van parameters en voor het opwekken van een daarvoor indicatief uitgangssignaal, van onder het motororgaan aangebrachte overbrengmiddelen voor het ontvangen van het uitgangssignaal van de waameemmiddelen en voor het opwekken van het elektromagnetische gegevenssignaal en van een boven het motororgaan 55 opgesteld regelorgaan voor gegevenscommunicatie, welk regelorgaan een ontvangorgaan omvat voor het ontvangen van het elektromagnetische gegevenssignaal, met het kenmerk, dat de overbrengmiddelen ontvangstmiddelen omvatten en het regelorgaan zendmiddelen omvat zodat tweezijdige elektromagnetische 194557 20 communicatie tussen de overbrengmiddelen en het regelorgaan wordt gerealiseerd.
2. Systeem volgens conclusie 1, met het kenmerk, dat voor de tweezijdige elektromagnetische communicatie het regelorgaan is ingericht voor het verzenden van een elektromagnetisch signaal op meer dan één frequentie en dat de overbrengmiddelen zijn ingericht voor het analyseren van het ontvangen elektromagne- 5 tisch signaal voor het bepalen van een voorkeursfrequentie voor het overbrengen van het elektromagnetische gegevenssignaal naar het regelorgaan.
3. Systeem volgens conclusie 2, met het kenmerk, dat het regelorgaan is ingericht voor het verzenden van het elektromagnetische signaal op meer dan één frequentie met een opeenvolging van frequentiestappen.
4. Systeem volgens conclusie 2, met het kenmerk, dat het regelorgaan is ingericht voor het verzenden van 10 het elektromagnetische signaal op meer dan één frequentie door middel van een doorlopende frequentie- veging.
5. Systeem volgens één der conclusies 2-4, met het kenmerk, dat het elektromagnetisch signaal een peilsignaal is.
6. Systeem volgens één der conclusies 2-4, met het kenmerk, dat het elektromagnetisch signaal een 15 commandosignaal is.
7. Systeem volgens conclusie 6, met het kenmerk, dat de overbrengmiddelen zijn voorzien van middelen voor het ontcijferen van het commandosignaal voor het bepalen van de gewenste parameter.
8. Werkwijze voor het overbrengen van onder in een boorgat gemeten parameters naar een eerste punt boven een motororgaan, omvattend het waarnemen van een parameter, het zenden van een elektromagne- 20 tisch gegevenssignaal, dat een indicatie geeft van de waargenomen parameter over een verhoudingsgewijs korte afstand vanaf een tweede punt onder de motor, het ontvangen van het elektromagnetische gegevenssignaal op het eerste punt boven de motor op de verhoudingsgewijs korte afstand van het tweede punt, en het analyseren van het elektromagnetische gegevenssignaal voor het terugwinnen van informatie, welke een aanduiding geeft van de waargenomen parameter, gekenmerkt door het zenden van een elektromagnetisch 25 signaal vanaf het eerste punt boven de motor, en het ontvangen en analyseren van dit elektromagnetische signaal op het tweede punt onder de motor, waardoor tweezijdige elektromagnetische communicatie tussen het eerste en het tweede punt wordt gerealiseerd.
9. Werkwijze volgens conclusie 8, gekenmerkt door het overbrengen van een elektromagnetisch signaal op meer dan één frequentie, het bepalen van een voorkeursfrequentie op grond van het op het tweede punt 30 ontvangen elektromagnetische signaal, voor de overbrenging vanaf het eerste punt naar het tweede punt en het overbrengen van het elektromagnetische gegevenssignaal vanaf het tweede punt naar het eerste punt bij de voorkeursfrequentie.
10. Werkwijze volgens conclusie 9, gekenmerkt door een elektromagnetisch commandosignaal als het elektromagnetische signaal van het eerste punt en door het ontcijferen op het tweede punt van het 35 elektromagnetische commandosignaal voor het bepalen van een gewenste parameter en het waarnemen van de gewenste parameter. Hierbij 16 bladen tekening
NL9220014A 1991-04-17 1992-04-17 MWD-systeem waarbij middels tweezijdige elektromagnetische gegevenscommunicatie de boormotor wordt overbrugd. NL194557C (nl)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68677291 1991-04-17
US07686772 US5160925C1 (en) 1991-04-17 1991-04-17 Short hop communication link for downhole mwd system

Publications (3)

Publication Number Publication Date
NL9220014A NL9220014A (nl) 1994-05-02
NL194557B NL194557B (nl) 2002-03-01
NL194557C true NL194557C (nl) 2002-07-02

Family

ID=24757683

Family Applications (1)

Application Number Title Priority Date Filing Date
NL9220014A NL194557C (nl) 1991-04-17 1992-04-17 MWD-systeem waarbij middels tweezijdige elektromagnetische gegevenscommunicatie de boormotor wordt overbrugd.

Country Status (7)

Country Link
US (1) US5160925C1 (nl)
AU (1) AU1785092A (nl)
CA (1) CA2107576C (nl)
DE (2) DE4291022B4 (nl)
GB (1) GB2272009B (nl)
NL (1) NL194557C (nl)
NO (1) NO305450B1 (nl)

Families Citing this family (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390153A (en) * 1977-12-05 1995-02-14 Scherbatskoy; Serge A. Measuring while drilling employing cascaded transmission systems
US5579283A (en) * 1990-07-09 1996-11-26 Baker Hughes Incorporated Method and apparatus for communicating coded messages in a wellbore
CA2024061C (en) * 1990-08-27 2001-10-02 Laurier Emile Comeau System for drilling deviated boreholes
US5410303A (en) * 1991-05-15 1995-04-25 Baroid Technology, Inc. System for drilling deivated boreholes
US5493288A (en) * 1991-06-28 1996-02-20 Elf Aquitaine Production System for multidirectional information transmission between at least two units of a drilling assembly
US5235285A (en) * 1991-10-31 1993-08-10 Schlumberger Technology Corporation Well logging apparatus having toroidal induction antenna for measuring, while drilling, resistivity of earth formations
NO306522B1 (no) * 1992-01-21 1999-11-15 Anadrill Int Sa Fremgangsmaate for akustisk overföring av maalesignaler ved maaling under boring
US5318138A (en) * 1992-10-23 1994-06-07 Halliburton Company Adjustable stabilizer
US5332048A (en) * 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
US5318137A (en) * 1992-10-23 1994-06-07 Halliburton Company Method and apparatus for adjusting the position of stabilizer blades
EP0747570A1 (en) * 1992-12-07 1996-12-11 Akishima Laboratories (Mitsui Zosen) Inc. Mid pulse valve for measurement-while-drilling system
US5363095A (en) * 1993-06-18 1994-11-08 Sandai Corporation Downhole telemetry system
BE1007274A5 (fr) * 1993-07-20 1995-05-09 Baroid Technology Inc Procede de commande de la tete d'un dispositif de forage ou de carottage et installation pour la mise en oeuvre de ce procede.
US5667023B1 (en) * 1994-11-22 2000-04-18 Baker Hughes Inc Method and apparatus for drilling and completing wells
US5912541C1 (en) * 1994-11-30 2002-06-11 Animatics Corp Integrated servo motor and controller
US5706896A (en) * 1995-02-09 1998-01-13 Baker Hughes Incorporated Method and apparatus for the remote control and monitoring of production wells
US6230822B1 (en) 1995-02-16 2001-05-15 Baker Hughes Incorporated Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations
EP0728915B1 (en) * 1995-02-16 2006-01-04 Baker Hughes Incorporated Method and apparatus for monitoring and recording of operating conditions of a downhole drill bit during drilling operations
US5646611B1 (en) * 1995-02-24 2000-03-21 Halliburton Co System and method for indirectly determining inclination at the bit
US5899958A (en) * 1995-09-11 1999-05-04 Halliburton Energy Services, Inc. Logging while drilling borehole imaging and dipmeter device
FR2740827B1 (fr) * 1995-11-07 1998-01-23 Schlumberger Services Petrol Procede de recuperation, par voie acoustique, de donnees acquises et memorisees dans le fond d'un puits et installation pour la mise en oeuvre de ce procede
US5725061A (en) * 1996-05-24 1998-03-10 Applied Technologies Associates, Inc. Downhole drill bit drive motor assembly with an integral bilateral signal and power conduction path
US5955666A (en) * 1997-03-12 1999-09-21 Mullins; Augustus Albert Satellite or other remote site system for well control and operation
US5817937A (en) * 1997-03-25 1998-10-06 Bico Drilling Tools, Inc. Combination drill motor with measurement-while-drilling electronic sensor assembly
US6057784A (en) * 1997-09-02 2000-05-02 Schlumberger Technology Corporatioin Apparatus and system for making at-bit measurements while drilling
US6536520B1 (en) 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
US6188222B1 (en) 1997-09-19 2001-02-13 Schlumberger Technology Corporation Method and apparatus for measuring resistivity of an earth formation
US5942990A (en) * 1997-10-24 1999-08-24 Halliburton Energy Services, Inc. Electromagnetic signal repeater and method for use of same
US6296066B1 (en) 1997-10-27 2001-10-02 Halliburton Energy Services, Inc. Well system
US6923273B2 (en) 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
US6607044B1 (en) 1997-10-27 2003-08-19 Halliburton Energy Services, Inc. Three dimensional steerable system and method for steering bit to drill borehole
US6177882B1 (en) 1997-12-01 2001-01-23 Halliburton Energy Services, Inc. Electromagnetic-to-acoustic and acoustic-to-electromagnetic repeaters and methods for use of same
US6144316A (en) * 1997-12-01 2000-11-07 Halliburton Energy Services, Inc. Electromagnetic and acoustic repeater and method for use of same
US6218959B1 (en) 1997-12-03 2001-04-17 Halliburton Energy Services, Inc. Fail safe downhole signal repeater
US6018501A (en) * 1997-12-10 2000-01-25 Halliburton Energy Services, Inc. Subsea repeater and method for use of the same
US6018301A (en) * 1997-12-29 2000-01-25 Halliburton Energy Services, Inc. Disposable electromagnetic signal repeater
US6098727A (en) 1998-03-05 2000-08-08 Halliburton Energy Services, Inc. Electrically insulating gap subassembly for downhole electromagnetic transmission
US6255962B1 (en) 1998-05-15 2001-07-03 System Excelerator, Inc. Method and apparatus for low power, micro-electronic mechanical sensing and processing
GB9812006D0 (en) 1998-06-05 1998-07-29 Concept Systems Limited Sensor apparatus
GB2340520B (en) 1998-08-15 2000-11-01 Schlumberger Ltd Data acquisition apparatus
US20040239521A1 (en) 2001-12-21 2004-12-02 Zierolf Joseph A. Method and apparatus for determining position in a pipe
US7283061B1 (en) 1998-08-28 2007-10-16 Marathon Oil Company Method and system for performing operations and for improving production in wells
US6280874B1 (en) * 1998-12-11 2001-08-28 Schlumberger Technology Corp. Annular pack
US6392561B1 (en) * 1998-12-18 2002-05-21 Dresser Industries, Inc. Short hop telemetry system and method
US7659722B2 (en) 1999-01-28 2010-02-09 Halliburton Energy Services, Inc. Method for azimuthal resistivity measurement and bed boundary detection
US6163155A (en) * 1999-01-28 2000-12-19 Dresser Industries, Inc. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations
US6184685B1 (en) 1999-02-22 2001-02-06 Halliburton Energy Services, Inc. Mulitiple spacing resistivity measurements with receiver arrays
US6181138B1 (en) 1999-02-22 2001-01-30 Halliburton Energy Services, Inc. Directional resistivity measurements for azimuthal proximity detection of bed boundaries
US7311148B2 (en) 1999-02-25 2007-12-25 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
WO2000055648A1 (en) * 1999-03-17 2000-09-21 Input/Output, Inc. Hydrophone assembly
US6597175B1 (en) 1999-09-07 2003-07-22 Halliburton Energy Services, Inc. Electromagnetic detector apparatus and method for oil or gas well, and circuit-bearing displaceable object to be detected therein
DE60009936D1 (de) 1999-10-29 2004-05-19 Halliburton Energy Serv Inc Vorrichtung und verfahren zur verlängerung einer elektromagnetischen antenne
CA2359073A1 (en) 1999-11-10 2001-05-17 Schlumberger Holdings Limited Control method for use with a steerable drilling system
US6484819B1 (en) * 1999-11-17 2002-11-26 William H. Harrison Directional borehole drilling system and method
US6633164B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Measuring focused through-casing resistivity using induction chokes and also using well casing as the formation contact electrodes
US6715550B2 (en) 2000-01-24 2004-04-06 Shell Oil Company Controllable gas-lift well and valve
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
US6817412B2 (en) 2000-01-24 2004-11-16 Shell Oil Company Method and apparatus for the optimal predistortion of an electromagnetic signal in a downhole communication system
US20020036085A1 (en) 2000-01-24 2002-03-28 Bass Ronald Marshall Toroidal choke inductor for wireless communication and control
US6840316B2 (en) 2000-01-24 2005-01-11 Shell Oil Company Tracker injection in a production well
US6679332B2 (en) 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
US6662875B2 (en) 2000-01-24 2003-12-16 Shell Oil Company Induction choke for power distribution in piping structure
US6758277B2 (en) 2000-01-24 2004-07-06 Shell Oil Company System and method for fluid flow optimization
US7114561B2 (en) 2000-01-24 2006-10-03 Shell Oil Company Wireless communication using well casing
US7259688B2 (en) 2000-01-24 2007-08-21 Shell Oil Company Wireless reservoir production control
GB2376965B (en) * 2000-02-09 2004-02-18 Shell Int Research A method and apparatus for the optimal predistortion of an electromagnetic signal in a downhole communication system
US7073594B2 (en) 2000-03-02 2006-07-11 Shell Oil Company Wireless downhole well interval inflow and injection control
WO2001065718A2 (en) 2000-03-02 2001-09-07 Shell Internationale Research Maatschappij B.V. Wireless power and communications cross-bar switch
RU2258800C2 (ru) * 2000-03-02 2005-08-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Нефтяная скважина (варианты), способ ее работы, система и способ подачи питания скважинного устройства
MXPA02008577A (es) * 2000-03-02 2003-04-14 Shell Int Research Inyeccion controlada de quimicos en el fondo de la perforacion.
US7170424B2 (en) * 2000-03-02 2007-01-30 Shell Oil Company Oil well casting electrical power pick-off points
MY128294A (en) 2000-03-02 2007-01-31 Shell Int Research Use of downhole high pressure gas in a gas-lift well
OA12390A (en) 2000-03-02 2006-04-18 Shell Int Research Electro-hydraulically pressurized downhole valve actuator.
AU2001249089A1 (en) 2000-03-02 2001-09-12 Shell Canada Limited Wireless downhole measurement and control for optimizing gas lift well and fieldperformance
US6989764B2 (en) * 2000-03-28 2006-01-24 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and actuation
US7385523B2 (en) * 2000-03-28 2008-06-10 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and operation
US7334650B2 (en) * 2000-04-13 2008-02-26 Weatherford/Lamb, Inc. Apparatus and methods for drilling a wellbore using casing
GB0010449D0 (en) * 2000-04-28 2000-06-14 Sondex Ltd Logging sondes for use in boreholes
AU2000265796A1 (en) * 2000-08-08 2002-02-18 Emtec Solutions Limited Apparatus and method for telemetry
US7322410B2 (en) 2001-03-02 2008-01-29 Shell Oil Company Controllable production well packer
US6467341B1 (en) 2001-04-24 2002-10-22 Schlumberger Technology Corporation Accelerometer caliper while drilling
US7014100B2 (en) * 2001-04-27 2006-03-21 Marathon Oil Company Process and assembly for identifying and tracking assets
US6909667B2 (en) * 2002-02-13 2005-06-21 Halliburton Energy Services, Inc. Dual channel downhole telemetry
US7230542B2 (en) * 2002-05-23 2007-06-12 Schlumberger Technology Corporation Streamlining data transfer to/from logging while drilling tools
US6915848B2 (en) 2002-07-30 2005-07-12 Schlumberger Technology Corporation Universal downhole tool control apparatus and methods
US6776240B2 (en) 2002-07-30 2004-08-17 Schlumberger Technology Corporation Downhole valve
US6814162B2 (en) * 2002-08-09 2004-11-09 Smith International, Inc. One cone bit with interchangeable cutting structures, a box-end connection, and integral sensory devices
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US20040050590A1 (en) * 2002-09-16 2004-03-18 Pirovolou Dimitrios K. Downhole closed loop control of drilling trajectory
US7163065B2 (en) * 2002-12-06 2007-01-16 Shell Oil Company Combined telemetry system and method
US7084782B2 (en) 2002-12-23 2006-08-01 Halliburton Energy Services, Inc. Drill string telemetry system and method
US6662110B1 (en) 2003-01-14 2003-12-09 Schlumberger Technology Corporation Drilling rig closed loop controls
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
GB2399921B (en) * 2003-03-26 2005-12-28 Schlumberger Holdings Borehole telemetry system
US20060197678A1 (en) * 2003-05-20 2006-09-07 David Silvers Wireless well communication system and method
AU2004242120B2 (en) * 2003-05-20 2010-05-13 Silversmith, Inc. Wireless well communication system and method for using the same
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US20050107079A1 (en) * 2003-11-14 2005-05-19 Schultz Roger L. Wireless telemetry systems and methods for real time transmission of electromagnetic signals through a lossy environment
DE602004010306T2 (de) * 2003-12-19 2008-09-25 Baker-Hughes Inc., Houston Verfahren und vorrichtung zur verbesserung der richtungsgenauigkeit und -steuerung unter verwendung von grundbohrungsanordnungsbiegemessungen
US7348892B2 (en) * 2004-01-20 2008-03-25 Halliburton Energy Services, Inc. Pipe mounted telemetry receiver
US7080699B2 (en) * 2004-01-29 2006-07-25 Schlumberger Technology Corporation Wellbore communication system
CN100410488C (zh) * 2004-02-16 2008-08-13 中国石油集团钻井工程技术研究院 一种无线电磁短传装置
US7730967B2 (en) * 2004-06-22 2010-06-08 Baker Hughes Incorporated Drilling wellbores with optimal physical drill string conditions
US7249636B2 (en) * 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore
CA2538196C (en) 2005-02-28 2011-10-11 Weatherford/Lamb, Inc. Deep water drilling with casing
US7518528B2 (en) * 2005-02-28 2009-04-14 Scientific Drilling International, Inc. Electric field communication for short range data transmission in a borehole
US20070168132A1 (en) * 2005-05-06 2007-07-19 Schlumberger Technology Corporation Wellbore communication system and method
US7604072B2 (en) * 2005-06-07 2009-10-20 Baker Hughes Incorporated Method and apparatus for collecting drill bit performance data
US8100196B2 (en) * 2005-06-07 2012-01-24 Baker Hughes Incorporated Method and apparatus for collecting drill bit performance data
US7849934B2 (en) * 2005-06-07 2010-12-14 Baker Hughes Incorporated Method and apparatus for collecting drill bit performance data
US8376065B2 (en) * 2005-06-07 2013-02-19 Baker Hughes Incorporated Monitoring drilling performance in a sub-based unit
US8629782B2 (en) * 2006-05-10 2014-01-14 Schlumberger Technology Corporation System and method for using dual telemetry
US8004421B2 (en) 2006-05-10 2011-08-23 Schlumberger Technology Corporation Wellbore telemetry and noise cancellation systems and method for the same
DE102005041500A1 (de) * 2005-09-01 2007-03-08 Leybold Vacuum Gmbh Vakuumpumpe
US7303007B2 (en) 2005-10-07 2007-12-04 Weatherford Canada Partnership Method and apparatus for transmitting sensor response data and power through a mud motor
US7477162B2 (en) * 2005-10-11 2009-01-13 Schlumberger Technology Corporation Wireless electromagnetic telemetry system and method for bottomhole assembly
US7490428B2 (en) * 2005-10-19 2009-02-17 Halliburton Energy Services, Inc. High performance communication system
US7696756B2 (en) * 2005-11-04 2010-04-13 Halliburton Energy Services, Inc. Oil based mud imaging tool with common mode voltage compensation
US8183863B2 (en) 2005-11-10 2012-05-22 Halliburton Energy Services, Inc. Displaced electrode amplifier
EP1938235A4 (en) * 2005-12-13 2012-11-07 Halliburton Energy Serv Inc MULTI-FREQUENCY-BASED LEAKAGE CURRENT CORRECTION FOR IMAGING IN OIL-BASED SLAMBING
CA2544457C (en) * 2006-04-21 2009-07-07 Mostar Directional Technologies Inc. System and method for downhole telemetry
CA2545377C (en) * 2006-05-01 2011-06-14 Halliburton Energy Services, Inc. Downhole motor with a continuous conductive path
WO2007134255A2 (en) 2006-05-12 2007-11-22 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
CN101501297B (zh) 2006-07-11 2013-10-16 哈里伯顿能源服务公司 模块化地质导向工具组件
US7595737B2 (en) * 2006-07-24 2009-09-29 Halliburton Energy Services, Inc. Shear coupled acoustic telemetry system
US7557492B2 (en) * 2006-07-24 2009-07-07 Halliburton Energy Services, Inc. Thermal expansion matching for acoustic telemetry system
US20080034856A1 (en) * 2006-08-08 2008-02-14 Scientific Drilling International Reduced-length measure while drilling apparatus using electric field short range data transmission
WO2008021868A2 (en) 2006-08-08 2008-02-21 Halliburton Energy Services, Inc. Resistivty logging with reduced dip artifacts
CN101460698B (zh) 2006-12-15 2013-01-02 哈里伯顿能源服务公司 具有旋转天线结构的天线耦合元件测量工具
GB2459067B (en) 2007-03-16 2011-11-30 Halliburton Energy Serv Inc Robust inversion systems and methods for azimuthally sensitive resistivity logging tools
US8115651B2 (en) * 2007-04-13 2012-02-14 Xact Downhole Telemetry Inc. Drill string telemetry methods and apparatus
US8069716B2 (en) * 2007-06-21 2011-12-06 Scientific Drilling International, Inc. Multi-coupling reduced length measure while drilling apparatus
US7598683B1 (en) 2007-07-31 2009-10-06 Lsi Industries, Inc. Control of light intensity using pulses of a fixed duration and frequency
US8604709B2 (en) 2007-07-31 2013-12-10 Lsi Industries, Inc. Methods and systems for controlling electrical power to DC loads
US8903577B2 (en) 2009-10-30 2014-12-02 Lsi Industries, Inc. Traction system for electrically powered vehicles
CN101878350B (zh) * 2007-11-30 2015-03-11 普拉德研究及开发股份有限公司 井下、一次起下作业、多层测试系统和使用该井下、一次起下作业、多层测试系统的井下测试方法
US9194227B2 (en) * 2008-03-07 2015-11-24 Marathon Oil Company Systems, assemblies and processes for controlling tools in a wellbore
US10119377B2 (en) * 2008-03-07 2018-11-06 Weatherford Technology Holdings, Llc Systems, assemblies and processes for controlling tools in a well bore
US7954252B2 (en) * 2008-06-06 2011-06-07 Schlumberger Technology Corporation Methods and apparatus to determine and use wellbore diameters
US8242929B2 (en) * 2008-08-12 2012-08-14 Raytheon Company Wireless drill string telemetry
US8581592B2 (en) 2008-12-16 2013-11-12 Halliburton Energy Services, Inc. Downhole methods and assemblies employing an at-bit antenna
US8437220B2 (en) * 2009-02-01 2013-05-07 Xact Downhold Telemetry, Inc. Parallel-path acoustic telemetry isolation system and method
US8393412B2 (en) * 2009-02-12 2013-03-12 Xact Downhole Telemetry, Inc. System and method for accurate wellbore placement
US8982667B2 (en) 2009-02-13 2015-03-17 Xact Downhole Telemetry, Inc. Acoustic telemetry stacked-ring wave delay isolator system and method
WO2010107879A1 (en) * 2009-03-18 2010-09-23 Freeslate, Inc. Sensor, sensor array, and sensor system for sensing a characteristic of an environment and method of sensing the characteristic
GB2480961B (en) * 2009-04-02 2012-05-16 Statoil Asa Apparatus and method for evaluating a wellbore,in particular a casing thereof
US20110141852A1 (en) * 2009-06-15 2011-06-16 Camwell Paul L Air hammer optimization using acoustic telemetry
US9238958B2 (en) * 2009-09-10 2016-01-19 Baker Hughes Incorporated Drill bit with rate of penetration sensor
US9328573B2 (en) 2009-10-05 2016-05-03 Halliburton Energy Services, Inc. Integrated geomechanics determinations and wellbore pressure control
MY177675A (en) 2010-01-22 2020-09-23 Halliburton Energy Services Inc Method and apparatus for resistivity measurements
US8453764B2 (en) 2010-02-01 2013-06-04 Aps Technology, Inc. System and method for monitoring and controlling underground drilling
US9279301B2 (en) 2010-03-23 2016-03-08 Halliburton Energy Services, Inc. Apparatus and method for well operations
US8850899B2 (en) 2010-04-15 2014-10-07 Marathon Oil Company Production logging processes and systems
CA2796261C (en) * 2010-04-19 2017-01-03 Xact Downhole Telemetry Inc. Tapered thread em gap sub self-aligning means and method
US8893822B2 (en) * 2010-08-06 2014-11-25 Baker Hughes Incorporated Apparatus and methods for real time communication between drill bit and drilling assembly
US9004161B2 (en) * 2010-08-06 2015-04-14 Baker Hughes Incorporated Apparatus and methods for real time communication in drill strings
US10253612B2 (en) * 2010-10-27 2019-04-09 Baker Hughes, A Ge Company, Llc Drilling control system and method
US10539009B2 (en) 2011-08-10 2020-01-21 Scientific Drilling International, Inc. Short range data transmission in a borehole
US8967295B2 (en) * 2011-08-22 2015-03-03 Baker Hughes Incorporated Drill bit-mounted data acquisition systems and associated data transfer apparatus and method
US8854044B2 (en) 2011-11-09 2014-10-07 Haliburton Energy Services, Inc. Instrumented core barrels and methods of monitoring a core while the core is being cut
US8797035B2 (en) 2011-11-09 2014-08-05 Halliburton Energy Services, Inc. Apparatus and methods for monitoring a core during coring operations
US8960331B2 (en) 2012-03-03 2015-02-24 Weatherford/Lamb, Inc. Wired or ported universal joint for downhole drilling motor
US10273800B2 (en) 2012-08-21 2019-04-30 Halliburton Energy Services, Inc. Turbine drilling assembly with near drilling bit sensors
US20140083773A1 (en) * 2012-09-26 2014-03-27 Nabors International, Inc. Reliability for Electromagnetic Data Telemetry for Downhole Application on Well Drilling Operations
DE102012219099A1 (de) * 2012-10-19 2014-04-24 Kadia Produktion Gmbh + Co. Honmaschine
EP2917479B1 (en) 2012-11-06 2018-02-14 Evolution Engineering Inc. Universal downhole probe system
CA3076856C (en) 2012-12-03 2022-06-21 Evolution Engineering Inc. Downhole probe centralizer
CA2893467C (en) 2012-12-07 2022-08-23 Jili LIU (Jerry) Methods and apparatus for downhole probes
US9631484B2 (en) * 2013-02-17 2017-04-25 R&B Industrial Supply Co. Drilling system having a super-capacitor amplifier and a method for transmitting signals
GB2514324B (en) * 2013-03-19 2015-12-23 Rsd2 Holding Ag Modified tubular
USD843381S1 (en) 2013-07-15 2019-03-19 Aps Technology, Inc. Display screen or portion thereof with a graphical user interface for analyzing and presenting drilling data
US9657520B2 (en) 2013-08-23 2017-05-23 Weatherford Technology Holdings, Llc Wired or ported transmission shaft and universal joints for downhole drilling motor
EA035751B1 (ru) 2013-08-28 2020-08-05 Эволюшн Инжиниринг Инк. Оптимизация передачи сигналов электромагнитной телеметрии
US10472944B2 (en) 2013-09-25 2019-11-12 Aps Technology, Inc. Drilling system and associated system and method for monitoring, controlling, and predicting vibration in an underground drilling operation
US9714567B2 (en) * 2013-12-12 2017-07-25 Sensor Development As Wellbore E-field wireless communication system
AU2013408271B2 (en) 2013-12-18 2016-06-23 Halliburton Energy Services Inc. Turbine for transmitting electrical data
EP2952675B1 (en) * 2014-06-06 2018-02-21 The Charles Machine Works Inc External hollow antenna
US10301931B2 (en) 2014-06-18 2019-05-28 Evolution Engineering Inc. Measuring while drilling systems, method and apparatus
CA2952574C (en) 2014-06-19 2022-11-15 Evolution Engineering Inc. Selecting transmission frequency based on formation properties
US10119393B2 (en) 2014-06-23 2018-11-06 Evolution Engineering Inc. Optimizing downhole data communication with at bit sensors and nodes
CA2952873C (en) * 2014-06-23 2022-01-18 Evolution Engineering Inc. Mixed-mode telemetry systems and methods
CA2967286C (en) 2014-12-18 2021-03-02 Halliburton Energy Services, Inc. High-efficiency downhole wireless communication
US10422217B2 (en) 2014-12-29 2019-09-24 Halliburton Energy Services, Inc. Electromagnetically coupled band-gap transceivers
CN107109924A (zh) 2014-12-29 2017-08-29 哈利伯顿能源服务公司 跨具有改进的外部的钻井工具的带隙通信
US9976415B2 (en) 2015-05-27 2018-05-22 Evolution Engineering Inc. Electromagnetic telemetry system with compensation for drilling fluid characteristics
AU2015397208A1 (en) * 2015-06-03 2017-11-23 Halliburton Energy Services, Inc. Drilling tool with near-bit electronics
WO2017027024A1 (en) * 2015-08-12 2017-02-16 Halliburton Energy Services, Inc. Toroidal system and method for communicating in a downhole environmnet
US10502048B2 (en) * 2015-08-18 2019-12-10 G&H Diversified Manufacturing Lp Casing collar locator
WO2017074353A1 (en) * 2015-10-28 2017-05-04 Halliburton Energy Services, Inc. Transceiver with annular ring of high magnetic permeability material for enhanced short hop communications
WO2017074346A1 (en) 2015-10-28 2017-05-04 Halliburton Energy Services, Inc. Inductive cavity sensors for resistivity tools
WO2017078708A1 (en) 2015-11-04 2017-05-11 Halliburton Energy Services, Inc. Conductivity-depth transforms of electromagnetic telemetry signals
US10401203B2 (en) * 2015-12-09 2019-09-03 Baker Hughes Incorporated Multi-frequency micro induction and electrode arrays combination for use with a downhole tool
US10047562B1 (en) 2017-10-10 2018-08-14 Martin Cherrington Horizontal directional drilling tool with return flow and method of using same
US10385683B1 (en) 2018-02-02 2019-08-20 Nabors Drilling Technologies Usa, Inc. Deepset receiver for drilling application
NO344782B1 (en) * 2018-02-14 2020-04-27 Well Id As Downhole measurement tool assembly for measuring and storing at least one quantity in a wellbore and for wireless surface readout
US10760412B2 (en) 2018-04-10 2020-09-01 Nabors Drilling Technologies Usa, Inc. Drilling communication system with Wi-Fi wet connect
CN109653735B (zh) * 2019-03-01 2022-11-15 西南石油大学 一种基于电流回路的钻井信号下传装置及信号下传方法
CN111119843B (zh) * 2019-12-25 2022-12-09 中国海洋石油集团有限公司 一种控制短节
CN112832752A (zh) * 2020-11-17 2021-05-25 中石化江钻石油机械有限公司 一种具有井下监测信号发射功能的井下动力钻具
CN114183122A (zh) * 2021-12-09 2022-03-15 荆州市世纪派创石油机械检测有限公司 一种固井压裂管汇内壁腐蚀凹坑深度检测装置及检测方法

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1892217A (en) * 1930-05-13 1932-12-27 Moineau Rene Joseph Louis Gear mechanism
US2414719A (en) * 1942-04-25 1947-01-21 Stanolind Oil & Gas Co Transmission system
US2354887A (en) * 1942-10-29 1944-08-01 Stanolind Oil & Gas Co Well signaling system
US2411696A (en) * 1944-04-26 1946-11-26 Stanolind Oil & Gas Co Well signaling system
US3079549A (en) * 1957-07-05 1963-02-26 Philip W Martin Means and techniques for logging well bores
US3094658A (en) * 1959-03-17 1963-06-18 Halliburton Co Logging system using electrostatically shielded coils
US3090031A (en) * 1959-09-29 1963-05-14 Texaco Inc Signal transmission system
US3214686A (en) * 1960-09-06 1965-10-26 Newmont Mining Corp Drill hole electromagnetic method and apparatus for geophysical exploration utillizing in-phase and out-of-phase nulling voltages
US3305771A (en) * 1963-08-30 1967-02-21 Arps Corp Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem
US3582766A (en) * 1969-11-13 1971-06-01 Keigo Iizuka Passively controlled duplexer-coupler applied to a helical antenna for use in a borehole penetrating an earth formation
US3906434A (en) * 1971-02-08 1975-09-16 American Petroscience Corp Telemetering system for oil wells
US3790930A (en) * 1971-02-08 1974-02-05 American Petroscience Corp Telemetering system for oil wells
US3793632A (en) * 1971-03-31 1974-02-19 W Still Telemetry system for drill bore holes
US3918537A (en) * 1973-07-30 1975-11-11 Exxon Production Research Co Apparatus for maintaining an electric conductor in a drill string
US4029368A (en) * 1973-08-15 1977-06-14 Smith International, Inc. Radial bearings
US3849721A (en) * 1973-08-23 1974-11-19 Schlumberger Technology Corp Microwave logging apparatus having dual processing channels
US3982858A (en) * 1973-11-14 1976-09-28 Smith International Corporation, Inc. Segmented stator for progressive cavity transducer
US3932836A (en) * 1974-01-14 1976-01-13 Mobil Oil Corporation DC/AC motor drive for a downhole acoustic transmitter in a logging-while-drilling system
US3879097A (en) * 1974-01-25 1975-04-22 Continental Oil Co Electrical connectors for telemetering drill strings
US3967201A (en) * 1974-01-25 1976-06-29 Develco, Inc. Wireless subterranean signaling method
US3958217A (en) * 1974-05-10 1976-05-18 Teleco Inc. Pilot operated mud-pulse valve
US3949354A (en) * 1974-05-15 1976-04-06 Schlumberger Technology Corporation Apparatus for transmitting well bore data
CA1062336A (en) * 1974-07-01 1979-09-11 Robert K. Cross Electromagnetic lithosphere telemetry system
US3964556A (en) * 1974-07-10 1976-06-22 Gearhart-Owen Industries, Inc. Downhole signaling system
US4098561A (en) * 1975-03-10 1978-07-04 Smith International, Inc. Sealed bearings
US3982797A (en) * 1975-07-11 1976-09-28 Smith International Corporation, Inc. Spring-loaded bearings for in-hole motors
US4051910A (en) * 1975-12-08 1977-10-04 Wallace Clark Two way earth boring fluid motor
US4057781A (en) * 1976-03-19 1977-11-08 Scherbatskoy Serge Alexander Well bore communication method
US4077657A (en) * 1976-03-22 1978-03-07 Smith, International, Inc. Adjustable bent sub
US4067404A (en) * 1976-05-04 1978-01-10 Smith International, Inc. Angle adjustment sub
US4126848A (en) * 1976-12-23 1978-11-21 Shell Oil Company Drill string telemeter system
US4329127A (en) * 1977-07-25 1982-05-11 Smith International, Inc. Sealed bearing means for in hole motors
US4209747A (en) * 1977-09-21 1980-06-24 Schlumberger Technology Corporation Apparatus and method for determination of subsurface permittivity and conductivity
US4185238A (en) * 1977-09-21 1980-01-22 Schlumberger Technology Corporation Apparatus and method for determination of subsurface permittivity and conductivity
US4181184A (en) * 1977-11-09 1980-01-01 Exxon Production Research Company Soft-wire conductor wellbore telemetry system and method
US4839870A (en) 1977-12-05 1989-06-13 Scherbatskoy Serge Alexander Pressure pulse generator system for measuring while drilling
US4351037A (en) * 1977-12-05 1982-09-21 Scherbatskoy Serge Alexander Systems, apparatus and methods for measuring while drilling
US4692911A (en) * 1977-12-05 1987-09-08 Scherbatskoy Serge Alexander Methods and apparatus for reducing interfering effects in measurement while drilling operations
US4520468A (en) * 1977-12-05 1985-05-28 Scherbatskoy Serge Alexander Borehole measurement while drilling systems and methods
US4416000A (en) * 1977-12-05 1983-11-15 Scherbatskoy Serge Alexander System for employing high temperature batteries for making measurements in a borehole
US4866680A (en) 1977-12-05 1989-09-12 Scherbatskoy Serge Alexander Method and apparatus for transmitting information in a borehole employing signal discrimination
US4215426A (en) * 1978-05-01 1980-07-29 Frederick Klatt Telemetry and power transmission for enclosed fluid systems
US4181014A (en) * 1978-05-04 1980-01-01 Scientific Drilling Controls, Inc. Remote well signalling apparatus and methods
US4198104A (en) * 1978-06-09 1980-04-15 Smith International, Inc. Adjustable stacked bearing assembly
US4229296A (en) * 1978-08-03 1980-10-21 Whirlpool Corporation Wet oxidation system employing phase separating reactor
US4199201A (en) * 1978-08-18 1980-04-22 Smith International, Inc. Bearing assembly with adjustable lock nut
US4216536A (en) * 1978-10-10 1980-08-05 Exploration Logging, Inc. Transmitting well logging data
US4278941A (en) * 1978-10-30 1981-07-14 Shell Oil Company High frequency induction log for determining resistivity and dielectric constant of the earth
US4240683A (en) * 1979-01-12 1980-12-23 Smith International, Inc. Adjustable bearing assembly
US4220380A (en) * 1979-01-15 1980-09-02 Smith International Inc. Bearing assembly
US4445578A (en) * 1979-02-28 1984-05-01 Standard Oil Company (Indiana) System for measuring downhole drilling forces
US4302757A (en) * 1979-05-09 1981-11-24 Aerospace Industrial Associates, Inc. Bore telemetry channel of increased capacity
US4300098A (en) * 1979-05-24 1981-11-10 Schlumberger Technology Corporation Microwave electromagnetic logging with mudcake correction
US4260202A (en) * 1979-08-20 1981-04-07 Smith International, Inc. Bearing assembly
US4689775A (en) * 1980-01-10 1987-08-25 Scherbatskoy Serge Alexander Direct radiator system and methods for measuring during drilling operations
US4553226A (en) * 1980-01-10 1985-11-12 Scherbatskoy Serge Alexander Systems, apparatus and methods for measuring while drilling
US4324297A (en) * 1980-07-03 1982-04-13 Shell Oil Company Steering drill string
US4468665A (en) * 1981-01-30 1984-08-28 Tele-Drill, Inc. Downhole digital power amplifier for a measurements-while-drilling telemetry system
US4725837A (en) * 1981-01-30 1988-02-16 Tele-Drill, Inc. Toroidal coupled telemetry apparatus
US4415895A (en) * 1981-02-11 1983-11-15 Dresser Industries, Inc. Well logging data transmission system
US4348672A (en) * 1981-03-04 1982-09-07 Tele-Drill, Inc. Insulated drill collar gap sub assembly for a toroidal coupled telemetry system
US4401134A (en) * 1981-03-05 1983-08-30 Smith International, Inc. Pilot valve initiated mud pulse telemetry system
US4387372A (en) * 1981-03-19 1983-06-07 Tele-Drill, Inc. Point gap assembly for a toroidal coupled telemetry system
US4710708A (en) * 1981-04-27 1987-12-01 Develco Method and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US4346591A (en) * 1981-08-21 1982-08-31 Evans Robert F Sensing impending sealed bearing and gage failure
US4451789A (en) * 1981-09-28 1984-05-29 Nl Industries, Inc. Logging tool and method for measuring resistivity of different radial zones at a common depth of measurement
US4829310A (en) * 1981-10-02 1989-05-09 Eyring Research Institute, Inc. Wireless communication system using current formed underground vertical plane polarized antennas
US4839661A (en) 1981-10-02 1989-06-13 Eyring Research Institute, Inc. Guided wave antenna system and method
US4515225A (en) * 1982-01-29 1985-05-07 Smith International, Inc. Mud energized electrical generating method and means
US4560014A (en) * 1982-04-05 1985-12-24 Smith International, Inc. Thrust bearing assembly for a downhole drill motor
US4536714A (en) * 1982-04-16 1985-08-20 Schlumberger Technology Corporation Shields for antennas of borehole logging devices
US4538109A (en) * 1982-06-23 1985-08-27 Schlumberger Technology Corporation Apparatus and method for electromagnetic logging with reduction of spurious modes
US4676310A (en) * 1982-07-12 1987-06-30 Scherbatskoy Serge Alexander Apparatus for transporting measuring and/or logging equipment in a borehole
US4739325A (en) * 1982-09-30 1988-04-19 Macleod Laboratories, Inc. Apparatus and method for down-hole EM telemetry while drilling
US4553097A (en) * 1982-09-30 1985-11-12 Schlumberger Technology Corporation Well logging apparatus and method using transverse magnetic mode
US4578675A (en) * 1982-09-30 1986-03-25 Macleod Laboratories, Inc. Apparatus and method for logging wells while drilling
US4932005A (en) 1983-01-04 1990-06-05 Birdwell J C Fluid means for data transmission
US4908804A (en) 1983-03-21 1990-03-13 Develco, Inc. Combinatorial coded telemetry in MWD
US4630243A (en) * 1983-03-21 1986-12-16 Macleod Laboratories, Inc. Apparatus and method for logging wells while drilling
US4787093A (en) * 1983-03-21 1988-11-22 Develco, Inc. Combinatorial coded telemetry
CA1216892A (en) * 1983-03-31 1987-01-20 Percy T. Cox Deep penetration well logging system and method
FR2562601B2 (fr) * 1983-05-06 1988-05-27 Geoservices Dispositif pour transmettre en surface les signaux d'un emetteur situe a grande profondeur
US4785247A (en) * 1983-06-27 1988-11-15 Nl Industries, Inc. Drill stem logging with electromagnetic waves and electrostatically-shielded and inductively-coupled transmitter and receiver elements
AU2907484A (en) 1983-06-27 1985-01-03 N L Industries Inc. Drill stem logging system
US4691203A (en) * 1983-07-01 1987-09-01 Rubin Llewellyn A Downhole telemetry apparatus and method
US4808929A (en) * 1983-11-14 1989-02-28 Schlumberger Technology Corporation Shielded induction sensor for well logging
US4511193A (en) * 1984-02-10 1985-04-16 Smith International, Inc. Thrust and radial bearing assembly
US4626785A (en) * 1984-02-24 1986-12-02 Shell Oil Company Focused very high frequency induction logging
US4651101A (en) * 1984-02-27 1987-03-17 Schlumberger Technology Corporation Induction logging sonde with metallic support
US4780679A (en) * 1984-04-13 1988-10-25 Schlumberger Technology Corp. Method for determining low frequency conductivity of subsurface formations
US4597067A (en) * 1984-04-18 1986-06-24 Conoco Inc. Borehole monitoring device and method
US4646083A (en) * 1984-04-26 1987-02-24 Hydril Company Borehole measurement and telemetry system
US4845433A (en) 1984-05-31 1989-07-04 Schlumberger Technology Corporation Apparatus for microinductive investigation of earth formations
US4692706A (en) * 1985-02-27 1987-09-08 Texaco Inc Well logging means and method for determining water saturation of a petroleum reservoir having two transmitters and two receivers
US4873488A (en) 1985-04-03 1989-10-10 Schlumberger Technology Corporation Induction logging sonde with metallic support having a coaxial insulating sleeve member
US4617960A (en) * 1985-05-03 1986-10-21 Develco, Inc. Verification of a surface controlled subsurface actuating device
US4736791A (en) * 1985-05-03 1988-04-12 Develco, Inc. Subsurface device actuator requiring minimum power
US4637479A (en) * 1985-05-31 1987-01-20 Schlumberger Technology Corporation Methods and apparatus for controlled directional drilling of boreholes
US4667751A (en) * 1985-10-11 1987-05-26 Smith International, Inc. System and method for controlled directional drilling
US4662458A (en) * 1985-10-23 1987-05-05 Nl Industries, Inc. Method and apparatus for bottom hole measurement
US4656944A (en) * 1985-12-06 1987-04-14 Exxon Production Research Co. Select fire well perforator system and method of operation
FR2600171B1 (fr) * 1986-06-17 1990-10-19 Geoservices Antenne pour emetteur situe a grande profondeur
US4857852A (en) 1986-06-20 1989-08-15 Schlumberger Technology Corp. Induction well logging apparatus with transformer coupled phase sensitive detector
US4730161A (en) * 1986-09-22 1988-03-08 Texaco Inc. Dual frequency well logging system for determining the water resistivity and water saturation of an earth formation
JPS63160430A (ja) * 1986-12-24 1988-07-04 Reideitsuku:Kk 電磁誘導信号伝送方式
US4788544A (en) * 1987-01-08 1988-11-29 Hughes Tool Company - Usa Well bore data transmission system
US4814609A (en) * 1987-03-13 1989-03-21 Schlumberger Technology Corporation Methods and apparatus for safely measuring downhole conditions and formation characteristics while drilling a borehole
US4839644A (en) 1987-06-10 1989-06-13 Schlumberger Technology Corp. System and method for communicating signals in a cased borehole having tubing
US4806928A (en) * 1987-07-16 1989-02-21 Schlumberger Technology Corporation Apparatus for electromagnetically coupling power and data signals between well bore apparatus and the surface
US4901069A (en) 1987-07-16 1990-02-13 Schlumberger Technology Corporation Apparatus for electromagnetically coupling power and data signals between a first unit and a second unit and in particular between well bore apparatus and the surface
US4899112A (en) 1987-10-30 1990-02-06 Schlumberger Technology Corporation Well logging apparatus and method for determining formation resistivity at a shallow and a deep depth
US4796708A (en) * 1988-03-07 1989-01-10 Baker Hughes Incorporated Electrically actuated safety valve for a subterranean well
US4903245A (en) 1988-03-11 1990-02-20 Exploration Logging, Inc. Downhole vibration monitoring of a drillstring
US4864293A (en) 1988-04-29 1989-09-05 Flowmole Corporation Inground boring technique including real time transducer
US4854397A (en) 1988-09-15 1989-08-08 Amoco Corporation System for directional drilling and related method of use
US4876511A (en) 1988-10-20 1989-10-24 Schlumberger Technology Corporation Method and apparatus for testing and calibrating an electromagnetic logging tool
DE3916704A1 (de) * 1989-05-23 1989-12-14 Wellhausen Heinz Signaluebertragung in bohrgestaengen
CA2024061C (en) * 1990-08-27 2001-10-02 Laurier Emile Comeau System for drilling deviated boreholes
NO306522B1 (no) * 1992-01-21 1999-11-15 Anadrill Int Sa Fremgangsmaate for akustisk overföring av maalesignaler ved maaling under boring

Also Published As

Publication number Publication date
NO933725L (no) 1993-12-15
DE4291022B4 (de) 2007-06-14
AU1785092A (en) 1992-11-17
NO305450B1 (no) 1999-05-31
US5160925C1 (en) 2001-03-06
NL194557B (nl) 2002-03-01
DE4291022T1 (de) 1994-02-17
US5160925A (en) 1992-11-03
GB9321374D0 (en) 1994-02-09
NO933725D0 (no) 1993-10-15
GB2272009B (en) 1995-03-22
GB2272009A (en) 1994-05-04
CA2107576A1 (en) 1992-10-18
CA2107576C (en) 2001-04-10
NL9220014A (nl) 1994-05-02

Similar Documents

Publication Publication Date Title
NL194557C (nl) MWD-systeem waarbij middels tweezijdige elektromagnetische gegevenscommunicatie de boormotor wordt overbrugd.
US5725061A (en) Downhole drill bit drive motor assembly with an integral bilateral signal and power conduction path
RU2413841C2 (ru) Система двусторонней телеметрии по бурильной колонне для измерений и управления бурением
US5467083A (en) Wireless downhole electromagnetic data transmission system and method
US7913773B2 (en) Bidirectional drill string telemetry for measuring and drilling control
US5359324A (en) Well logging apparatus for investigating earth formations
US8120508B2 (en) Cable link for a wellbore telemetry system
US4216536A (en) Transmitting well logging data
US5236048A (en) Apparatus and method for communicating electrical signals in a well, including electrical coupling for electric circuits therein
EP1062753B1 (en) Borehole transmission system using impedance modulation
EP0371906A2 (en) Wellbore tool with hall effect coupling
CN105164370A (zh) 具有多个遥测子系统的集成井下系统
CA3055546C (en) Wireless communication between downhole components and surface systems
US20180258759A1 (en) Systems and Methods for Wirelessly Monitoring Well Conditions
US10619455B2 (en) Subassembly for a bottom hole assembly of a drill string with communications link
CA2499331A1 (en) Apparatus and method for transmitting a signal in a wellbore
WO2009035978A1 (en) Short normal electrical measurement using an em-transmitter
WO1992018882A1 (en) Short hop communication link for downhole mwd system
US11828165B2 (en) In-cutter sensor LWD tool and method
US20050145416A1 (en) Method and system of transferring data gathered by downhole devices to surface devices
EP2501032B1 (en) Power generator for booster amplifier systems
CA2417536C (en) Apparatus for receiving downhole acoustic signals
BR112019018449B1 (pt) Sistema de comunicação e método de comunicação entre uma coluna de tubulação com fio em um poço e uma localização na superfície
CN110630251A (zh) 近钻头随钻测量设备的通信装置

Legal Events

Date Code Title Description
A1A A request for search or an international-type search has been filed
DNT Communications of changes of names of applicants whose applications have been laid open to public inspection

Free format text: DEVELCO, INC. HALLIBURTON COMPANY EN -

CNR Transfer of rights (patent application after its laying open for public inspection)

Free format text: EASTMAN TELECO COMPANY. HALLIBURTON COMPANY EN -

CNR Transfer of rights (patent application after its laying open for public inspection)

Free format text: BAKER HUGHES MINING TOOLS, INC. HALLIBURTON COMPANY

DNT Communications of changes of names of applicants whose applications have been laid open to public inspection

Free format text: BAKER HUGHES DRILLING TECHNOLOGIES, INC. HALLIBURTON

CNR Transfer of rights (patent application after its laying open for public inspection)

Free format text: BAKER HUGHES PRODUCTION TOOLS, INC. HALLIBURTON

DNT Communications of changes of names of applicants whose applications have been laid open to public inspection

Free format text: BAKER HUGHES INTEQ, INC. HALLIBURTON COMPANY EN -

CNR Transfer of rights (patent application after its laying open for public inspection)

Free format text: BAKER HUGES INCORPORATED;HALLIBURTON COMPANY

BB A search report has been drawn up
BC A request for examination has been filed
V4 Discontinued because of reaching the maximum lifetime of a patent

Effective date: 20120417