MD534Z - Method for remote measurement of resistor active conductance - Google Patents

Method for remote measurement of resistor active conductance Download PDF

Info

Publication number
MD534Z
MD534Z MDS20110189A MDS20110189A MD534Z MD 534 Z MD534 Z MD 534Z MD S20110189 A MDS20110189 A MD S20110189A MD S20110189 A MDS20110189 A MD S20110189A MD 534 Z MD534 Z MD 534Z
Authority
MD
Moldova
Prior art keywords
resistor
measured
resistors
conductance
active
Prior art date
Application number
MDS20110189A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Anatol Sidorenko
Alexandru Penin
Original Assignee
ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ filed Critical ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ
Priority to MDS20110189A priority Critical patent/MD534Z/en
Publication of MD534Y publication Critical patent/MD534Y/en
Publication of MD534Z publication Critical patent/MD534Z/en

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The invention relates to measuring technique and can be used to regulate the temperature in storages using thermistors; in mechanical engineering, in construction for study of structures strength by means of resistance strain gages.The method for remote measurement of resistor conductance consists in that through the measured resistor with active conductanceand the scaling resistor, made as a set of three resistors with different given values of conductances, are passed individual constant currents through a connecting five-wire line, using one of the wires as a common wire. At the input of the connecting line are measured the appropriate individual constant currents, passing through these resistors, and is calculated the active conductanceof the measured resistor according to the given formula.

Description

Invenţia se referă la tehnica de măsurare şi poate fi utilizată la reglarea temperaturii în depozite cu ajutorul termorezistoarelor; în construcţia de maşini, în construcţii pentru studiul durabilităţii acestora cu ajutorul tenzorezistoarelor. The invention relates to measurement techniques and can be used to regulate temperature in warehouses using thermistors; in machine construction, in constructions for studying their durability using strain gauges.

Este cunoscut un procedeu de măsurare a conductanţei active a unui rezistor, de exemplu a termorezistorului, care este conectat cu un măsurător printr-o linie de conexiune cu patru conductoare. Prin rezistor de la o sursă de curent se trece un curent constant prin două conductoare, iar prin celelalte două - la distanţă se măsoară căderea de tensiune pe acest rezistor. Rezistenţa rezistorului se determină ca raportul dintre căderea de tensiune măsurată şi valoarea curentului impus, care se trece prin rezistor [1]. A method of measuring the active conductance of a resistor, for example a thermistor, is known, which is connected to a meter by a four-conductor connection line. A constant current is passed through the resistor from a current source through two conductors, and through the other two - at a distance the voltage drop across this resistor is measured. The resistance of the resistor is determined as the ratio between the measured voltage drop and the value of the imposed current, which is passed through the resistor [1].

Dezavantajul procedeului constă în faptul că precizia măsurărilor rezistenţei active depinde atât de precizia sursei de curent, care asigură trecerea curentului de măsurare prin acest rezistor, cât şi de precizia măsurării tensiunii. La rândul său, precizia măsurării tensiunii depinde şi de parametrii măsurătorului şi de inducţiile posibile în linia de conexiune. The disadvantage of the method is that the accuracy of active resistance measurements depends both on the accuracy of the current source, which ensures the passage of the measurement current through this resistor, and on the accuracy of the voltage measurement. In turn, the accuracy of the voltage measurement also depends on the parameters of the meter and on the possible inductions in the connection line.

Cea mai apropiată soluţie este procedeul de măsurare la distanţă a conductanţei active a rezistorului, care include trecerea curentului continuu impus prin rezistorul măsurat prin două conductoare ale liniei de conexiune cu patru conductoare, măsurarea căderii de tensiune pe acest rezistor şi determinarea rezistenţei ca raport al valorii măsurate a căderii de tensiune la curentul impus. Totodată curentul continuu se trece prin rezistorul măsurat şi cel de proporţie, suplimentar se măsoară căderea de tensiune pe rezistorul de proporţie, iar rezultatul este obţinut prin multiplicarea raportului dintre căderile de tensiune pe rezistoarele măsurat şi de proporţie la valoarea rezistenţei cunoscute a rezistorului de proporţie. Particularitatea procedeului constă în aceea că rezistenţa rezistorului măsurat se determină după valoarea reală a curentului la momentul măsurării prin introducerea unui rezistor suplimentar de proporţie [2]. The closest solution is the remote measurement procedure of the active conductance of the resistor, which includes passing the imposed direct current through the measured resistor through two conductors of the four-conductor connection line, measuring the voltage drop across this resistor and determining the resistance as the ratio of the measured value of the voltage drop to the imposed current. At the same time, the direct current is passed through the measured and proportional resistors, additionally the voltage drop across the proportional resistor is measured, and the result is obtained by multiplying the ratio of the voltage drops across the measured and proportional resistors by the known resistance value of the proportional resistor. The peculiarity of the procedure is that the resistance of the measured resistor is determined according to the real value of the current at the time of measurement by introducing an additional proportional resistor [2].

Dezavantajul procedeului constă în faptul că asupra preciziei de măsurare a tensiunii influenţează parametrii aparatului de măsurare şi inducţiile posibile în linia de conexiune. Calculul raportului căderilor de tensiune pe rezistoarele măsurat şi de proporţie nu înlătură componentele aditive ale erorii aparatelor de măsurare şi acţiunea inducţiilor. The disadvantage of the method is that the accuracy of voltage measurement is influenced by the parameters of the measuring device and possible inductions in the connection line. The calculation of the ratio of voltage drops on the measured and proportional resistors does not remove the additive components of the error of the measuring devices and the action of inductions.

Problema pe care o rezolvă invenţia este majorarea preciziei de măsurare la distanţă a conductanţei active a rezistorului. The problem that the invention solves is increasing the remote measurement accuracy of the active conductance of the resistor.

Procedeul, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că prin rezistorul măsurat cu conductanţa activă şi rezistorul de proporţie se trece curent continuu printr-o linie de conexiune cu mai multe conductoare, se măsoară curentul real, care trece prin aceste rezistoare, şi se calculează conductanţa activă a rezistorului măsurat. Noutatea procedeului constă în aceea că în calitate de rezistor de proporţie se utilizează un set format din trei rezistoare cu diferite valori prestabilite ale conductanţelor , se trec curenţi continui individuali prin rezistorul măsurat şi prin setul format din trei rezistoare de proporţie prin linia de conexiune cu cinci conductoare, unul din conductoare fiind utilizat ca un conductor comun, totodată curenţii continui individuali respectivi se măsoară la intrarea liniei de conexiune, iar conductanţa activă a rezistorului măsurat se calculează după formula: The method, according to the invention, eliminates the above-mentioned disadvantages in that through the measured resistor with the active conductance and the proportional resistor, direct current is passed through a connection line with several conductors, the real current passing through these resistors is measured, and the active conductance of the measured resistor is calculated. The novelty of the method consists in that as a proportional resistor, a set consisting of three resistors with different preset conductance values is used, individual direct currents are passed through the measured resistor and through the set consisting of three proportional resistors through the connection line with five conductors, one of the conductors being used as a common conductor, at the same time the respective individual direct currents are measured at the input of the connection line, and the active conductance of the measured resistor is calculated according to the formula:

, ,

unde , where,

unde . where .

Conductanţele rezistoarelor de proporţie pot fi selectate cu valorile iar conductanţa activă a rezistorului măsurat se calculează după formula: The conductances of the proportional resistors can be selected with the values and the active conductance of the measured resistor is calculated using the formula:

. .

Esenţa procedeului constă în utilizarea corelaţiei invariante între patru valori ale conductanţelor rezistoarelor, conectate la ieşirea liniei de conexiune şi valorile respective ale curenţilor individuali la intrările liniei de conexiune. Corelaţia invariantă se reduce la un raport complex a patru puncte cunoscut în geometria proiectivă şi reprezintă raportul a două proporţii. Totodată, erorile multiplicative şi aditive ale măsurărilor curenţilor la intrarea liniei de conexiune se reduc reciproc. Prin urmare, rezultatele calculului sunt într-o măsură mai mică supuse influenţei parametrilor aparatelor de măsurare şi acţiunii inducţiilor electromagnetice. The essence of the procedure consists in using the invariant correlation between four values of the conductances of the resistors connected to the output of the connection line and the respective values of the individual currents at the inputs of the connection line. The invariant correlation is reduced to a complex four-point ratio known in projective geometry and represents the ratio of two proportions. At the same time, the multiplicative and additive errors of the current measurements at the input of the connection line are mutually reduced. Therefore, the calculation results are to a lesser extent subject to the influence of the parameters of the measuring devices and the action of electromagnetic inductions.

Invenţia se explică prin desenele din fig. 1 şi 2, care reprezintă: The invention is explained by the drawings in Fig. 1 and 2, which represent:

fig. 1, schema funcţională a dispozitivului pentru realizarea procedeului; Fig. 1, functional diagram of the device for carrying out the process;

fig. 2, schema echivalentă a liniei de conexiune sub sarcină în formă de multipol rezistiv. Fig. 2, equivalent diagram of the connection line under load in the form of a resistive multipole.

Dispozitivul din fig.1 conţine o linie de conexiune cu cinci conductoare 1, 2, 3, 4, 5. Conductorul 5 se utilizează ca un conductor comun şi este unit cu învelişul de ecranare 6. Conductoarele 1, 2, 3, 4 prin traductoarele de curent, respectiv 7, 8, 9, 10, sunt conectate la o bornă a unei surse de tensiune 11. Conductorul comun 5 este conectat la cealaltă bornă a sursei de tensiune 11. Ieşirile de măsurare ale traductoarelor de curent 7, 8, 9, 10 sunt conectate la dispozitivul de calcul 12. La conductoarele 1, 2, 3, 4 şi conductorul comun 5 sunt de asemenea conectate rezistoarele de proporţie 13, 14, 15 cu conductanţele YS(0), YS(1), YS(∞) şi rezistorul măsurat 16 cu conductanţa . The device in Fig. 1 contains a connection line with five conductors 1, 2, 3, 4, 5. Conductor 5 is used as a common conductor and is connected to the shielding sheath 6. Conductors 1, 2, 3, 4 through current transducers, respectively 7, 8, 9, 10, are connected to one terminal of a voltage source 11. Common conductor 5 is connected to the other terminal of voltage source 11. The measurement outputs of current transducers 7, 8, 9, 10 are connected to the computing device 12. To conductors 1, 2, 3, 4 and common conductor 5 are also connected proportional resistors 13, 14, 15 with conductances YS(0), YS(1), YS(∞) and the measured resistor 16 with conductance .

Linia de conexiune sub sarcină reprezintă un multipol rezistiv (vezi fig. 2), unde rezistoarele R1-1, R1-2, R2-1, R2-2, R3-1, R3-2, R4-1, R4-2 reprezintă rezistenţele conductoarelor 1, 2, 3, 4 şi rezistenţele de scurgere ale acestora. Rezistorul R0 reprezintă rezistenţa conductorului comun 5 şi a învelişului de ecranare 6. The load connection line represents a resistive multipole (see fig. 2), where resistors R1-1, R1-2, R2-1, R2-2, R3-1, R3-2, R4-1, R4-2 represent the resistances of conductors 1, 2, 3, 4 and their leakage resistances. Resistor R0 represents the resistance of the common conductor 5 and the shielding sheath 6.

Procedeul se efectuează în felul următor. The procedure is carried out as follows.

De la sursa de tensiune 11 prin traductoarele de curent 7, 8, 9, 10, conductoarele 1, 2, 3, 4, 5 şi învelişul de ecranare 6 se aplică tensiunea la rezistoarele 13, 16, 14, 15 cu conductanţele YS(0), YS 1, YS(1), YS(∞). Valorile curenţilor individuali măsuraţi se determină prin conductanţele rezistoarelor 13, 16, 14, 15 şi prin parametrii R1-1, R1-2, R2-1, R2-2, R3-1, R3-2, R4-1, R4-2, R0 ai liniei de conexiune. Aşadar, setul din patru valori ale conductanţelor corespunde setului din patru valori ale curenţilor Pentru aceste seturi de conductanţe are loc o corelaţie invariantă în formă de raport complex a patru puncte (vezi Penin A. The invariant properties of two-port circuits. World Academy of Science, Engineering and Technology, 2009, vol. 52 - 158, pp.1085-1091. Regăsită în Internet la 04.05.2012, url: http://www.waset.org/journals/waset/v52/v52-158.pdf): From the voltage source 11 through the current transducers 7, 8, 9, 10, the conductors 1, 2, 3, 4, 5 and the shielding sheath 6, the voltage is applied to the resistors 13, 16, 14, 15 with the conductances YS(0), YS 1, YS(1), YS(∞). The values of the individual measured currents are determined by the conductances of the resistors 13, 16, 14, 15 and by the parameters R1-1, R1-2, R2-1, R2-2, R3-1, R3-2, R4-1, R4-2, R0 of the connection line. Therefore, the set of four conductance values corresponds to the set of four current values. For these sets of conductances, an invariant correlation in the form of a complex four-point ratio occurs (see Penin A. The invariant properties of two-port circuits. World Academy of Science, Engineering and Technology, 2009, vol. 52 - 158, pp.1085-1091. Retrieved on the Internet on 04.05.2012, url: http://www.waset.org/journals/waset/v52/v52-158.pdf):

(1) (1)

Atunci conductanţa măsurată se exprimă printr-un raport complex m şi conductanţele impuse ale rezistoarelor de proporţie: Then the measured conductance is expressed by a complex ratio m and the imposed conductances of the proportional resistors:

.\tab\tab\tab\tab\tab\tab\tab(2) .\tab\tab\tab\tab\tab\tab\tab(2)

Curenţii ajung la dispozitivul de calcul 12, unde mai întâi se calculează valoarea m(Iin) conform relaţiei (1), apoi se calculează valoarea conductanţei măsurate conform relaţiei (2). The currents reach the calculation device 12, where first the value m(Iin) is calculated according to relation (1), then the value of the measured conductance is calculated according to relation (2).

În caz particular, când conductanţele rezistoarelor de proporţie sunt egale, respectiv, cu YS(0)=0, YS (1)=1, YS (∞)=∞, relaţia (2) se simplifică: In the particular case, when the conductances of the proportional resistors are equal, respectively, to YS(0)=0, YS (1)=1, YS (∞)=∞, relation (2) simplifies to:

= m. = m.

În cazul dat conductanţele se calculează prin formula : In this case, the conductances are calculated by the formula:

Structura relaţiei (1) confirmă faptul că erorile multiplicative şi aditive posibile de măsurare a curenţilor la intrare se reduc reciproc. The structure of relation (1) confirms that the possible multiplicative and additive errors of measuring input currents mutually reduce each other.

Calculele demonstrează că schimbarea rezistenţei R0 a conductorului comun 5 şi a învelişului de ecranare 6 nu influenţează asupra valorilor calculate a raportului complex m şi a conductanţei măsurate . Rezultatele calculului, de asemenea, nu depind de valoarea tensiunii sursei de tensiune 11. Această proprietate a raportului complex determină avantajele suplimentare ale procedeului - rezultatele măsurărilor sunt supuse acţiunii inducţiilor magnetice într-o măsură mai mică. Calculations show that changing the resistance R0 of the common conductor 5 and the shielding coating 6 does not influence the calculated values of the complex ratio m and the measured conductance . The calculation results also do not depend on the voltage value of the voltage source 11. This property of the complex ratio determines additional advantages of the method - the measurement results are subject to the action of magnetic inductions to a lesser extent.

1.Левшина Е.С., Новицкий П.В. Электрические измерения физических величин, измерительные преобразователи. Ленинград, Энергоатомиздат, 1983, с. 271, рис.11-15а 1. Левшина Е.С., Новицкий П.В. Electric measurements of physical quantities, measuring transducers. Leningrad, Енергоатомиздат, 1983, p. 271, fig. 11-15a

2.RU 2247999 C1 2005.03.10 2.RU 2247999 C1 2005.03.10

Claims (2)

1. Procedeu de măsurare la distanţă a conductanţei active a rezistorului, în care prin rezistorul măsurat cu conductanţa activă şi rezistorul de proporţie se trece curent continuu printr-o linie de conexiune cu mai multe conductoare, se măsoară curentul real, care trece prin aceste rezistoare, şi se calculează conductanţa activă a rezistorului măsurat, caracterizat prin aceea că în calitate de rezistor de proporţie se utilizează un set format din trei rezistoare cu diferite valori prestabilite ale conductanţelor ; se trec curenţi continui individuali prin rezistorul măsurat şi prin setul format din trei rezistoare de proporţie prin linia de conexiune cu cinci conductoare, unul din conductoare fiind utilizat ca un conductor comun, totodată curenţii continui individuali respectivi se măsoară la intrarea liniei de conexiune, iar conductanţa activă a rezistorului măsurat se calculează după formula: , unde , 1. Remote measurement method of the active conductance of the resistor, in which a direct current is passed through the measured resistor with the active conductance and the proportional resistor through a connection line with several conductors, the real current passing through these resistors is measured, and the active conductance of the measured resistor is calculated, characterized in that a set consisting of three resistors with different preset conductance values is used as the proportional resistor; individual direct currents are passed through the measured resistor and through the set consisting of three proportional resistors through the connection line with five conductors, one of the conductors being used as a common conductor, at the same time the respective individual direct currents are measured at the input of the connection line, and the active conductance of the measured resistor is calculated according to the formula: , where , unde .where . 2. Procedeu, conform revendicării 1, caracterizat prin aceea că conductanţele rezistoarelor de proporţie sunt selectate cu valorile iar conductanţa activă a rezistorului măsurat se calculează după formula: .2. Method according to claim 1, characterized in that the conductances of the proportional resistors are selected with the values and the active conductance of the measured resistor is calculated according to the formula: .
MDS20110189A 2011-12-12 2011-12-12 Method for remote measurement of resistor active conductance MD534Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20110189A MD534Z (en) 2011-12-12 2011-12-12 Method for remote measurement of resistor active conductance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20110189A MD534Z (en) 2011-12-12 2011-12-12 Method for remote measurement of resistor active conductance

Publications (2)

Publication Number Publication Date
MD534Y MD534Y (en) 2012-07-31
MD534Z true MD534Z (en) 2013-02-28

Family

ID=46582449

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20110189A MD534Z (en) 2011-12-12 2011-12-12 Method for remote measurement of resistor active conductance

Country Status (1)

Country Link
MD (1) MD534Z (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD801Z (en) * 2013-10-15 2015-02-28 ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ Method for stabilization of controlled load current

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD987Z (en) * 2015-04-02 2016-07-31 ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ Distributed electric power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096609C1 (en) * 1996-03-27 1997-11-20 Уфимский государственный нефтяной технический университет Method and device for remote measuring of pressure and temperature in well by single sensor
RU2118802C1 (en) * 1996-09-16 1998-09-10 Уфимский государственный нефтяной технический университет Method of remote measurement of pressure and temperature in hole by one transmitter and device for its implementation
RU2247999C1 (en) * 2004-01-05 2005-03-10 Орловский государственный технический университет Method and device for remote measuring of active resistance
MD3329G2 (en) * 2004-09-09 2008-02-29 Технический университет Молдовы Process for controlling and regulating the current-carrying wire section in the process of casting thereof
  • 2011

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096609C1 (en) * 1996-03-27 1997-11-20 Уфимский государственный нефтяной технический университет Method and device for remote measuring of pressure and temperature in well by single sensor
RU2118802C1 (en) * 1996-09-16 1998-09-10 Уфимский государственный нефтяной технический университет Method of remote measurement of pressure and temperature in hole by one transmitter and device for its implementation
RU2247999C1 (en) * 2004-01-05 2005-03-10 Орловский государственный технический университет Method and device for remote measuring of active resistance
MD3329G2 (en) * 2004-09-09 2008-02-29 Технический университет Молдовы Process for controlling and regulating the current-carrying wire section in the process of casting thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Penin A. The invariant properties of two-port circuits. World Academy of Science, Engineering and Technology, 2009, vol. 52 - 158, pp.1085-1091. Regăsită în Internet la 04.05.2012, url: http://www.waset.org/journals/waset/v52/v52-158.pdf *
Левшина Е.С., Новицкий П.В. Электрические измерения физических величин, измерительные преобразователи. Ленинград, Энергоатомиздат, 1983, с. 271, рис.11-15а *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD801Z (en) * 2013-10-15 2015-02-28 ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ Method for stabilization of controlled load current

Also Published As

Publication number Publication date
MD534Y (en) 2012-07-31

Similar Documents

Publication Publication Date Title
CN105074477B (en) Measuring resistor and corresponding measurement method
CN103235189B (en) A kind of micro-resistance high-precision measuring method based on double-current voltage ratio method and realize the measuring system of the method
CN102368086A (en) Wheatstone bridge compensation resistance test method
WO2017168608A1 (en) Contactless voltage measurement device and contactless voltage measurement method
CN107132417B (en) A high-precision resistance measurement method against circuit parameter drift
CN105277112B (en) Eliminate half-bridge Wheatstone bridge strain measurement system and the method that conductor resistance influences
MD534Z (en) Method for remote measurement of resistor active conductance
CN105588968A (en) Non-contact double-line power line voltage sensor and mounting position change compensation method thereof
CN104067113A (en) Low-conductivity contacting-type conductivity measurement system
KR100974650B1 (en) Resistance measuring device and measuring method
CN105241372A (en) Full-bridge Wheatstone bridge strain measuring system and method for eliminating conductor resistance influence
CN103925868B (en) Resistance strain gauge without influence of resistance of long conductor
CN103376354B (en) Systems and methods for measuring power generated by a power supply
CN108204865A (en) Industrial instrument, industrial control system and RTD temp measuring methods
CN102288337B (en) Method and device for measuring differential resistance type sensor
JP7370164B2 (en) Current sensor and energy meter
CN202166481U (en) A Cable Temperature Acquisition Circuit Based on Single-core Cable Transient Thermal Circuit
KR200417455Y1 (en) Resistance measuring device
CN206583553U (en) Industrial instrument and industrial control system
CN105425199B (en) A device and method for the influence experiment of DC even harmonics of electric energy meter
CN104515600B (en) Infrared sensor
JP2015169440A (en) Voltage measurement device and voltage measuring method
RU2586084C1 (en) Multi-channel converter of resistance of resistive sensors into voltage
CN104614589B (en) Resistance signal source and its resistance measuring circuit that a kind of lead resistance is eliminated
CN102141448A (en) Method and device for measuring temperature of vibrating wire type device

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)