MD685Z - Process for producing a multilayer coating by the electrospark alloying method - Google Patents

Process for producing a multilayer coating by the electrospark alloying method Download PDF

Info

Publication number
MD685Z
MD685Z MDS20130025A MDS20130025A MD685Z MD 685 Z MD685 Z MD 685Z MD S20130025 A MDS20130025 A MD S20130025A MD S20130025 A MDS20130025 A MD S20130025A MD 685 Z MD685 Z MD 685Z
Authority
MD
Moldova
Prior art keywords
dps
steel
cobalt
multilayer coating
alloying method
Prior art date
Application number
MDS20130025A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Владимир ПАРШУТИН
Анатолий ПАРАМОНОВ
Александр КОВАЛЬ
Василе АГАФИЙ
Наталия ЧЕРНЫШЕВА
Original Assignee
Институт Прикладной Физики Академии Наук Молдовы
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Прикладной Физики Академии Наук Молдовы filed Critical Институт Прикладной Физики Академии Наук Молдовы
Priority to MDS20130025A priority Critical patent/MD685Z/en
Publication of MD685Y publication Critical patent/MD685Y/en
Publication of MD685Z publication Critical patent/MD685Z/en

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The invention relates to the metalworking field, namely to a process for producing a multilayer coating by the electrospark alloying method and can be used in mechanical engineering to increase the corrosion resistance of parts of machines, tools and production tooling.The process, according to the invention, consists in that onto a substrate are applied by turns several alternating tungsten carbide or titanium carbide alloy and cobalt layers with a pulse energy of 0.02…0,3 J at a frequency of 200…1500 Hz, at the same time is carried out the surface plastic deformation of each layer.

Description

Invenţia se referă la domeniul de prelucrare a metalelor, şi anume la un procedeu de obţinere a acoperirii multistrat prin metoda alierii cu scântei electrice şi poate fi utilizată în industria construcţiilor de maşini pentru mărirea rezistenţei la coroziune a pieselor maşinilor, sculelor şi utilajului tehnologic. The invention relates to the field of metal processing, namely to a process for obtaining multilayer coating by the electric spark alloying method and can be used in the machine building industry to increase the corrosion resistance of machine parts, tools and technological equipment.

Pentru recondiţionarea şi durificarea pieselor maşinilor şi a sculelor se foloseşte metoda alierii prin scântei electrice. Ea are aşa avantaje ca legătura durabilă a materialului acoperirii cu baza, ca rezultat al formării soluţiilor solide şi, de asemenea, a compuşilor chimici, posibilitatea aplicării diferitelor metale conducătoare de curent electric şi aliajelor, lipsa necesităţii pregătirii prealabile a suprafeţei. Acoperirile aplicate îmbunătăţesc semnificativ proprietăţile fizico-chimice ale suprafeţei prelucrate, duritatea şi rezistenţa la uzură [1]. For the reconditioning and hardening of machine parts and tools, the method of electric spark alloying is used. It has such advantages as a durable bond of the coating material with the base, as a result of the formation of solid solutions and also chemical compounds, the possibility of applying various electrically conductive metals and alloys, the absence of the need for preliminary surface preparation. The applied coatings significantly improve the physicochemical properties of the processed surface, hardness and wear resistance [1].

Dezavantajele acestei metode constau în aceea că suprafeţele prelucrate au o rugozitate înaltă, precum şi porozitate şi continuitate redusă. Mai ales din cauza ultimelor, acoperirile obţinute prin metoda alierii cu scântei electrice nu pot fi utilizate în calitate de acoperiri protectoare, care protejează baza de coroziune. The disadvantages of this method are that the processed surfaces have high roughness, as well as low porosity and continuity. Especially because of the latter, coatings obtained by the electric spark alloying method cannot be used as protective coatings that protect the base from corrosion.

În calitate de cea mai apropiată soluţie serveşte procedeul de mărire a rezistenţei oţelului la coroziune, care constă în aceea că piesa din oţel mai întâi se supune alierii cu scântei electrice cu un metal rezistent la coroziune, cu timpul specific de aliere de 1 min/cm2, la un regim cu energia descărcării electrice în diapazonul 0,3…4,0 J. Apoi se efectuează tratarea termochimică, care constă în încălzirea anodică a piesei timp de 30 s într-un electrolit, ce conţine compuşi azotici NH4Cl 100 g/l şi NH4OH 50 g/l sau NH4Cl 110 g/l şi NaNO3 110 g/l, până la temperatura de 750°C, la tensiunea dintre electrozi de 150…220 V, cu densitatea curentului electric de 1…15 A/cm2, şi răcirea ulterioară a piesei la aer [2]. The closest solution is the process of increasing the corrosion resistance of steel, which consists in the fact that the steel part is first subjected to electric spark alloying with a corrosion-resistant metal, with a specific alloying time of 1 min/cm2, at a regime with an electric discharge energy in the range of 0.3…4.0 J. Then, thermochemical treatment is performed, which consists of anodic heating of the part for 30 s in an electrolyte containing nitrogen compounds NH4Cl 100 g/l and NH4OH 50 g/l or NH4Cl 110 g/l and NaNO3 110 g/l, up to a temperature of 750°C, at a voltage between the electrodes of 150…220 V, with an electric current density of 1…15 A/cm2, and subsequent cooling of the part in air [2].

Dezavantajele acestui procedeu constau în aceea că parametrii daţi ai procesului de aliere prin scântei electrice nu au permis de a forma acoperiri destul de groase, fără pori şi cu o rugozitate mică, iar cu tratamentul termochimic se reuşeşte numai de a netezi puţin neuniformităţile acoperirii. Deseori se formează pori străpunşi, care duc la distrugerea suportului. The disadvantages of this process are that the given parameters of the electric spark alloying process did not allow forming sufficiently thick, pore-free and low-roughness coatings, while thermochemical treatment only manages to slightly smooth out the unevenness of the coating. Often, through pores are formed, which lead to the destruction of the support.

Problema pe care o rezolvă invenţia constă în elaborarea procedeului de mărire a rezistenţei la coroziune şi la uzură a oţelului, ca rezultat al formării acoperirii multistrat cu rugozitate şi porozitate mică. The problem solved by the invention consists in developing a process for increasing the corrosion and wear resistance of steel, as a result of the formation of a multilayer coating with low roughness and porosity.

Problema se rezolvă prin aceea că procedeul de obţinere a acoperirii multistrat prin metoda alierii cu scântei electrice constă în aceea că pe un suport se aplică pe rând câteva straturi alternante ale aliajului de carbură de wolfram sau de carbură de titan şi ale cobaltului cu energia în impuls de 0,02…0,3 J la frecvenţa de 200…1500 Hz, totodată se efectuează deformarea plastică superficială a fiecărui strat. The problem is solved by the fact that the process of obtaining a multilayer coating by the electric spark alloying method consists in applying several alternating layers of tungsten carbide or titanium carbide and cobalt alloy on a support with an impulse energy of 0.02…0.3 J at a frequency of 200…1500 Hz, while performing superficial plastic deformation of each layer.

Rezultatul tehnic al utilizării acestui procedeu este mărirea rezistenţei la coroziune şi la uzură a pieselor, datorită formării acoperirilor dense prin scântei electrice, cu rugozitate şi porozitate mică. The technical result of using this process is the increase in the corrosion and wear resistance of parts, due to the formation of dense coatings through electric sparks, with low roughness and porosity.

Exemplu de realizare a invenţiei Example of embodiment of the invention

Încercările acestui procedeu s-au efectuat în felul următor. Au fost fabricate probe din oţel 45. La instalaţia ПЭЛ-28 ele au fost aliate de la început cu aliajul dur BK8, apoi cu cobalt la un regim cu energia în impuls de 0,08 J la frecvenţa vibratorului de 200 Hz. Au fost aplicate câte 3 straturi de BK8 şi de cobalt pe rând. Fiecare strat aplicat a fost supus deformării plastice superficiale (DPS) cu ajutorul unei role din aliaj dur. Rugozitatea suprafeţei era Ra=0,8...1,9 µm, ceea ce a permis de a efectua încercări la frecare şi uzură. Încercările la coroziune au fost efectuate în electrolitul, g/l: NaCl - 7,0, Na2SO4 (anhidru) - 7,0, la curentul electric de 10 mA, timp de 1, 3 şi 5 ore. Încercările la capacitatea de a rezista la uzură în condiţiile frecării fără lubrifiant s-au efectuat la maşina de frecare la sarcina de 140 N, viteza de alunecare de 0,3 m/s. Ca contracorp au servit probe din oţel călit 40X(HRC 55-58). The tests of this process were carried out as follows. Samples of steel 45 were manufactured. At the PEL-28 installation they were first alloyed with the hard alloy BK8, then with cobalt at a pulse energy regime of 0.08 J at a vibrator frequency of 200 Hz. 3 layers of BK8 and cobalt were applied in turn. Each applied layer was subjected to superficial plastic deformation (SPD) using a hard alloy roller. The surface roughness was Ra=0.8...1.9 µm, which allowed to carry out friction and wear tests. Corrosion tests were carried out in the electrolyte, g/l: NaCl - 7.0, Na2SO4 (anhydrous) - 7.0, at an electric current of 10 mA, for 1, 3 and 5 hours. Tests on the ability to resist wear under friction conditions without lubricant were carried out on the friction machine at a load of 140 N, sliding speed of 0.3 m/s. Samples of hardened steel 40X (HRC 55-58) served as the counterbody.

Rezultatele încercărilor sunt prezentate în tabelele 1 şi 2. The test results are presented in tables 1 and 2.

Tabelul 1 Table 1

Influenţa timpului încercărilor asupra vitezei Influence of test time on speed

de decapare (mg/cm2) pickling (mg/cm2)

Materialul Timpul încercărilor, ore 1 3 5 Oţel 45 114,0 409,0 425,0 Oţel 45 + cobalt fără DPS 85,0 275,0 340,0 Oţel 45 + BK8 fără DPS 45,0 149,0 184,0 Oţel 45 + cobalt + DPS 90,1 304,0 381,4 Oţel 45 + BK8 + DPS 31,0 110,1 144,3 Oţel 45 + 3 strat. de BK8 + 3 strat. de cobalt fără DPS 23,2 81,3 101,4 Oţel 45 + 3 strat. de BK8 + 3 strat. de cobalt + DPS 10,4 44,2 60,5Material Test time, hours 1 3 5 Steel 45 114.0 409.0 425.0 Steel 45 + cobalt without DPS 85.0 275.0 340.0 Steel 45 + BK8 without DPS 45.0 149.0 184.0 Steel 45 + cobalt + DPS 90.1 304.0 381.4 Steel 45 + BK8 + DPS 31.0 110.1 144.3 Steel 45 + 3 layers of BK8 + 3 layers of cobalt without DPS 23.2 81.3 101.4 Steel 45 + 3 layers of BK8 + 3 layers of cobalt + DPS 10.4 44.2 60.5

Tabelul 2 Table 2

Influenţa componenţei acoperirilor asupra pierderilor de la uzură, mg (la o oră de încercări) (numărătorul - acoperirea, numitorul - contracorpul) Influence of coating composition on wear losses, mg (per hour of testing) (numerator - coating, denominator - counterbody)

Materialul Uzura, mg Oţel 45 6,5/2,3 Oţel 45 + cobalt fără DPS 4,2/2,2 Oţel 45 + BK8 fără DPS 0,75/15,0 Oţel 45 + cobalt + DPS 3,4/1,9 Oţel 45 + BK8 + DPS 0,75/11,2 Oţel 45 + 3 strat. de BK8 + 3 strat. de cobalt fără DPS 3,8/1,5 Oţel 45 + 3 strat. de BK8 + 3 strat. de cobalt + DPS 3,7/2,8Material Wear, mg Steel 45 6.5/2.3 Steel 45 + cobalt without DPS 4.2/2.2 Steel 45 + BK8 without DPS 0.75/15.0 Steel 45 + cobalt + DPS 3.4/1.9 Steel 45 + BK8 + DPS 0.75/11.2 Steel 45 + 3 layers of BK8 + 3 layers of cobalt without DPS 3.8/1.5 Steel 45 + 3 layers of BK8 + 3 layers of cobalt + DPS 3.7/2.8

Din tabele se vede că aplicarea acoperirilor numai din cobalt ori numai din BK8 duce la micşorarea pierderilor la coroziune (chiar fără DPS). Utilizând DPS la aşa acoperiri, se micşorează rugozitatea lor şi se măreşte densitatea, micşorând totodată numărul porilor prin care electrolitul pătrunde către suport, provocând corodarea acoperirii sau chiar distrugerea ei parţială. Când însă se aplică câte 3 straturi de BK8 şi de cobalt pe rând, efectuând DPS după fiecare din ele, aceasta duce la micşorarea bruscă a rugozităţii acoperirilor. De exemplu, fără DPS rugozitatea acoperirii din BK8 şi din cobalt era egală corespunzător cu 5,9 şi 4,7 µm, dar după DPS ea era egală cu 0,8...1,9 µm. Aceasta, pe de o parte, a micşorat suprafaţa acoperirii, care se atingea de electrolit, care în felul său a micşorat pierderile la coroziune. Totodată, datorită aplicării a trei straturi de acoperiri din BK8, apoi din cobalt şi efectuării DPS a fiecărui strat, continuitatea acoperirii a crescut, nu a avut loc corodarea bazei mai puţin rezistente la coroziune şi pierderile la coroziune s-au micşorat semnificativ (la toate timpurile de încercări). From the tables it is seen that the application of coatings only from cobalt or only from BK8 leads to a decrease in corrosion losses (even without DPS). Using DPS for such coatings, their roughness is reduced and their density is increased, at the same time reducing the number of pores through which the electrolyte penetrates to the support, causing the coating to corrode or even partially destroy it. However, when 3 layers of BK8 and cobalt are applied in turn, performing DPS after each of them, this leads to a sharp decrease in the roughness of the coatings. For example, without DPS the roughness of the BK8 and cobalt coating was equal to 5.9 and 4.7 µm, respectively, but after DPS it was equal to 0.8...1.9 µm. This, on the one hand, reduced the surface of the coating, which was in contact with the electrolyte, which in its own way reduced corrosion losses. At the same time, due to the application of three layers of BK8 coatings, then cobalt, and the DPS treatment of each layer, the continuity of the coating increased, no corrosion of the less corrosion-resistant base occurred, and corrosion losses decreased significantly (at all test times).

Totodată s-au îmbunătăţit semnificativ condiţiile de frecare, chiar fără folosirea lubrifiantului. Însuşi aliajul BK8 şi acoperirile pe baza lui sunt rezistente la uzură. În practică însă este foarte important să fie rezistentă întreaga cuplă de frecare - piesa şi contracorpul. Datorită DPS are loc micşorarea rugozităţii acoperirii, se netezesc marginile şi proeminenţele ascuţite de pe suprafaţa acoperirii din BK8 şi rezistenţa contracorpului creşte. Este foarte important ca de la început pe piesă să fie aplicat aliajul dur BK8, iar apoi cobaltul. Datorită acestui fapt se îmbunătăţeşte considerabil rodajul suprafeţelor conjugate, se micşorează sau chiar se lichidează griparea, se micşorează uzura contracorpului şi cupla în frecare are o perioadă de lucru cu mult mai mare. At the same time, the friction conditions have significantly improved, even without the use of lubricant. The BK8 alloy itself and the coatings based on it are wear-resistant. In practice, however, it is very important that the entire friction coupling - the part and the counterbody - is resistant. Thanks to DPS, the roughness of the coating decreases, the edges and sharp protrusions on the surface of the BK8 coating are smoothed out, and the resistance of the counterbody increases. It is very important that the hard alloy BK8 is applied to the part from the beginning, and then cobalt. Due to this, the running-in of the mating surfaces is significantly improved, seizing is reduced or even eliminated, the wear of the counterbody is reduced, and the friction coupling has a much longer service life.

Astfel, procedeul elaborat permite nu numai de a mări semnificativ rezistenţa la coroziune a acoperirilor (obţinute prin metoda alierii prin scântei electrice) datorită micşorării rugozităţii şi măririi continuităţii lor, dar şi de a mări perioada de lucru a conjugărilor în frecare. Thus, the developed process allows not only to significantly increase the corrosion resistance of coatings (obtained by the electric spark alloying method) due to the reduction of their roughness and increase of their continuity, but also to increase the working period of frictional conjugations.

1. Томашов Н., Чернова Г. Теория коррозии и коррозионностойкие конструкционные сплавы. Москва, Металлургия, 1986, с. 329-330 1. Томашов Н., Чернова Г. Corrosion theory and corrosion-resistant structural alloys. Moscow, Metallurgy, 1986, p. 329-330

2. MD 3708 F1 2008.09.30 2. MD 3708 F1 2008.09.30

Claims (1)

Procedeu de obţinere a acoperirii multistrat prin metoda alierii cu scântei electrice, care constă în aceea că pe un suport se aplică pe rând câteva straturi alternante ale aliajului de carbură de wolfram sau de carbură de titan şi ale cobaltului cu energia în impuls de 0,02…0,3 J la frecvenţa de 200…1500 Hz, totodată se efectuează deformarea plastică superficială a fiecărui strat.Process for obtaining a multilayer coating by the electric spark alloying method, which consists in applying several alternating layers of tungsten carbide or titanium carbide and cobalt alloy to a support with an impulse energy of 0.02…0.3 J at a frequency of 200…1500 Hz, while performing superficial plastic deformation of each layer.
MDS20130025A 2013-02-13 2013-02-13 Process for producing a multilayer coating by the electrospark alloying method MD685Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20130025A MD685Z (en) 2013-02-13 2013-02-13 Process for producing a multilayer coating by the electrospark alloying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20130025A MD685Z (en) 2013-02-13 2013-02-13 Process for producing a multilayer coating by the electrospark alloying method

Publications (2)

Publication Number Publication Date
MD685Y MD685Y (en) 2013-10-31
MD685Z true MD685Z (en) 2014-05-31

Family

ID=49549977

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20130025A MD685Z (en) 2013-02-13 2013-02-13 Process for producing a multilayer coating by the electrospark alloying method

Country Status (1)

Country Link
MD (1) MD685Z (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704345C1 (en) * 2018-09-25 2019-10-28 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Method of inserting carbides and oxides of refractory metals into surface layer of carbon structural steels by combined plastic deformation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU71120A2 (en) * 1945-07-02 1947-11-30 Б.А. Красюк Method of applying thick metal coatings
SU1313610A1 (en) * 1985-08-19 1987-05-30 Одесский Политехнический Институт Method for applying coatings
SU1447587A1 (en) * 1986-07-28 1988-12-30 Предприятие П/Я М-5481 Method of burnishing parts
SU1657307A1 (en) * 1988-12-30 1991-06-23 Предприятие П/Я В-2652 Method for face hardening parts of titanium alloys
MD561F1 (en) * 1995-07-10 1996-06-28 Inst Cercetari Stiintifice Tabacco variety Burley 320
MD997G2 (en) * 1997-09-03 1999-03-31 Uzina Experimentala A Institutului De Fizica Aplicata Al Academiei De Stiinte A Republicii Moldova Electrospark alloying process
MD1053G2 (en) * 1997-04-10 1999-05-31 Uzina Experimentala A Institutului De Fizica Aplicata Al Academiei De Stiinte A Republicii Moldova Process for electrospark alloying
MD3708F1 (en) * 2007-05-23 2008-09-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Process for enhancing the corrosion resistance of steel
MD3974B1 (en) * 2008-01-23 2009-11-30 Pavel Topala Proces for metal surface hardening by electric discharges
MD164Y (en) * 2009-04-15 2010-03-31 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Process for brazing sintered hard alloys and carbon steels
EA201100015A1 (en) * 2010-11-08 2012-03-30 Валерий Игоревич Иванов ELECTRICAL SPREAD WAY OF DRAWING THICK-LAYER COATINGS OF INCREASED COMPLEXITY
MD504Y (en) * 2011-10-19 2012-04-30 Inst Fizica Aplicata Stiinte Process for manufacture of slightly soluble anode for cathodic protection
MD4184B1 (en) * 2011-05-31 2012-11-30 Pavel Topala Process for hardening of metal surfaces
  • 2013

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU71120A2 (en) * 1945-07-02 1947-11-30 Б.А. Красюк Method of applying thick metal coatings
SU1313610A1 (en) * 1985-08-19 1987-05-30 Одесский Политехнический Институт Method for applying coatings
SU1447587A1 (en) * 1986-07-28 1988-12-30 Предприятие П/Я М-5481 Method of burnishing parts
SU1657307A1 (en) * 1988-12-30 1991-06-23 Предприятие П/Я В-2652 Method for face hardening parts of titanium alloys
MD561F1 (en) * 1995-07-10 1996-06-28 Inst Cercetari Stiintifice Tabacco variety Burley 320
MD1053G2 (en) * 1997-04-10 1999-05-31 Uzina Experimentala A Institutului De Fizica Aplicata Al Academiei De Stiinte A Republicii Moldova Process for electrospark alloying
MD997G2 (en) * 1997-09-03 1999-03-31 Uzina Experimentala A Institutului De Fizica Aplicata Al Academiei De Stiinte A Republicii Moldova Electrospark alloying process
MD3708F1 (en) * 2007-05-23 2008-09-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Process for enhancing the corrosion resistance of steel
MD3974B1 (en) * 2008-01-23 2009-11-30 Pavel Topala Proces for metal surface hardening by electric discharges
MD164Y (en) * 2009-04-15 2010-03-31 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Process for brazing sintered hard alloys and carbon steels
EA201100015A1 (en) * 2010-11-08 2012-03-30 Валерий Игоревич Иванов ELECTRICAL SPREAD WAY OF DRAWING THICK-LAYER COATINGS OF INCREASED COMPLEXITY
MD4184B1 (en) * 2011-05-31 2012-11-30 Pavel Topala Process for hardening of metal surfaces
MD504Y (en) * 2011-10-19 2012-04-30 Inst Fizica Aplicata Stiinte Process for manufacture of slightly soluble anode for cathodic protection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Томашов Н., Чернова Г. Теория коррозии и коррозионностойкие конструкционные сплавы. Москва, Металлургия, 1986, с. 329-330 *

Also Published As

Publication number Publication date
MD685Y (en) 2013-10-31

Similar Documents

Publication Publication Date Title
Zhang et al. 1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy
Kumar et al. Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric
Janmanee et al. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension
Wang et al. A novel electrodeposited Ni–P gradient deposit for replacement of conventional hard chromium
Pliszka et al. Corrosion resistance of WC-Cu coatings produced by electrospark deposition
Cao et al. The friction and wear behavior of Cu/Cu-MoS2 self-lubricating coating prepared by electrospark deposition
Arun et al. Synthesis of electric discharge alloyed nickel–tungsten coating on tool steel and its tribological studies
Simão et al. Hard chromium plating of EDT mill work rolls
Xu et al. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer
Santos et al. Analysis of the surface integrity when nitriding AISI 4140 steel by the sink electrical discharge machining (EDM) process
Xiao et al. Titanium carbonitride coating by pulsed electrical discharge in an aqueous solution of ethanolamine
RU2009106416A (en) METHOD FOR PROCESSING MATCHED SURFACES OF PARTS
MD685Z (en) Process for producing a multilayer coating by the electrospark alloying method
JP6539200B2 (en) Method of anodizing aluminum-based members
Algodi et al. Characterisation of TiC layers deposited using an electrical discharge coating process
JP2021529883A (en) Manufacturing method of surface-treated zinc-nickel alloy electroplated steel sheet with excellent corrosion resistance and paintability
RU2374332C1 (en) Strengthening method of working surface of steel parts
EA017066B1 (en) Method of electro-spark deposition of thick coatings of increased continuity
CN111133132B (en) Coated laminate and method for producing same
RU58059U1 (en) PROTECTED COATED METAL PIPE
RU2355826C2 (en) Combined part treatment method
Laad et al. Investigation into application of electrical discharge machining as a surface treatment process
RU2440873C1 (en) Electric spark hardening and reclaiming of steel surfaces
Gill et al. Surface characteristics investigation of tool steel machined by powder metallurgy tool in EDA
RU2343049C2 (en) Method for production of multi-layer coating on restored steel or cast-iron part

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)