CN101878350B - 井下、一次起下作业、多层测试系统和使用该井下、一次起下作业、多层测试系统的井下测试方法 - Google Patents
井下、一次起下作业、多层测试系统和使用该井下、一次起下作业、多层测试系统的井下测试方法 Download PDFInfo
- Publication number
- CN101878350B CN101878350B CN200880118348.3A CN200880118348A CN101878350B CN 101878350 B CN101878350 B CN 101878350B CN 200880118348 A CN200880118348 A CN 200880118348A CN 101878350 B CN101878350 B CN 101878350B
- Authority
- CN
- China
- Prior art keywords
- layer
- testing
- specific installation
- tested
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 144
- 238000004891 communication Methods 0.000 claims abstract description 30
- 238000002955 isolation Methods 0.000 claims abstract description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 43
- 238000009434 installation Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 34
- 238000005070 sampling Methods 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 11
- 230000009977 dual effect Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 description 40
- 238000005553 drilling Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 206010065042 Immune reconstitution inflammatory syndrome Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/14—Obtaining from a multiple-zone well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Remote Sensing (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种用于对地下层进行测试的多层测试系统(100),包括:上子系统(109)、下子系统(111)和通信系统,所述上子系统包括控制站(151)和主隔离封隔器(113),所述主隔离封隔器用于将上子系统与下子系统隔离,所述下子系统包括:一组串联连接的单独设备(116),且每一个设备(116)适于对一层进行测试;和一系列远距离启动工具,所述远距离启动工具用于液压隔离相应层并对相应层进行测试,所述通信系统包括:控制站(151)与地面之间的通信装置;和控制站(151)与每一个单独设备(116)之间的通信装置,所述通信装置控制单独设备的远距离启动工具,用于按顺序对层进行测试。本发明还公开了一种用于使用多层测试系统(100)对被井贯穿的多个地下层进行测试的多层测试方法,包括以下步骤:将多层测试系统下入并定位到井内,使得每一个单独设备临近于将被测试的层;以及控制单独设备的远距离启动工具,用于按顺序对层进行测试。
Description
技术领域
本发明涉及井下试井,井下试井是一种用于表示对被井贯穿的地下岩层的潜在产量进行评价以开采烃的方法的广义术语。
背景技术
井下试井包括将设备或设备的组合下入井内,以液压隔离目的层与井的其余部分,并且能够使所述目的层流入到为组合设备的一部分的室内,或者通过连接到所述设备的适当的管流向地面。
在井眼已经钻通地层之后,使用射孔枪对地层的各种层进行射孔。在射孔之后,执行诸如钻杆测试的测试。钻杆测试(DST)是用于确定储层流体的产能、压力、磁导系数、和特性、或地层的每一层中的油气层的范围(这些特征的一些组合)的过程。
在油气井测试领域中,共同的问题是井穿过可能具有类似或不同特征的多于一个的分离的地下含油气层。
在这种情况下,目前需要执行和将要被测试的层一样多的钻杆测试(DST)起下钻。这对于钻杆井下测试操作来说是相当大的非生产时间源。
目前,当将要对被给定井贯穿的多个层进行测试时,在每一层执行单独的井下测试,从而使用也被称作为测试管柱的钻杆测试仪(DST仪)从井的井底按顺序开始。在每一次测试结束时,从井移除所述测试管柱以能够使刚刚被测试的层与井液压隔离,并且重置测试仪,用于将管柱下一次下入井内。
在图1a-1f中示出了被部署成利用根据现有技术的井下测试系统对给定井内的两个层带进行测试的典型顺序。
如图1a中所示,测试管柱3包括封隔器7、射孔枪系统9,并且测试器阀13被下入到井5内,以将射孔枪系统9定位成临近于最低的目的层1。封隔器7被设置成隔离层1与井眼5。然后如图1b所示利用射孔枪9对层1进行射孔。因此,地层物质11流入到井眼5和测试管柱3内,并且被测试。例如,通过通常位于测试器阀13下方的取样器和压力计执行地层物质的取样和压力测量。然后,对层1进行压井,释放封隔器7,并且从井5拉测试管柱3。通过穿过层1或在层1上方安置塞子15而使层1与井眼5的上部隔离。重置测试管柱3,并且准备射孔枪9以便对下一层2进行测试。如图1d所示,将测试管柱3再次下入到井5内以对层2进行测试。设置封隔器7以隔离层2与井眼5。利用射孔枪9对层2进行射孔(图1e)。地层物质17流入井眼5和测试管柱3内并被测试。再一次,可以通过位于测试器阀13下方的取样器和压力计执行地层物质的取样和压力测量。然后对层2进行压井,释放封隔器7,并从井5拉测试管柱3。在图1f中,通过穿过层2或在层2上方安置塞子19而将层2与井眼5的上部隔离。相继地,可以以同样的方式对井5所有的另外层进行测试。
在如上所述的系统中,对于将要被测试的每一层、对于将要被重置的测试管柱3和将要安置的塞子来说需要移除测试管柱3。因此,井眼内的多层井下测试可能是一个漫长而且高成本的过程。可能要花上几天时间,这在劳动力和设备成本方面成本很高,并且会推迟井眼的完井。
美国专利申请No.2006/0207764中公开了一种多层测试系统的示例。此申请涉及一种能够使多个目的层被连续测试的组件。所述组件包括多个阀,且每一个阀可通过将阀致动物体投下到相对应的阀内而致动。阀可以以预定顺序被相继致动到打开状态,并且在将相对应的阀致动到打开状态之后对不同层进行测试或采取增产措施(stimulate)。
上述文献说明了一种主要与层的增产措施有关的井下测试系统。一旦被致动,阀不能关闭。因此,所述井下测试系统不能提供对层进行测试时的灵活性。
本发明的系统通过提供一种测试系统来解决上述问题,所述测试系统可以用于在井内的井下测试管柱的单个起下钻中测试多个层,并提供对层进行测试时的灵活性。
发明内容
根据本发明的第一方面,本发明涉及一种用于对井内的地下层进行测试的多层测试系统,所述多层测试系统包括上子系统和下子系统,所述上子系统包括:控制站;和主隔离封隔器,所述主隔离封隔器用于将上子系统与下子系统隔离,所述下子系统包括:一组串联连接的单独设备,且每一个设备适于对一个层进行测试;和一系列远距离启动工具,所述远距离启动工具用于液压隔离相应层并对相应层进行测试。所述多层测试系统还包括通信系统,所述通信系统包括控制站与地面之间的通信装置;和控制站与每一个单独设备之间的通信装置,所述通信装置控制单独设备的远距离启动工具,用于按顺序对层进行测试。通信系统还将由各种工具采集的数据取回到地面。
根据第二方面,本发明涉及一种用于使用根据本发明的第一方面的多层测试系统对被井贯穿的多个地下层进行测试的多层测试方法,所述方法包括以下步骤:将系统下入并定位到井内,使得每一个单独设备临近于将被测试的层;以及控制单独设备的远距离启动工具,用于按顺序对层进行测试。
本发明的其它方面和优点将从以下详细说明和所附权利要求清楚呈现。
附图说明
图1a-1际出了来自现有技术(已经说明)的传统的测试顺序;
图2显示根据本发明的一个实施例的位于井眼内的系统;
图3显示根据本发明的一个实施例的系统;
图4a-4c示出了使用根据本发明的一个实施例的系统的连续多层测试;
图5a和图5b示出了使用根据本发明的另一个实施例的连续多层测试;
图6a-6c示出了使用根据本发明的另一个实施例的系统的连续多层测试;以及
图7a-7d示出了汇总了使用根据本发明的一个实施例的系统在连续多层测试期间得到的不同阀的状态(打开状态或关闭状态)和不同压力测量值的表格。
具体实施方式
以下参照附图详细说明本发明的示例性实施例,其中相同的元件可以由相同的附图标记表示以便一致性。
在以下说明中,表示在给定点或元件的上方或下方的相对位置的术语“向上”和“向下”、“上”和“下”、“在……上方”和“在……下方”及其它类似术语用于更清楚地说明本发明的一些实施例。然而,当应用到用于在斜井或水平井中使用的设备和方法时,这种术语可以表示左到右、右到左、或其它适当的关系。
以下参照附图并且更具体地参照图2-6,示出了并通常由附图标记100表示的本发明的井下、一次起下作业、多层测试系统。
系统100被设计成在井107内使用,并且安装有内管道104,地层物质可以在所述内管道中流动。通常,井107将具有诸如由附图标记101、102和103表示的多个井地层或多个目的层(图4和图6)。然而,井的具体结构可以改变,并且可以存在另外的地层或层。为了说明,只显示了三个目的层101-103,但是要理解的是本发明具有用于隔离并测试井中的任意数量层的应用。
如图2所示,井下多层测试系统100包括两个子系统:上子系统109和下子系统111。
在图2的示例性实施例中,上子系统109包括控制站151和用于隔离上子系统109与下子系统111的主隔离封隔器113。所述上子系统还包括主阀115,所述主阀用于允许或防止来自下子系统111的地层物质流动到上子系统109。这种主阀可以例如是由诸如斯伦贝谢的IRIS阀的球阀和套筒阀组成的复式阀,转让给斯伦贝谢并通过引用在此并入的美国专利4,971,160、5,050,675、5,691,712、4,796,669、4,856,595、4,915,168和4,896,722中说明和要求保护所述IRIS阀。所述系统还包括用于分析每一个单层101-103的组分的可远距离控制的流体分析器143、用于测量层101-103的流动的可远距离控制的流量计145,所述可远距离控制的流体分析器和所述可远距离控制的流量计可以是单独的或组合的。根据此示例,上子系统109还包括可远距离控制的备用压力计和可远距离控制的取样容器(在图中未示出)。
位于主封隔器113下方的下子系统111包括一组串联连接的单个设备116,且每一个设备适于对一层进行测试,并且包括用于液压隔离和测试相对应层的一系列远距离启动工具。
在操作中,将井下多层测试系统100下入并定位到井内,使得每一个单个设备临近于将要被测试的层。
在图2和图4a-4c中所示的示例性实施例中,每一个单独设备116的远距离启动工具包括用于在临近于层101-103的层带内对井107进行射孔的射孔枪系统129、131、133、能够使地层物质从系统100的内管道104流入到井筒107内的流动端口135、137。远距离启动工具还包括用于液压隔离相应层101-103的测试器阀117、119、121、用于隔离一层与另一相邻层的隔离封隔器139、141和测试装置。
测试装置有利地包括压力计123、125、127、和用于允许对被测试的地层物质进行取样的取样装置(图中未示出)。
可以将测试器阀117、119、121远距离控制到打开或闭合状态,并且所述测试器阀可以用于液压隔离相应层101-103。阀117、119、121允许层101-103通过系统100的内管道104从井107流动到测试系统100的上部。在图2、图4a-4c、和图5a和图5b中所示的实施例中,测试器阀117、119、121是套筒阀。
封隔器139、141当被设置时用于隔离井107的不同层101-103。所述封隔器能够使得使用射孔枪系统129、131、133对每一个目的层101-103独立单独射孔,并且例如通过对地层物质进行压力测量和取样而对所述每一个目的层进行测试。
图3更详细地说明了根据优选实施例的多层测试系统的通信系统。所述通信系统包括控制站151与地面105之间的通信装置、和在控制站151与每一个单独设备116之间以控制单独设备116的远距离启动工具用于按顺序对层103进行测试的通信装置。所述通信系统还可以包括单独设备116之间的通信装置。
根据本发明的一个方面,控制站151是无线控制站,并且安装有能够捕获和发射无线电信号的控制站天线157(图2)。
在另一个优选的实施例中,控制站151与地面105之间的通信装置包括一个或多个转发器,所述一个或多个转发器用于转继控制站151与地面105之间的无线通信。
在优选的实施例中,通信装置包长跳链路(long hop link)147,所述长跳链路负责地面105与控制站151之间的整体通信。基于井特征,长跳链路147还可以包括用于转继通信的一个或多个转发器155。长跳链路147例如可以是电磁链路。
单独设备116与控制站151之间、和单独设备116之间的通信装置包括有利地为声链路的短跳链路(short hop link)149。
一般而言,通信系统能够使工具状态和在井下获得的数据实时或近似实时输送到地面105以及从地面105将启动指令发送到工具,并且接收已经正确执行了所述指令的确认。
在图2中,从例如单独工具116、流量计145、流体分析器143到控制站151和从控制站151通过转发器155到地面105的不同通信信号由不连续双箭头表示。
图5a和图5b说明了基本上类似于参照图2和图4a-4c说明的系统的系统100,但是在系统100中,与内管道104成一体相反,射孔枪123、131、133位于内管道104的旁边。在此实施例中,每一个单独设备116还包括“Y-块(block)”504,所述“Y-块”将内管道104分成两个通路:主通路和衍生通路505,地层物质在所述主通路中流动,射孔枪129、131、133位于所述衍生通路内。射孔枪129、131、133因此位于从系统100的内管道104分支出来的衍生通路505内,地层物质可以在所述系统的内管道中流动。在侧向安装射孔枪129、131、133上方放置在衍生通路内的盲接头506保持内管道104的密封整体性。
图6a-6c说明了基本上类似于参照图2和图4a-4c所述的系统的系统100,但是在系统100中,测试套筒阀117、119、121被测试器球阀517、519替代。在本发明的此实施例中,每一个单独设备116包括第一流动端口135、137和第二流动端口134、136、138,所述第一流动端口能够使地层物质从系统100的内管道104流入到井筒107内,所述第二流动端口能够使地层物质从井筒107流入到系统100的内管道104内。此外,本领域的技术人员将认识到图5a和图5b中所示的系统的套筒阀117、119、121还可以被测试器球阀替代。
如以下所述,多层测试系统能够使各个层从井底开始单独并且按顺序以及混合被测试。
根据第二方面,本发明涉及一种用于使用如上所述的多层测试系统100对被井107贯穿的多个地下层101-103进行测试的多层测试方法。所述方法包括以下步骤:
(a)将所述系统100下入并定位在井107内,使得每一个单独设备116临近于与要被测试的层101-103;
(b)控制单独设备116的远距离启动工具,用于按顺序对层101-103进行测试。
在优选的实施例中,并且参照如图2-6所示的上述测试系统100,步骤(b)包括以下步骤:
(b1)安置封隔器113、139、141;
(b2)保持所有阀115、117、119、121打开;
(b3)使用临近于第一层101的第一单独工具116的射孔枪系统129对第一目的层101进行射孔;
(b4)对第一层101的流动159进行测试;
(b5)关闭第一单独工具116的测试器阀117;
(b6)除了已经被测试的层的阀117之外,保持所有阀115、119、121打开,并且重复步骤(b3)-(b6),以便对每一层102-103进行测试。
在优选的实施例中,步骤(b)可以包括所有以下步骤中的一个:
-使用压力计123、125、127测量流动159的压力;
-使用取样容器收集相应的已测试地层物质的样品;
-利用上子系统109的流体分析器143分析相应的已测试地层物质157;
-利用上子系统109的流量计145测量相对应的测试地层物质的流动159。
根据所述方法,还可以对层101-013中的每一个进行压力恢复测试。例如,在关闭第一个单独工具116的测试器阀117之后,使用第一单独工具116的压力计123实现所述测试(步骤b4’)。
在又一个优选的实施例中,所述方法还包括对混合流和混合压力恢复进行测试。混合流的测试可以例如由以下步骤来实现:
(b8)重新打开所有测试器阀117、119、121;
(b9)使用流量计145测量混合流和/或使用备用压力计和/或单独设备116的压力计123、125、127测量所述混合流的压力。
混合压力恢复的测试可以例如通过以下方式实现:
(b10)关闭上子系统109的主复式阀;
(b11)使用备用压力计和/或单独设备116的压力计123、125、127测量混合压力恢复。
可以应用使用其中每一个单独设备116又一包括“Y块”504的系统100的相同的方法,所述“Y块”将内管道104分成两个通路:地层物质将在其内流动的主通路和射孔枪129、131、133位于其内的衍生通路505。
还可以应用使用其中测试套筒阀117、119、121被测试器球阀517、519替代的系统100的相同的方法。
以下根据示例性实施例并参考图4、图5、图6和图7更详细地说明所述方法。
如图4a和图7a所示,首先通过第一层射孔枪系统129对最下面的目的层101进行射孔。地层物质157通过打开的第一层测试器阀117流动(流动由箭头159示意性地表示)到测试系统100的内管道104内。所述地层物质在通过第二层流动端口135离开进入井眼107的邻接于第二层102的层带内之前向上通过第一层隔离封隔器139。然后,流动159通过打开的第二层测试器阀119回到测试系统100的内管道104内。然后,所述流动通过第二层隔离封隔器141,并且通过第三层流动端口137回到井眼107的邻接于第三层103的层带内。所述流动最后通过打开的第三层测试器阀121再次返回到测试系统100的内管道104内,并向上达到测试系统100的在主封隔器113上方的上部109。
在流动周期(159)期间,第一层101被测试。例如,通过第一层压力计123测量压力L1FI,并且通过取样容器对地层物质157进行取样和/或通过流体分析器143分析所述地层物质。
在流动周期(159)结束时,通过无线通信系统致动第一层测试器阀117以闭合,以使用第一层压力计123记录井底压力恢复L1Bup。
一旦完成此,并且同时保持第一层测试器阀117关闭,利用第二层射孔枪系统131对沿井107的下一个目的层102进行射孔,并且地层物质161通过打开的第二层测试器阀119流动(163)到测试系统100的内管道104内,如图4b和图7b所示。然后,所述地层物质在通过第三层流动端口137离开进入井眼107内之前通过第二层隔离封隔器141。最后所述地层物质通过打开的第三层测试器阀121返回到测试系统100的内管道104内,并向上到达管柱105的在主封隔器113上方的上部109。
在流动周期(163)期间,对层102进行测试。例如,通过第二层压力计127测量压力L2FI,并通过取样容器对地层物质161进行取样和/或通过流体分析器143分析所述地层物质。
此外,当第一层测试器阀117保持关闭时,可以使用第一层压力计123测量第一层101的压力恢复,这能够测试第二层102的流动163对第一层的压力恢复的影响以检测两个层101与102之间是否连通或渗漏(干扰测试)。
在流动周期(163)结束时,通过无线通信系统致动第二层测试器阀119闭合以使用第二层压力计127记录井底压力恢复L2Bup。
最后,如图4c和图7c所示,在保持第一层测试器阀117和第二层测试器阀119关闭的同时,利用第三层射孔枪系统133对第三目的层103进行射孔,并且地层物质165通过打开第三层测试器阀121流动(167)到测试系统100的内管道104内。然后所述地层物质向上到达测试系统100的在主封隔器113上方的上部109。
在流动周期(167)期间,以与先前层相同的方式对层103进行测试。例如,通过第三层压力计127测量压力L3FI,并且通过取样容器对地层物质进行取样和/或通过流体分析器143分析所述地层物质。
再次,可以执行干扰测试以使用压力计123、125测量第三层的流动对第一层和第二层的压力恢复的影响,并且同时保持第一层测试器阀117和第二层测试器阀119关闭,以检测层101-103之间是否连通或渗漏。
在第三流动周期167结束时,通过无线通信系统致动第三层测试器阀121闭合,以使用第三层压力计127记录井底压力恢复L3Bup。
相对井107中需要测试的另外的层重复相同的方法。
一旦已经单独对所述层进行了测试(流动和压力恢复),所有下测试器阀117、121、123可以重新打开以允许所有层流动混合。如图7d所示可通过关闭主复式阀115记录最终的整体压力恢复。例如,通过压力计123、125、127中的任一个和/或通过备用压力计测量混合流压力CFl。可以通过压力计123、125、127中的任一个记录最终的整体压力恢复CBup。
以下参照图5a和图5b说明根据本发明的方法的示例。所述方法适于如先前所述的系统100,但是还包括“Y块”504,所述“Y块”将内管道104分成两个通路:地层物质将在其内流动的主通路和射孔枪129、131、133位于其内的衍生通路505。图5a和图5b表示仅应用于一个目的层102的方法。相同的说明可以应用于任何其它目的层。
如图5a所示,对目的层102下方的一层已经进行了射孔,并且地层物质157正在内管道104内流动(159)。通过层射孔枪系统131对层102进行射孔。然后,地层物质161绕射孔枪131在井筒107内流动(163),并且通过打开套筒阀119向上进入到内管道104内,然后到达下一个单独设备116或到达地面,如图5b所示。
以下参照图6a-6c说明根据本发明的方法的示例。所述方法适于使用测试器球阀517、519。
以与先前所述的同样的方式对第一层101进行射孔。然后,地层物质157通过第一层流动端口134流动(159)到测试系统100的内管道104内。地层物质157向上移动通过第一层隔离封隔器139并通过打开的第一层测试器阀117。然后,地层物质157通过下第二层流动端口135离开进入井眼107的邻接于第二层102的层带内。流动159然后通过上第二层流动端口136返回到测试系统100的内管道104内,通过第二层隔离封隔器141并通过打开的第二层测试器阀119。流动159然后通过下第三层流动端口137返回到井眼107的邻接于第三层103的层带内。流动159最后通过上第三层流动端口138再次返回到测试系统100的内管道104,并到达测试系统100的在主封隔器113上方的上部109。
将被测试的所有其它层102、103的地层物质161、165的流动163、167从井眼107的邻接于已测试层开始遵循与第一层101的流动159相同的通路。
根据本发明的系统还能够使用无线通信装置将来自单独设备的测试装置的数据实时传输到控制站。
虽然相对于优选的实施例和示例说明了本发明,但是本领域的技术人员在不背离本发明的保护范围的情况下可以对井下多层测试系统的相关部件和测试方法的步骤做多种改变和修改。如上所述的井下多层测试系统和方法的优点尤其包括:
由于可以单独并且一起在测试系统的井中的单个起下钻内对多个层带进行测试时,因此节省了时间。
可以通过无线通信系统从地面实时访问数据。
可通过无线通信系统从地面实时访问任意给定设备的状态。
可以通过无线通信系统从地面任意启动各种设备。
虽然对位于下方的层进行测试,但是可以提供下层带的压力恢复。
可以在启动(流动)层与位于下方的任意关闭层之间执行连续干扰测试。
在层间封隔的理想条件下,可以通过在前一个层已经关闭时就使一个层开始流动来获得进一步的时间增益。
在可选的实施例中,控制站与地面之间的通信还可以利用电缆实施。在不背离如所附权利要求限定的本发明的保护范围的情况下,本领域的技术人员可以容易地设想本发明的许多变化。
Claims (39)
1.一种用于对井(107)内的地下层进行测试的多层测试系统(100),包括:上子系统(109)、下子系统(111)和通信系统,其中:
所述上子系统(109)包括:
无线控制站(151);和
主隔离封隔器(113),所述主隔离封隔器用于将所述上子系统与所述下子系统隔离,
所述下子系统(111)包括:
一组串联连接的单独设备(116),且每一个单独设备(116)适于对一个层(101-103)进行测试,每一个单独设备(116)包括一系列无线远距离启动工具,所述无线远距离启动工具用于液压隔离相应的所述层并对相应的所述层进行测试,其中所述无线远距离启动工具包括无线远距离控制的采样装置以及无线远距离启动射孔枪系统(129,131,133),所述无线远距离启动射孔枪系统用于对与相应的所述层(101-103)邻接的层带内的井(107)进行射孔;以及
所述通信系统包括:所述控制站(151)与地面之间以及所述控制站(151)与每一个单独设备(116)之间的无线通信装置,所述无线通信装置用于控制所述单独设备的所述无线远距离启动工具,用于按顺序对所述层进行测试,
其中:
所述无线远距离启动工具还包括测试器阀,所述测试器阀能够被远距离控制到打开状态或关闭状态;
除了已经测试过的层的测试器阀之外,保持所有测试器阀打开。
2.根据权利要求1所述的系统,其中,所述测试器阀是套筒阀(117、121、123)。
3.根据权利要求1所述的系统,其中,所述测试器阀是球阀(517,521)。
4.根据权利要求1所述的系统,其中,所述无线远距离启动工具包括能够无线远距离控制的测试装置。
5.根据权利要求4所述的系统,其中,所述能够无线远距离控制的测试装置包括能够无线远距离控制的压力计(123、125、127)。
6.根据权利要求1所述的系统,其中,所述无线远距离启动工具包括用于隔离一个层与另一个相邻层的无线远距离启动封隔器(139,141)。
7.根据权利要求1所述的系统,其中,所述无线远距离启动射孔枪系统(129,131,133)位于衍生通路(505)内,所述衍生通路从所述系统(100)的内管道(104)分支出来,地层物质能够在所述内管道内流动。
8.根据权利要求1所述的系统,其中,每一个单独设备(116)包括流动端口(135,137),所述流动端口能够使地层物质从井筒(107)流入到所述系统(100)的内管道(104)内。
9.根据权利要求1所述的系统,其中,每一个单独设备(116)包括流动端口(134,136,138),所述流动端口能够使地层物质从所述系统(100)的内管道(104)流入到井筒内。
10.根据权利要求1所述的系统,其中,所述上子系统(109)包括主阀(115)。
11.根据权利要求10所述的系统,其中,所述主阀(115)是复式阀。
12.根据权利要求1所述的系统,其中,所述上子系统(109)包括用于分析每一个单独层的组分的能够无线远距离控制的流体分析器(143)。
13.根据权利要求1所述的系统,其中,所述上子系统(109)包括用于测量所述层的流动的能够无线远距离控制的流量计(145)。
14.根据权利要求1所述的系统,其中,所述上子系统(109)包括能够无线远距离控制的备用压力计。
15.根据权利要求1所述的系统,其中,所述上子系统(109)包括能够无线远距离控制的取样容器。
16.根据权利要求1所述的系统,其中,所述控制站(151)与地面之间的无线通信装置包括用于转继通信的一个或多个转发器(155)。
17.根据权利要求1所述的系统,其中,所述无线通信系统能够将由所述单独设备的测试装置收集的测试数据传输到地面。
18.根据权利要求1所述的系统,其中,所述无线通信系统包括所述单独设备(116)之间的通信装置。
19.根据权利要求1所述的系统,其中,所述控制站(151)与所述单独设备(116)之间的无线通信装置包括短跳链路(149)。
20.根据权利要求19所述的系统,其中,所述短跳链路(149)是声链路。
21.根据权利要求19所述的系统,其中,所述短跳链路(149)是电磁链路。
22.根据权利要求1所述的系统,其中,所述控制站(151)与地面之间的无线通信装置包括长跳链路(147)。
23.根据权利要求22所述的系统,其中,所述长跳链路(147)是声链路。
24.根据权利要求22所述的系统,其中,所述长跳链路(147)是电磁链路。
25.一种用于使用根据权利要求1所述的多层测试系统对被井贯穿的多个地下层进行测试的多层测试方法,包括以下步骤:
(a)将所述多层测试系统下入并定位到所述井内,使得每一个单独设备临近于将被测试的层;以及
(b)无线控制所述单独设备的远距离启动工具,用于按顺序对所述层进行测试。
26.根据权利要求25所述的方法,其中,每一个单独设备的所述无线远距离启动工具还包括封隔器和测试装置,所述步骤(b)包括以下步骤:
(bl)安置所述封隔器;
(b2)保持所有阀打开;
(b3)使用临近于所关心的第一层的对应的第一无线远距离启动工具的所述射孔枪系统对所述第一层进行射孔;
(b4)对所述第一层的流动进行测试;
(b5)关闭所述第一无线远距离启动工具的测试器阀;
(b6)除了已经测试过的层的阀之外,保持所有测试器阀打开,并且重复步骤(b3)-(b6),以便对每一层进行测试。
27.根据权利要求26所述的方法,其中,所述测试装置包括压力计,在关闭所述第一无线远距离启动工具的测试器阀之后,所述步骤(b)还包括以下步骤:
(b5’)使用所述压力计对第一层的压力恢复进行测试。
28.根据权利要求26所述的方法,其中,所述测试装置包括压力计,所述步骤(b4)包括以下步骤:
使用所述压力计测量流动的压力。
29.权利要求26所述的方法,其中,所述测试装置包括所述采样装置,步骤(b4)包括使用所述采样装置收集相应的被测试地层物质的样品。
30.根据权利要求26所述的方法,其中,所述上子系统包括流体分析器,所述步骤(b4)包括以下步骤:
利用所述流体分析器分析相应的被测试地层物质。
31.根据权利要求26所述的方法,其中,所述上子系统包括流量计,所述步骤(b4)包括以下步骤:
利用所述流量计测量相应的被测试地层物质的流动。
32.根据权利要求26-31中任一项所述的方法,还包括以下步骤(c):
无线控制所述单独设备的无线远距离启动工具,用于在当前被测试层与一个或多个已经测试层之间进行干扰测试。
33.根据权利要求26-31中任一项所述的方法,还包括步骤(d):
无线控制所述单独设备的无线远距离启动工具,用于至少两个相邻被测试层的混合测试。
34.根据权利要求33所述的方法,其中,所述步骤(d)包括以下步骤:
(d1)无线重新打开至少两个已经测试的相邻层的测试器阀;以及
(d2)对混合流进行测试。
35.根据权利要求26-31所述的方法,还包括步骤(d’):
无线控制所述单独设备的远距离启动工具,用于对所有被测试层进行混合测试。
36.根据权利要求35所述的方法,其中,所述步骤(d’)包括以下步骤
(d’1)无线重新打开所有测试器阀;以及
(d’2)对混合流进行测试。
37.根据权利要求36所述的方法,其中,所述上子系统包括主复式阀,所述步骤(d’)还包括以下步骤:
(d’3)关闭所述主复式阀;以及
(d’4)对混合压力恢复进行测试。
38.根据权利要求25-31中任一项所述的方法,还包括以下步骤(e):
将由所述单独设备的每一个测试装置收集的数据传输到地面。
39.根据权利要求38所述的方法,其中,实时传输所述数据。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99144507P | 2007-11-30 | 2007-11-30 | |
US60/991,445 | 2007-11-30 | ||
PCT/EP2008/010119 WO2009068302A2 (en) | 2007-11-30 | 2008-11-28 | Downhole, single trip, multi-zone testing system and downhole testing method using such |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101878350A CN101878350A (zh) | 2010-11-03 |
CN101878350B true CN101878350B (zh) | 2015-03-11 |
Family
ID=40679043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880118348.3A Expired - Fee Related CN101878350B (zh) | 2007-11-30 | 2008-11-28 | 井下、一次起下作业、多层测试系统和使用该井下、一次起下作业、多层测试系统的井下测试方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8776591B2 (zh) |
CN (1) | CN101878350B (zh) |
AU (1) | AU2008329140B2 (zh) |
BR (1) | BRPI0819604B1 (zh) |
CA (1) | CA2707088A1 (zh) |
GB (1) | GB2467673A (zh) |
MX (1) | MX2010005562A (zh) |
NO (1) | NO20100695L (zh) |
WO (1) | WO2009068302A2 (zh) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7684786B2 (en) * | 2003-08-26 | 2010-03-23 | Nokia Corporation | Method and system for establishing a connection between network elements |
US8695710B2 (en) * | 2011-02-10 | 2014-04-15 | Halliburton Energy Services, Inc. | Method for individually servicing a plurality of zones of a subterranean formation |
US8251140B2 (en) * | 2009-09-15 | 2012-08-28 | Schlumberger Technology Corporation | Fluid monitoring and flow characterization |
DK177946B9 (da) * | 2009-10-30 | 2015-04-20 | Maersk Oil Qatar As | Brøndindretning |
CA3077883C (en) | 2010-02-18 | 2024-01-16 | Ncs Multistage Inc. | Downhole tool assembly with debris relief, and method for using same |
US9068447B2 (en) | 2010-07-22 | 2015-06-30 | Exxonmobil Upstream Research Company | Methods for stimulating multi-zone wells |
WO2012011994A1 (en) | 2010-07-22 | 2012-01-26 | Exxonmobil Upstrem Research Company | System and method for stimulating a multi-zone well |
US20130020097A1 (en) * | 2011-07-21 | 2013-01-24 | Schlumberger Technology Corporation | Downhole fluid-flow communication technique |
CA2798343C (en) | 2012-03-23 | 2017-02-28 | Ncs Oilfield Services Canada Inc. | Downhole isolation and depressurization tool |
WO2013184238A1 (en) | 2012-06-06 | 2013-12-12 | Exxonmobil Upstream Research Company | Systems and methods for secondary sealing of a perforation within a wellbore casing |
US10030513B2 (en) | 2012-09-19 | 2018-07-24 | Schlumberger Technology Corporation | Single trip multi-zone drill stem test system |
CN102900426B (zh) * | 2012-11-08 | 2015-08-19 | 中国石油集团西部钻探工程有限公司 | 遥测式试油井下管柱工作参数实时监测装置 |
US9322239B2 (en) | 2012-11-13 | 2016-04-26 | Exxonmobil Upstream Research Company | Drag enhancing structures for downhole operations, and systems and methods including the same |
US9976402B2 (en) | 2014-09-18 | 2018-05-22 | Baker Hughes, A Ge Company, Llc | Method and system for hydraulic fracture diagnosis with the use of a coiled tubing dual isolation service tool |
US9708906B2 (en) | 2014-09-24 | 2017-07-18 | Baker Hughes Incorporated | Method and system for hydraulic fracture diagnosis with the use of a coiled tubing dual isolation service tool |
WO2016209658A1 (en) * | 2015-06-22 | 2016-12-29 | Schlumberger Technology Corporation | Y-tool system for use in perforation and production operation |
WO2017074353A1 (en) * | 2015-10-28 | 2017-05-04 | Halliburton Energy Services, Inc. | Transceiver with annular ring of high magnetic permeability material for enhanced short hop communications |
MX2018012079A (es) * | 2016-05-10 | 2019-01-14 | Halliburton Energy Services Inc | Valvula de prueba debajo de empacador de produccion. |
CN105952423A (zh) * | 2016-05-31 | 2016-09-21 | 中国石油天然气股份有限公司 | 一种带有悬挂泵的分层采油方法及生产管柱 |
CN108166974B (zh) * | 2016-12-06 | 2022-02-15 | 中国石油化工股份有限公司 | 与射孔联作的测试取样一体化的装置 |
CN109424361B (zh) * | 2017-08-24 | 2021-11-30 | 中国石油天然气股份有限公司 | 一趟式分层试油管柱 |
US20190093474A1 (en) * | 2017-09-22 | 2019-03-28 | General Electric Company | System and method for determining production from a plurality of wells |
US10982538B2 (en) | 2018-03-19 | 2021-04-20 | Saudi Arabian Oil Company | Multi-zone well testing |
CN109083625B (zh) * | 2018-08-09 | 2021-08-06 | 营口市双龙射孔器材有限公司 | 一种全通径跨隔射孔-测试联作管柱的操作方法 |
CN111155992B (zh) * | 2018-11-07 | 2023-05-26 | 中国石油天然气股份有限公司 | 一种多层联作试油装置及方法 |
CN113550722B (zh) * | 2020-04-08 | 2023-04-07 | 中国石油化工股份有限公司 | 一种射孔、测试、返排一体化多功能管柱及其施工方法 |
EP4006299A1 (en) | 2020-11-30 | 2022-06-01 | Services Pétroliers Schlumberger | Method and system for automated multi-zone downhole closed loop reservoir testing |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1038490A (zh) * | 1989-02-23 | 1990-01-03 | 姚绪秋 | 偏心配水井分层测试新方法 |
CN2061605U (zh) * | 1990-04-16 | 1990-09-05 | 吉林省油田管理局测井公司 | 井下数字式多参数测试仪 |
CN2302333Y (zh) * | 1997-08-20 | 1998-12-30 | 淮安市石油机械厂 | 油田多层注水及测试器具 |
CN2435513Y (zh) * | 2000-03-24 | 2001-06-20 | 大庆油田有限责任公司采油工艺研究所 | 一种测量生产油井井下压力的装置 |
US6497290B1 (en) * | 1995-07-25 | 2002-12-24 | John G. Misselbrook | Method and apparatus using coiled-in-coiled tubing |
CN2682198Y (zh) * | 2004-02-06 | 2005-03-02 | 吉林石油集团有限责任公司 | 多个层位逐级依次射孔装置 |
CN2871841Y (zh) * | 2005-11-18 | 2007-02-21 | 中国石油天然气股份有限公司 | 分层采油测试装置 |
CN2881096Y (zh) * | 2006-03-14 | 2007-03-21 | 王晓斌 | 一种油井用分层采油分层测试装置 |
CN2900784Y (zh) * | 2006-01-04 | 2007-05-16 | 辽河石油勘探局 | 一种多芯电缆油井分层测试井下装置 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2564198A (en) * | 1945-01-15 | 1951-08-14 | Stanolind Oil & Gas Co | Well testing apparatus |
US2781663A (en) * | 1956-01-16 | 1957-02-19 | Union Oil Co | Well fluid sampling device |
US3605887A (en) | 1970-05-21 | 1971-09-20 | Shell Oil Co | Apparatus for selectively producing and testing fluids from a multiple zone well |
CA1164816A (en) | 1981-07-10 | 1984-04-03 | Duratron Systems Limited | Method of relining sewers and water lines without excavation |
US4794989A (en) * | 1985-11-08 | 1989-01-03 | Ava International Corporation | Well completion method and apparatus |
CA1249772A (en) * | 1986-03-07 | 1989-02-07 | David Sask | Drill stem testing system |
US4838079A (en) * | 1987-05-20 | 1989-06-13 | Harris Richard K | Multi-channel pipe for monitoring groundwater |
US4896722A (en) | 1988-05-26 | 1990-01-30 | Schlumberger Technology Corporation | Multiple well tool control systems in a multi-valve well testing system having automatic control modes |
US4856595A (en) | 1988-05-26 | 1989-08-15 | Schlumberger Technology Corporation | Well tool control system and method |
US4971160A (en) | 1989-12-20 | 1990-11-20 | Schlumberger Technology Corporation | Perforating and testing apparatus including a microprocessor implemented control system responsive to an output from an inductive coupler or other input stimulus |
US5050675A (en) | 1989-12-20 | 1991-09-24 | Schlumberger Technology Corporation | Perforating and testing apparatus including a microprocessor implemented control system responsive to an output from an inductive coupler or other input stimulus |
US5160925C1 (en) * | 1991-04-17 | 2001-03-06 | Halliburton Co | Short hop communication link for downhole mwd system |
US5137086A (en) | 1991-08-22 | 1992-08-11 | Tam International | Method and apparatus for obtaining subterranean fluid samples |
US5273112A (en) * | 1992-12-18 | 1993-12-28 | Halliburton Company | Surface control of well annulus pressure |
US5540281A (en) * | 1995-02-07 | 1996-07-30 | Schlumberger Technology Corporation | Method and apparatus for testing noneruptive wells including a cavity pump and a drill stem test string |
US5706896A (en) * | 1995-02-09 | 1998-01-13 | Baker Hughes Incorporated | Method and apparatus for the remote control and monitoring of production wells |
US5732776A (en) * | 1995-02-09 | 1998-03-31 | Baker Hughes Incorporated | Downhole production well control system and method |
US5598894A (en) * | 1995-07-05 | 1997-02-04 | Halliburton Company | Select fire multiple drill string tester |
US5691712A (en) | 1995-07-25 | 1997-11-25 | Schlumberger Technology Corporation | Multiple wellbore tool apparatus including a plurality of microprocessor implemented wellbore tools for operating a corresponding plurality of included wellbore tools and acoustic transducers in response to stimulus signals and acoustic signals |
US5955666A (en) * | 1997-03-12 | 1999-09-21 | Mullins; Augustus Albert | Satellite or other remote site system for well control and operation |
US6062073A (en) * | 1998-09-08 | 2000-05-16 | Westbay Instruments, Inc. | In situ borehole sample analyzing probe and valved casing coupler therefor |
US6279660B1 (en) * | 1999-08-05 | 2001-08-28 | Cidra Corporation | Apparatus for optimizing production of multi-phase fluid |
US6320820B1 (en) * | 1999-09-20 | 2001-11-20 | Halliburton Energy Services, Inc. | High data rate acoustic telemetry system |
US6527050B1 (en) * | 2000-07-31 | 2003-03-04 | David Sask | Method and apparatus for formation damage removal |
US6899178B2 (en) * | 2000-09-28 | 2005-05-31 | Paulo S. Tubel | Method and system for wireless communications for downhole applications |
US7301474B2 (en) * | 2001-11-28 | 2007-11-27 | Schlumberger Technology Corporation | Wireless communication system and method |
US7201230B2 (en) * | 2003-05-15 | 2007-04-10 | Halliburton Energy Services, Inc. | Hydraulic control and actuation system for downhole tools |
US7004252B2 (en) * | 2003-10-14 | 2006-02-28 | Schlumberger Technology Corporation | Multiple zone testing system |
US7207215B2 (en) * | 2003-12-22 | 2007-04-24 | Halliburton Energy Services, Inc. | System, method and apparatus for petrophysical and geophysical measurements at the drilling bit |
CA2558332C (en) * | 2004-03-04 | 2016-06-21 | Halliburton Energy Services, Inc. | Multiple distributed force measurements |
US7636671B2 (en) * | 2004-08-30 | 2009-12-22 | Halliburton Energy Services, Inc. | Determining, pricing, and/or providing well servicing treatments and data processing systems therefor |
US7249636B2 (en) * | 2004-12-09 | 2007-07-31 | Schlumberger Technology Corporation | System and method for communicating along a wellbore |
US7387165B2 (en) * | 2004-12-14 | 2008-06-17 | Schlumberger Technology Corporation | System for completing multiple well intervals |
US7322417B2 (en) * | 2004-12-14 | 2008-01-29 | Schlumberger Technology Corporation | Technique and apparatus for completing multiple zones |
US7518528B2 (en) * | 2005-02-28 | 2009-04-14 | Scientific Drilling International, Inc. | Electric field communication for short range data transmission in a borehole |
US7231978B2 (en) * | 2005-04-19 | 2007-06-19 | Schlumberger Technology Corporation | Chemical injection well completion apparatus and method |
US7980306B2 (en) * | 2005-09-01 | 2011-07-19 | Schlumberger Technology Corporation | Methods, systems and apparatus for coiled tubing testing |
US7596995B2 (en) * | 2005-11-07 | 2009-10-06 | Halliburton Energy Services, Inc. | Single phase fluid sampling apparatus and method for use of same |
US7373813B2 (en) * | 2006-02-21 | 2008-05-20 | Baker Hughes Incorporated | Method and apparatus for ion-selective discrimination of fluids downhole |
US7712524B2 (en) * | 2006-03-30 | 2010-05-11 | Schlumberger Technology Corporation | Measuring a characteristic of a well proximate a region to be gravel packed |
ATE447661T1 (de) * | 2006-12-21 | 2009-11-15 | Prad Res & Dev Nv | 2d-bohrlochprüfung mit smart-plug-sensoren |
US7805988B2 (en) * | 2007-01-24 | 2010-10-05 | Precision Energy Services, Inc. | Borehole tester apparatus and methods using dual flow lines |
US8115651B2 (en) * | 2007-04-13 | 2012-02-14 | Xact Downhole Telemetry Inc. | Drill string telemetry methods and apparatus |
US20090260807A1 (en) * | 2008-04-18 | 2009-10-22 | Schlumberger Technology Corporation | Selective zonal testing using a coiled tubing deployed submersible pump |
US8622128B2 (en) * | 2009-04-10 | 2014-01-07 | Schlumberger Technology Corporation | In-situ evaluation of reservoir sanding and fines migration and related completion, lift and surface facilities design |
US20110042067A1 (en) * | 2009-06-23 | 2011-02-24 | Ethan Ora Weikel | Subsurface discrete interval system with verifiable interval isolation |
US8448703B2 (en) * | 2009-11-16 | 2013-05-28 | Schlumberger Technology Corporation | Downhole formation tester apparatus and methods |
-
2008
- 2008-11-28 AU AU2008329140A patent/AU2008329140B2/en active Active
- 2008-11-28 US US12/745,582 patent/US8776591B2/en active Active
- 2008-11-28 WO PCT/EP2008/010119 patent/WO2009068302A2/en active Application Filing
- 2008-11-28 GB GB1007648A patent/GB2467673A/en not_active Withdrawn
- 2008-11-28 CA CA2707088A patent/CA2707088A1/en not_active Abandoned
- 2008-11-28 CN CN200880118348.3A patent/CN101878350B/zh not_active Expired - Fee Related
- 2008-11-28 MX MX2010005562A patent/MX2010005562A/es active IP Right Grant
- 2008-11-28 BR BRPI0819604A patent/BRPI0819604B1/pt active IP Right Grant
-
2010
- 2010-05-12 NO NO20100695A patent/NO20100695L/no not_active Application Discontinuation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1038490A (zh) * | 1989-02-23 | 1990-01-03 | 姚绪秋 | 偏心配水井分层测试新方法 |
CN2061605U (zh) * | 1990-04-16 | 1990-09-05 | 吉林省油田管理局测井公司 | 井下数字式多参数测试仪 |
US6497290B1 (en) * | 1995-07-25 | 2002-12-24 | John G. Misselbrook | Method and apparatus using coiled-in-coiled tubing |
CN2302333Y (zh) * | 1997-08-20 | 1998-12-30 | 淮安市石油机械厂 | 油田多层注水及测试器具 |
CN2435513Y (zh) * | 2000-03-24 | 2001-06-20 | 大庆油田有限责任公司采油工艺研究所 | 一种测量生产油井井下压力的装置 |
CN2682198Y (zh) * | 2004-02-06 | 2005-03-02 | 吉林石油集团有限责任公司 | 多个层位逐级依次射孔装置 |
CN2871841Y (zh) * | 2005-11-18 | 2007-02-21 | 中国石油天然气股份有限公司 | 分层采油测试装置 |
CN2900784Y (zh) * | 2006-01-04 | 2007-05-16 | 辽河石油勘探局 | 一种多芯电缆油井分层测试井下装置 |
CN2881096Y (zh) * | 2006-03-14 | 2007-03-21 | 王晓斌 | 一种油井用分层采油分层测试装置 |
Also Published As
Publication number | Publication date |
---|---|
BRPI0819604B1 (pt) | 2018-11-21 |
WO2009068302A2 (en) | 2009-06-04 |
AU2008329140A1 (en) | 2009-06-04 |
GB201007648D0 (en) | 2010-06-23 |
MX2010005562A (es) | 2010-06-02 |
BRPI0819604A2 (pt) | 2017-05-09 |
CN101878350A (zh) | 2010-11-03 |
CA2707088A1 (en) | 2009-06-04 |
US20110048122A1 (en) | 2011-03-03 |
GB2467673A (en) | 2010-08-11 |
NO20100695L (no) | 2010-06-15 |
US8776591B2 (en) | 2014-07-15 |
WO2009068302A3 (en) | 2009-09-24 |
AU2008329140B2 (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101878350B (zh) | 井下、一次起下作业、多层测试系统和使用该井下、一次起下作业、多层测试系统的井下测试方法 | |
US7261161B2 (en) | Well testing system | |
US7004252B2 (en) | Multiple zone testing system | |
US8215391B2 (en) | Coiled tubing deployed single phase fluid sampling apparatus and method for use of same | |
US11105179B2 (en) | Tester valve below a production packer | |
US9303509B2 (en) | Single pump focused sampling | |
US6330913B1 (en) | Method and apparatus for testing a well | |
US7484563B2 (en) | Formation evaluation system and method | |
US20130319102A1 (en) | Downhole Tools and Oil Field Tubulars having Internal Sensors for Wireless External Communication | |
US20020066563A1 (en) | Method and apparatus for continuously testing a well | |
US20040000433A1 (en) | Method and apparatus for subsurface fluid sampling | |
RU2520187C2 (ru) | Система и способ оптимизирования добычи в скважине | |
CA2847875C (en) | Dual purpose observation and production well | |
US9347299B2 (en) | Packer tool including multiple ports | |
US6959763B2 (en) | Method and apparatus for integrated horizontal selective testing of wells | |
Deisman et al. | Cased wellbore tools for sampling and in situ testing of cement/formation flow properties | |
US20240191622A1 (en) | In-situ sweep testing system and method for conducting in-situ oil recovery sweep testing | |
Temer et al. | Fully Automated and Wirelessly Enabled Drillstem Tests: Seven-Zones Campaign Case Study in Sakhalin | |
WO2013184096A1 (en) | Downhole tools and oil field tubulars having internal sensors for wireless external communication | |
Lal et al. | Challenges and Values Of Formation Testing In Tight Sand In Monterey Formation Using Modular Dynamic Tester (MDT) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150311 |
|
CF01 | Termination of patent right due to non-payment of annual fee |