MD784G2 - A method and apparatus for converting heat energy to mechanical energy with greater efficiency - Google Patents
A method and apparatus for converting heat energy to mechanical energy with greater efficiencyInfo
- Publication number
- MD784G2 MD784G2 MD95-0258A MD950258A MD784G2 MD 784 G2 MD784 G2 MD 784G2 MD 950258 A MD950258 A MD 950258A MD 784 G2 MD784 G2 MD 784G2
- Authority
- MD
- Moldova
- Prior art keywords
- working fluid
- energy
- reservoir
- greater efficiency
- heat energy
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K21/00—Steam engine plants not otherwise provided for
- F01K21/04—Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Eletrric Generators (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Paper (AREA)
Abstract
According to the method, heat energy is applied to a working fluid in a reservoir 12 sufficient to convert the working fluid to a vapor and the working fluid is passed in vapor form to means 16 such as a generator for converting the energy therein to mechanical work. The working fluid is then recycled to the reservoir 12. In order to increase the efficiency of this process, a gaz (He) having a molecular weight no greater then the approximate molecular weight of the working fluid is added to the working fluid in the reservoir 12 and separated from the working fluid downstream from the reservoir.Fig.:10
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/929,433 US5255519A (en) | 1992-08-14 | 1992-08-14 | Method and apparatus for increasing efficiency and productivity in a power generation cycle |
PCT/US1993/007462 WO1994004796A1 (en) | 1992-08-14 | 1993-08-12 | Method and apparatus for increasing efficiency and productivity in a power generation cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
MD784F1 MD784F1 (en) | 1997-07-31 |
MD784G2 true MD784G2 (en) | 1998-09-30 |
Family
ID=25457858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MD95-0258A MD784G2 (en) | 1992-08-14 | 1993-08-12 | A method and apparatus for converting heat energy to mechanical energy with greater efficiency |
Country Status (24)
Country | Link |
---|---|
US (2) | US5255519A (en) |
EP (1) | EP0655101B1 (en) |
JP (1) | JPH08500171A (en) |
KR (1) | KR950703116A (en) |
CN (1) | CN1057585C (en) |
AT (1) | ATE159564T1 (en) |
AU (1) | AU674698B2 (en) |
BG (1) | BG61703B1 (en) |
BR (1) | BR9306898A (en) |
CA (1) | CA2142289C (en) |
CZ (1) | CZ36595A3 (en) |
DE (1) | DE69314798T2 (en) |
DK (1) | DK0655101T3 (en) |
ES (1) | ES2111178T3 (en) |
FI (1) | FI950633A0 (en) |
GB (1) | GB2269634B (en) |
HU (1) | HUT71360A (en) |
IL (1) | IL106648A (en) |
MD (1) | MD784G2 (en) |
NZ (1) | NZ255699A (en) |
PL (1) | PL172839B1 (en) |
RU (1) | RU2114999C1 (en) |
SK (1) | SK18995A3 (en) |
WO (1) | WO1994004796A1 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5255519A (en) * | 1992-08-14 | 1993-10-26 | Millennium Technologies, Inc. | Method and apparatus for increasing efficiency and productivity in a power generation cycle |
JPH08100606A (en) * | 1994-09-30 | 1996-04-16 | Hitachi Ltd | Rankine cycle generating system and its operation method |
DE19711177C2 (en) * | 1997-03-18 | 1999-01-14 | Martin Dr Ing Ziegler | Process for using thermal energy |
US6422016B2 (en) | 1997-07-03 | 2002-07-23 | Mohammed Alkhamis | Energy generating system using differential elevation |
US5873249A (en) * | 1997-07-03 | 1999-02-23 | Alkhamis; Mohammed | Energy generating system using differential elevation |
US5983640A (en) * | 1998-04-06 | 1999-11-16 | Czaja; Julius | Heat engine |
BR9915548A (en) | 1998-10-16 | 2001-08-14 | Biogen Inc | Interferon-beta fusion proteins and uses |
US6293104B1 (en) * | 1999-05-17 | 2001-09-25 | Hitachi, Ltd. | Condenser, power plant equipment and power plant operation method |
WO2002095192A1 (en) * | 2001-05-24 | 2002-11-28 | Samuil Naumovich Dunaevsky | Method for the practically total transformation of heat into work and device for carrying out said method |
GB2410770B (en) * | 2004-01-06 | 2007-09-05 | Dunstan Dunstan | An improvement to two-phase flow-turbines |
US9499056B2 (en) | 2007-06-28 | 2016-11-22 | Averill Partners, Llc | Air start steam engine |
US9309785B2 (en) | 2007-06-28 | 2016-04-12 | Averill Partners Llc | Air start steam engine |
US8459391B2 (en) | 2007-06-28 | 2013-06-11 | Averill Partners, Llc | Air start steam engine |
US7743872B2 (en) * | 2007-06-28 | 2010-06-29 | Michael Jeffrey Brookman | Air start steam engine |
CA2698334A1 (en) * | 2007-10-12 | 2009-04-16 | Doty Scientific, Inc. | High-temperature dual-source organic rankine cycle with gas separations |
US8333074B2 (en) * | 2008-07-25 | 2012-12-18 | Thomas Kakovitch | Method and apparatus for incorporating a low pressure fluid into a high pressure fluid, and increasing the efficiency of the rankine cycle in a power plant |
KR101138223B1 (en) * | 2010-04-30 | 2012-04-24 | 한국과학기술원 | System for increasing supercritical Brayton cycle efficiency through shift of critical point using gas mixture |
RU2457338C2 (en) * | 2010-08-26 | 2012-07-27 | Игорь Анатольевич Ревенко | Conversion method of heat energy to mechanical energy, method for increasing enthalpy and compression coefficient of water vapour |
US8991181B2 (en) * | 2011-05-02 | 2015-03-31 | Harris Corporation | Hybrid imbedded combined cycle |
US20130074499A1 (en) * | 2011-09-22 | 2013-03-28 | Harris Corporation | Hybrid thermal cycle with imbedded refrigeration |
US8857185B2 (en) * | 2012-01-06 | 2014-10-14 | United Technologies Corporation | High gliding fluid power generation system with fluid component separation and multiple condensers |
US9038389B2 (en) | 2012-06-26 | 2015-05-26 | Harris Corporation | Hybrid thermal cycle with independent refrigeration loop |
US9303514B2 (en) | 2013-04-09 | 2016-04-05 | Harris Corporation | System and method of utilizing a housing to control wrapping flow in a fluid working apparatus |
US9574563B2 (en) | 2013-04-09 | 2017-02-21 | Harris Corporation | System and method of wrapping flow in a fluid working apparatus |
US9297387B2 (en) | 2013-04-09 | 2016-03-29 | Harris Corporation | System and method of controlling wrapping flow in a fluid working apparatus |
EA029633B1 (en) * | 2013-07-24 | 2018-04-30 | Фамиль Иззят Оглы Бафадаров | Device for conversion of thermal energy to electric energy |
US9303533B2 (en) | 2013-12-23 | 2016-04-05 | Harris Corporation | Mixing assembly and method for combining at least two working fluids |
DE102017002286A1 (en) * | 2017-03-09 | 2018-09-13 | Klaus Jürgen Herrmann | Hydrid heat engine with two devices for converting heat into mechanical energy Enabled by an isochoric working machine, a hybrid thermal cycle process and an isothermal heat engine. |
US20210293181A1 (en) * | 2017-06-27 | 2021-09-23 | Rajeev Hiremath | A system and a method for power generation |
GB201717437D0 (en) | 2017-10-24 | 2017-12-06 | Rolls Royce Plc | Apparatus and methods for controlling reciprocating internal combustion engines |
GB201717438D0 (en) | 2017-10-24 | 2017-12-06 | Rolls Royce Plc | Apparatus amd methods for controlling reciprocating internal combustion engines |
US11988114B2 (en) | 2022-04-21 | 2024-05-21 | Mitsubishi Power Americas, Inc. | H2 boiler for steam system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196594A (en) * | 1977-11-14 | 1980-04-08 | Abom Jan V | Process for the recovery of mechanical work in a heat engine and engine for carrying out the process |
US4439988A (en) * | 1980-11-06 | 1984-04-03 | University Of Dayton | Rankine cycle ejector augmented turbine engine |
US4876855A (en) * | 1986-01-08 | 1989-10-31 | Ormat Turbines (1965) Ltd. | Working fluid for rankine cycle power plant |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US709115A (en) * | 1901-12-21 | 1902-09-16 | Sigmund Adolf Rosenthal | Generation of motive power. |
US848027A (en) * | 1903-04-27 | 1907-03-26 | Ind Dev Company | Apparatus for increasing the efficiency of steam-generating power plants. |
US3006146A (en) * | 1958-09-19 | 1961-10-31 | Franklin Institute | Closed-cycle power plant |
DE2345420A1 (en) * | 1973-09-08 | 1975-04-03 | Kernforschungsanlage Juelich | Operating method for prime mover or refrigerating unit - using an operating medium circulating in a closed system supplied with energy by compression |
US3861151A (en) * | 1974-04-12 | 1975-01-21 | Toshio Hosokawa | Engine operating system |
US4106294A (en) * | 1977-02-02 | 1978-08-15 | Julius Czaja | Thermodynamic process and latent heat engine |
SU754096A1 (en) * | 1977-10-12 | 1980-08-07 | Одесский Политехнический Институт | Fluid for power plant |
US4387576A (en) * | 1978-04-25 | 1983-06-14 | Bissell Lawrence E | Two-phase thermal energy conversion system |
FR2483009A1 (en) * | 1980-05-23 | 1981-11-27 | Inst Francais Du Petrole | PROCESS FOR PRODUCING MECHANICAL ENERGY FROM HEAT USING A MIXTURE OF FLUIDS AS A WORKING AGENT |
EP0052674A1 (en) * | 1980-11-14 | 1982-06-02 | Lawrence E. Bissell | Two-phase thermal energy conversion system |
ES8607515A1 (en) * | 1985-01-10 | 1986-06-16 | Mendoza Rosado Serafin | Process for mechanical power generation |
US4779424A (en) * | 1987-01-13 | 1988-10-25 | Hisaka Works, Limited | Heat recovery system utilizing non-azeotropic medium |
ES2005135A6 (en) * | 1987-04-08 | 1989-03-01 | Carnot Sa | Power cycle working with a mixture of substances. |
DE3716898A1 (en) * | 1987-05-20 | 1988-12-15 | Bergwerksverband Gmbh | METHOD AND DEVICE FOR HELIUM ENHANCEMENT |
US5255519A (en) * | 1992-08-14 | 1993-10-26 | Millennium Technologies, Inc. | Method and apparatus for increasing efficiency and productivity in a power generation cycle |
-
1992
- 1992-08-14 US US07/929,433 patent/US5255519A/en not_active Expired - Lifetime
- 1992-11-27 GB GB9224913A patent/GB2269634B/en not_active Expired - Fee Related
-
1993
- 1993-08-10 IL IL10664893A patent/IL106648A/en not_active IP Right Cessation
- 1993-08-12 SK SK189-95A patent/SK18995A3/en unknown
- 1993-08-12 EP EP93919948A patent/EP0655101B1/en not_active Expired - Lifetime
- 1993-08-12 BR BR9306898A patent/BR9306898A/en unknown
- 1993-08-12 MD MD95-0258A patent/MD784G2/en active IP Right Grant
- 1993-08-12 DE DE69314798T patent/DE69314798T2/en not_active Expired - Fee Related
- 1993-08-12 ES ES93919948T patent/ES2111178T3/en not_active Expired - Lifetime
- 1993-08-12 CZ CZ95365A patent/CZ36595A3/en unknown
- 1993-08-12 RU RU95106594A patent/RU2114999C1/en active
- 1993-08-12 WO PCT/US1993/007462 patent/WO1994004796A1/en not_active Application Discontinuation
- 1993-08-12 CA CA002142289A patent/CA2142289C/en not_active Expired - Fee Related
- 1993-08-12 AT AT93919948T patent/ATE159564T1/en not_active IP Right Cessation
- 1993-08-12 DK DK93919948.5T patent/DK0655101T3/en active
- 1993-08-12 KR KR1019950700500A patent/KR950703116A/en active IP Right Grant
- 1993-08-12 PL PL93307477A patent/PL172839B1/en unknown
- 1993-08-12 AU AU50014/93A patent/AU674698B2/en not_active Ceased
- 1993-08-12 HU HU9500415A patent/HUT71360A/en unknown
- 1993-08-12 JP JP6506343A patent/JPH08500171A/en active Pending
- 1993-08-12 NZ NZ255699A patent/NZ255699A/en unknown
- 1993-08-14 CN CN93116219A patent/CN1057585C/en not_active Expired - Fee Related
- 1993-10-22 US US08/140,315 patent/US5444981A/en not_active Expired - Lifetime
-
1995
- 1995-02-13 BG BG99419A patent/BG61703B1/en unknown
- 1995-02-13 FI FI950633A patent/FI950633A0/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196594A (en) * | 1977-11-14 | 1980-04-08 | Abom Jan V | Process for the recovery of mechanical work in a heat engine and engine for carrying out the process |
US4439988A (en) * | 1980-11-06 | 1984-04-03 | University Of Dayton | Rankine cycle ejector augmented turbine engine |
US4876855A (en) * | 1986-01-08 | 1989-10-31 | Ormat Turbines (1965) Ltd. | Working fluid for rankine cycle power plant |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MD784G2 (en) | A method and apparatus for converting heat energy to mechanical energy with greater efficiency | |
EG20962A (en) | System and apparatus for conversion of thermal energy into mechanical and electrical power | |
MY100098A (en) | A method of generating energy | |
ES2138919A1 (en) | Process and apparatus using solar energy in a gas and steam power station | |
GR3026220T3 (en) | Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power. | |
DE3171999D1 (en) | Method for heat generation using a heat pump | |
GR3024744T3 (en) | Steam and electricity production for the start of a power plant | |
TW376424B (en) | Process and equipment for degassing the Condensate in order to degas the Condensate from gas-and steam turbine's installation, the Condensate will be heated in the feeding water tank, to where the preheated Condensate is delivered | |
JPS5752607A (en) | Apparatus for generating both steam and electric power | |
FI102406B1 (en) | Method and arrangement in a combination power unit | |
ATE163205T1 (en) | COLLECTOR INTENDED FOR USE IN DETINKING WASTE PAPER BY THE FLOTATION PROCESS | |
DE3260287D1 (en) | Steam generating method | |
JPS5759992A (en) | Compound electricity generation by coal gasification | |
TW345607B (en) | Combined gas- and steam turbine equipment as well as its method for operation | |
JPS55149641A (en) | Recovery of heat energy | |
FR2604746B1 (en) | METHOD AND DEVICE FOR INCREASING SUPPLIED ENERGY AND THERMAL EFFICIENCY OF AN ENERGY CYCLE SUCH AS THE RANKINE VAPOR CYCLE | |
IT1256878B (en) | Cogenerating plant with steam-injection gas turbine, with recuperating assembly for the production of hot water | |
Gropper | RELIABLE REMOTE POWER SOURCE FOR PIPELINE OPERATIONS | |
JPS6480707A (en) | Compound power generating plant | |
JPS5433905A (en) | Waste heat reclamation method of exhaust gas | |
JPS5710777A (en) | Wind power generating method utilizing and energy | |
RU1837140C (en) | Low-potential steam waste heat recovery unit | |
JPS53145806A (en) | Production of highly purified coke oven gas | |
JPS5634063A (en) | Power generation by liquefied air utilizing solar heat and gas collecting method | |
IT1235902B (en) | System to increase the yield and power of a gas turbine by means of an integrated water vapour expansion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG3A | Granted patent for invention | ||
IF99 | Valid patent on 19990615 |
Free format text: EXPIRES: 20130812 |