LV15379B - Magnesium phosphate cement and bio-based filler fast-curing construction block and its method of manufacture - Google Patents

Magnesium phosphate cement and bio-based filler fast-curing construction block and its method of manufacture Download PDF

Info

Publication number
LV15379B
LV15379B LV170086A LV170086A LV15379B LV 15379 B LV15379 B LV 15379B LV 170086 A LV170086 A LV 170086A LV 170086 A LV170086 A LV 170086A LV 15379 B LV15379 B LV 15379B
Authority
LV
Latvia
Prior art keywords
weight
organic fibers
water
iii
filler
Prior art date
Application number
LV170086A
Other languages
Latvian (lv)
Other versions
LV15379A (en
Inventor
Māris Šinka
Diāna BAJĀRE
Genādijs ŠAHMENKO
Aleksandrs Korjakins
Andrejs ŠIŠKINS
Original Assignee
Rīgas Tehniskā Universitāte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rīgas Tehniskā Universitāte filed Critical Rīgas Tehniskā Universitāte
Priority to LV170086A priority Critical patent/LV15379B/en
Publication of LV15379A publication Critical patent/LV15379A/en
Publication of LV15379B publication Critical patent/LV15379B/en

Links

Description

[001] Izgudrojums - ātras cietēšanas celtniecības bloks - attiecas uz būvniecības nozari, konkrēti uz ēku nesošām konstrukcijām, siltumizolācijas un apdares materiāliem, kurus klasificē kā vienotu būvniecības elementu. Tas īpaši izmantojams būvniecībai ekstremālos apstākļos, piemēram, pēc dabas katastrofām, kad pieejamie resursi ir ierobežoti.[001] The invention relates to a building block of rapid curing and relates to the building industry, in particular to load-bearing structures, thermal insulation and finishing materials, which are classified as a single building element. It is particularly applicable to construction in extreme conditions, such as natural disasters, when available resources are limited.

Zināmais tehnikas līmenis [002] Ir zināmi magnija fosfāta cementi (MFC), kurus iegūst ķīmiskas reakcijas starp MgO un šķīstošajiem skābajiem fosfāta sāļiem (tipiski amonija vai kālija fosfātiem) rezultātā. Reakcijas rezultātā veidojas magnija fosfāta sāļi ar cementējošām īpašībām, ko apraksta vienādojums:BACKGROUND OF THE INVENTION Magnesium phosphate cements (MFCs) obtained by chemical reactions between MgO and soluble acid phosphate salts (typically ammonium or potassium phosphates) are known. The reaction results in the formation of magnesium phosphate salts with cementing properties, which are described by the equation:

MgO+NH4H2PO4+5H2O->NH4MgPO 6H2O. (1) [003] Līdzīga tipa cementi ir zināmi kopš 19. gadsimta beigām, kad zobārstniecībā tika lietoti cinka fosfāta cementi [1], savukārt pagājušā gadsimta 40-tajos gados parādījās vairāki MgO fosfāta cementu veidi. Tad 1966. gadā Limes un Ponzani patentēja izgudrojumu [2], saskaņā ar kuru šķidru amonija ortofosfātu sajauc ar pārdedzinātu MgO, lai iegūtu izsmidzināmu, normālos apstākļos (20 °C, 101,325 kPa) cietējošu sastāvu. Šie cementi tika izmantoti kā ātri cietējoši remontsastāvi ceļiem un skrejceļiem. Trūkums ir augstā cena un izgarojumi (izdalās amonija gāze), līdz ar to šo cementu lietošana ir būtiski samazinājusies [3, 4].MgO + NH 4 H 2 PO 4 + 5 H 2 O-> NH 4 MgPO 6 H 2 O. (1) Cements of a similar type have been known since the late 19th century when zinc phosphate cements were used in dentistry [1], In the 1940s, several types of MgO phosphate cement appeared. Then, in 1966, Limes and Ponzani patented an invention [2] that mixes liquid ammonium orthophosphate with burnt MgO to produce a spray-curing composition under normal conditions (20 ° C, 101.325 kPa). These cements were used as quick-setting repair compounds for roads and runways. The disadvantage is the high price and fumes (ammonia gas is released), which has led to a significant reduction in the use of these cements [3, 4].

[004] Ir zināmi no amonija brīvi magnija fosfāta cementi (MFC), kas sākotnēji tika izstrādāti, lai darbotos kā radioaktīvu un cita veida piesārņotu vielu iekapsulēšanas matricas, jo tie ir spējīgi tolerēt vielās esošos sāļus, kā arī nodrošināt nevēlamo savienojumu iekapsulēšanu zemā temperatūrā [5, 6]. Sākotnēji kā cietēšanas ierosinātājs tika izmantota fosforskābe kopā ar cietēšanas palēninātāju borskābi, bet reakcijas rezultātā materiāls sakarsa un sasniedza nepieļaujami augstu temperatūru. Līdz ar to vēlāk sāka izmantot kālija ortofosfātu, kas, savienojoties ar MgO, veido K-strūvītu jeb keramikrītu (no angļu valodas Ceramicrete) [7]:[004] Ammonium-free magnesium phosphate cements (MFCs), which were originally developed to act as encapsulation matrices for radioactive and other contaminated substances, are known because they are capable of tolerating salts in the substances as well as providing low temperature encapsulation of unwanted compounds [ 5, 6]. Initially phosphoric acid was used as a curing agent together with boric acid as a curing retarder, but as a result of the reaction the material heated up to an unacceptably high temperature. Consequently, potassium orthophosphate, which when combined with MgO, forms K-struvite or ceramicrete, was later used [7]:

MgO+KH2PO4+5H2O-^MgKPO 6H2O. (2) [005] Tā kā KH2PO4 ir augstāks pH līmenis nekā amonija ortofosfātam, reakcija starp komponentēm notiek lēnāk ne kā reakcija (1) un to ir iespējams kontrolēt. Tā kā KH2PO4 ir pulverveida viela, to sausā veidā ir iespējams sajaukt ar MgO, veidojot MFC remontjavas. Javai cietējot, neizdalās amonija gāze. MFC spiedes stiprība var sasniegt 80 MPa un vairāk [8], bet agrā stiprība (pirmajās 3 stundās) var sasniegt 80 % no gala stiprības pēc 28 dienu cietēšanas [4]. [006] Ir zināms ātri cietējošs materiāls, kas satur vismaz 10 % MgO un amonija fosfātu ūdens šķīdumā, un tā izgatavošanas paņēmiens [9]. Ir pierādīts, ka atsaistīts fosfāta šķīdums, zināms kā komerciāls lauksaimniecības mēslojums, ir īpaši piemērots kā amonija fosfāta avots cementējošās vielas izgatavošanai. MFC, iegūts saskaņā ar [9], spēj ātri saistīties - mazāk nekā pusstundā pēc sajaukšanas. Šāds kompozīcijas stiprības pieaugums ir pietiekami ātrs, lai, piemēram, skrejceļu remontu gadījumā būtu iespējams atjaunot satiksmi dažu stundu laikā. Turklāt šai kompozīcijai piemīt stipra adhēzija ar dažādām virsmām, piemēram, ar betonu un tēraudu, un tai ir augsta spiedes pretestība. Trūkums ir liels blīvums un zemā porainība.MgO + KH 2 PO4 + 5H 2 O- ^ MgKPO 6H 2 O. (2) Since KH 2 PO 4 has a higher pH than ammonium orthophosphate, the reaction between the components is slower than reaction (1) and can be controlled. Because KH 2 PO 4 is a powder, it can be mixed dry with MgO to form MFC repair mortars. Ammonia gas is not released when the cereals harden. The compressive strength of the MFC can reach 80 MPa and above [8], and the early strength (within the first 3 hours) can reach 80% of the ultimate strength after 28 days of curing [4]. [006] A fast curing material containing at least 10% MgO and ammonium phosphate in aqueous solution is known and a method for its preparation [9]. A decoupled phosphate solution, known as a commercial agricultural fertilizer, has been shown to be particularly suitable as a source of ammonium phosphate for the manufacture of cementitious material. The MFC obtained according to [9] is able to bind rapidly - less than half an hour after mixing. This increase in the strength of the composition is fast enough to allow, for example, runway repairs to restore traffic within a few hours. In addition, the composition exhibits strong adhesion to various surfaces, such as concrete and steel, and has high compressive strength. The disadvantage is high density and low porosity.

[007] Ir zināms izolējošs ugunsizturīgs materiāls [10], kura sastāvā ir magnija fosfāts, sārmzemju metālu oksīdi, silīcija dioksīds un minerālšķiedras. Šķiedras parasti ir minerālvate vai azbesta šķiedras. Šī materiāla trūkums ir minerālās šķiedras nepieciešamība.[007] An insulating refractory material [10] containing magnesium phosphate, alkaline earth oxides, silica and mineral fibers is known. Fibers are usually mineral wool or asbestos fibers. The disadvantage of this material is the need for mineral fiber.

[008] h zināms keramisku šķiedru ugunsizturīgs materiāls [11], kas satur keramiskās šķiedras, alumīnija fosfāta pulveri, magnija oksīdu, ūdenī šķīstošu saistvielu, organisko polimēru plastifikatoru un paskābināšanas līdzekli. Kā keramiskās šķiedras izmanto alumīnija šķiedras, alumīnija silikāta šķiedras, hromu saturošas šķiedras un to maisījumus, kuros alumīnija silikāta šķiedras veido lielāko masas daļu. Kā materiāla trūkumu var atzīmēt keramisko šķiedru, kuras ir grūti pieejamas mazapdzīvotās vietās vai pēc dabas katastrofām, izmantošanu.H known ceramic fiber refractory material [11] comprising ceramic fibers, aluminum phosphate powder, magnesium oxide, water soluble binder, organic polymer plasticizer and acidifying agent. The ceramic fibers used are aluminum fibers, aluminum silicate fibers, chromium containing fibers and mixtures thereof, in which aluminum silicate fibers constitute the majority of the weight. The use of ceramic fibers, which are difficult to access in sparsely populated areas or after natural disasters, can be noted as a material shortage.

[009] Ir zināms materiāls un tā ražošanas paņēmiens [12], kas apraksta ātri cietējošus magnija fosfāta cementus ar izgatavošanas laiku no 60 līdz 120 minūtēm. Konkrētāk, tas raksturo uzlabotus ātri cietējošus magnija fosfāta cementus, kas satur noteiktu daudzumu neorganiskas šķiedras, tādas kā stikla, metāla un to maisījumu, lai palielinātu iegūtā cementa izstrādājumu triecienizturību - šis paņēmiens pieņemts par prototipu. Paņēmiens uzlabota ātras cietēšanas cementa izgatavošanai ietver šādus soļus: (i) poraina materiāla sajaukšanu ar fosfāta šķīdumu, izveidojot gēlu; (ii) gēla žāvēšanu; un (iii) izžāvētā gēla malšanu, veidojot cietu aktivatoru. Cieto aktivatoru sajauc ar magniju saturošu komponenti, kas sastāv no magnija oksīda, hidroksīda, karbonāta un to maisījumiem, pievieno šķiedras daudzumā no 0,25 līdz 5,00 masas % no cementa masas un porainu pildvielu vismaz 40 masas % no sausā maisījuma masas. Minētā porainā pildviela satur silīcija dioksīdu, granītu, bazaltu, dolomītu, laukšpatu, amfibolu, piroksēnu, olivīnu, gabro, kriolītu, kvarcu, izdedžus, pelnus, stikla šķembas u.c. piemaisījumus.[009] A material and a method for its production [12] are known which describe fast curing magnesium phosphate cements with a production time of 60 to 120 minutes. Specifically, it features improved fast-curing magnesium phosphate cements containing a certain amount of inorganic fibers, such as glass, metal, and mixtures thereof, to increase the impact resistance of the resulting cement product - a technique adopted as a prototype. The process for the preparation of the improved fast curing cement comprises the following steps: (i) mixing the porous material with the phosphate solution to form a gel; (ii) drying the gel; and (iii) milling the dried gel to form a solid activator. The solid activator is mixed with the magnesium-containing component consisting of magnesium oxide, hydroxide, carbonate and mixtures thereof, in a fiber content of from 0.25 to 5.00% by weight of cement and a porous filler of at least 40% by weight of the dry mixture. Said porous filler contains silica, granite, basalt, dolomite, feldspar, amphibole, pyroxene, olivine, gabbros, cryolite, quartz, slag, ash, glass fragments, and the like. impurities.

[010] Kā trūkumu var atzīmēt šīs pildvielas ierobežoto pieejamību neapdzīvotās vietās vai pēc dabas katastrofām, kā arī piedāvātajām izejvielām (smiltis, granīts, bazalts un citi minerālas izcelsmes materiāli) ir liels blīvums, kas nenodrošina pietiekamas siltumizolācijas spējas, bet no saistvielas izgatavoto bloku paaugstinātā tilpummasa apgrūtina ātru un ērtu ēku būvniecību, izmantojot roku darba spēku. Pieņemts kā prototips patentējamajam objektam.A disadvantage is the limited availability of this filler in uninhabited areas or after natural disasters, and the raw materials offered (sand, granite, basalt and other mineral materials) have a high density which does not provide sufficient heat insulation capacity, but the increased bulk density makes it difficult to construct buildings quickly and easily using manual labor. Accepted as a prototype of a patentable object.

Izgudrojuma mērķis un būtība [011] Izgudrojuma mērķis ir radīt jaunu, videi draudzīgu, minimālu resursu patērējošu, augsti porainu materiālu - celtniecības bloku ar īsāku izgatavošanas laiku, no 45 līdz 60 minūtēm, paaugstinātām ugunsizturības un siltumizolācijas īpašībām.OBJECTIVE AND SUMMARY OF THE INVENTION The object of the present invention is to provide a new, environmentally friendly, low resource, high porous material, a building block with a shorter production time, from 45 to 60 minutes, with improved fire resistance and thermal insulation properties.

[012] Lai sasniegtu mērķi piedāvāts veidot celtniecības blokus izmantojot magnija fosfāta cementa saistvielu un bioloģiskas izcelsmes šķiedras kā pildvielas: sasmalcinātas koka konstrukcijas, kaņepju vai linu spaļus, bambusa, niedru, u.c. stiebrus, koka šķeldu vai citas biomasas šķiedras. No prototipa piedāvātais izgudrojums atšķiras ar to, ka izmantojot bioloģiskas izcelsmes šķiedras kā pildvielas var ievērojami samazināt celtniecības bloku blīvumu un to siltumvadītspēju.[012] To accomplish this, it has been proposed to build building blocks using magnesium phosphate cement binder and biological fibers as fillers: crushed wood structures, hemp or flax shavings, bamboo, reed, and the like. straw, wood chips or other biomass fibers. The invention is different from the prototype in that the use of organic fibers as fillers can significantly reduce the density of building blocks and their thermal conductivity.

[013] Izgudrojuma paņēmiens ietver šādus secīgus soļus: (i) 15 masas % smalcinātas bioloģiskas izcelsmes šķiedras (pildvielas) ar izmēru no 5 līdz 30 mm samitrina ar 19 masas % ūdeni; (n) pievieno 25 masas % pārdedzināta magnija oksīda pulvera veidā un 20 masas % kālija ortofosfāta pulveri; (iii) tad ar izsmidzināšanas metodi pievieno 20 masas % ūdeni; (iv) iegūto masu ieformē iepriekš sagatavotos bloku veidņos un piepresē ar no 0,2 līdz 0,4 MPa spiedienu; (v) masa sāk saistīties 5-15 minūšu laikā pēc sajaukšanas, tad pēc 2 stundām blokus atveidņo, jo ir sasniegta pietiekama stiprība, lai noņemtu piepresēšanas spiedienu. Cietēšanas procesā izdalās liels siltuma daudzums (saistvielas saistīšanās ķīmiskās reakcijas rezultātā), tādējādi bloks cietējot zaudē lielāko daļu tehnoloģiskā ūdens, tādējādi nav jāpielieto papildus žāvēšana. Iegūtajam celtniecības blokam piemīt nosedzošas, dekoratīvas, siltumizolējošas un termoregulējošas funkcijas, to ir iespējams izmantot kā slodzi nesošu konstruktīvo materiālu. Celtniecības bloka blīvums ir no 450 līdz 600 kgnr3, spiedes stiprība ir no 0,8 līdz 1,2 MPa un siltumvadītspēja ir no 0,10 līdz 0,15 W nr' K?1.[013] The process of the invention comprises the following sequential steps: (i) 15% by weight of comminuted organic fiber (filler) having a size of 5 to 30 mm is moistened with 19% by weight of water; (n) adding 25% by weight of calcined magnesium oxide powder and 20% by weight of potassium orthophosphate powder; (iii) 20% by weight of water is then added by spraying; (iv) forming the resulting mass in pre-fabricated block molds and pressing at a pressure of 0.2 to 0.4 MPa; (v) The mass begins to bind within 5-15 minutes after mixing, then after 2 hours the blocks are rendered as sufficient strength has been achieved to relieve the compression pressure. During the curing process, a large amount of heat is released (the binding of the binder is due to a chemical reaction), so that the block loses most of the process water, so no additional drying is required. The resulting building block has protective, decorative, heat-insulating and thermoregulatory functions and can be used as a load-bearing construction material. The building block has a density of 450 to 600 kgn 3 , a compressive strength of 0.8 to 1.2 MPa and a thermal conductivity of 0.10 to 0.15 W nr 'K? 1 .

Izgudrojuma realizācijas piemeri [014] 1. piemērs: bioloģiskas izcelsmes vieglu pildvielu un MFC ātras cietēšanas celtniecības bloka iegūšanas paņēmiens ietver vairākus soļus. Pirmajā solī (i) bioloģiskas izcelsmes šķiedras (pildvielas - kaņepju vai linu spaļi, koka konstrukciju atlikumi, niedres, bambusa stumbri, u.c.) tiek samaltas dezintegratorā līdz daļiņu izmēram no 5 līdz 30 mm. Otrajā solī (ii) 15 masas % iegūto bioloģiskas izcelsmes šķiedru ar daļiņu izmēru no 5 līdz 30 mm ieber rotācijas maisītājā un maisa ar ātrumu no 50 līdz 60 apgriezieniem minūtē. 30 sekunžu laikā uz pildvielas vienmērīgi izsmidzina 19 masas % ūdens. Pēc ūdens pievienošanas pildvielu maisa vēl 60 sekundes. Neapturot maisīšanu, 30 sekunžu laikā pievieno 25 masas % pārdedzinātu pulverveida magnija oksīdu ar daļiņu izmēru (d9o=0,02 mm) un 20 masas % kālija ortofosfata pulveri. Masu maisa vēl 60 sekundes. 30 sekunžu laikā vienmērīgi izsmidzina ūdeni 21 masas %. Masu maisa vēl 120 sekundes. Trešajā solī (iii) iegūto maisījumu ieformē iepriekš sagatavotos bloku veidņos. Masa sāk saistīties 5-15 min pēc sajaukšanas, pēc 2 stundām blokus atveidņo, jo ir sasniegta pietiekama stiprība, lai noņemtu piepresēšanas spiedienu. Cietēšanas procesā izdalās liels siltuma daudzums, kas saistīts ar saistvielas ķīmiskajām reakcijām. Blokiem cietējot, tie zaudē lielāko daļu no tehnoloģiskā ūdens.EXAMPLES OF THE INVENTION Example 1: The method of obtaining a light-weight aggregate of biological origin and an MFC rapid curing building block involves several steps. In the first step (i), the fibers of biological origin (fillers - hemp or flax press, wood waste, reeds, bamboo stems, etc.) are ground in a disintegrator to a particle size of 5 to 30 mm. In the second step (ii), 15% by weight of the resulting organic fibers with a particle size of 5 to 30 mm are poured into a rotary mixer and stirred at 50 to 60 rpm. Within 30 seconds, 19% by weight of water is sprayed uniformly onto the filler. After adding water, the filler is stirred for another 60 seconds. Without stirring, add 25% by weight of calcined powdered magnesium oxide with a particle size (d 90 = 0.02 mm) and 20% by weight of potassium orthophosphate powder over a period of 30 seconds. Stir the mass for another 60 seconds. Spray water evenly at 21% by weight within 30 seconds. Stir the mass for another 120 seconds. The mixture obtained in the third step (iii) is molded into pre-prepared block molds. The mass begins to bind 5-15 minutes after mixing, after 2 hours the blocks are rendered as sufficient strength has been achieved to relieve the compression pressure. During the curing process, a large amount of heat is released, which is related to the chemical reactions of the binder. When the blocks harden, they lose most of the process water.

[015] 2. piemērs: MFC un bioloģiskas izcelsmes pildvielu saturošs celtniecības bloks, ir izgatavots analogi 1. piemēram, atšķiras ar to, ka pirmajā solī (i) ir izmantots paaugstināts saistvielas daudzums - magnija oksīds 45 masas % un kālija ortofosfats 36 masas %.[015] Example 2: A building block containing MFC and a filler of biological origin prepared analogously to Example 1, characterized in that in the first step (i) an increased amount of binder is used - 45% by weight of magnesium oxide and 36% by weight of potassium orthophosphate. .

[016] 3. piemērs: MFC un bioloģiskas izcelsmes pildvielu saturošs celtniecības bloks ir izgatavots analogi 1. vai 2. piemēram, atšķiras ar to, ka trešajā solī (iii) iegūto maisījumu ieformē iepriekš sagatavotos bloku veidņos un piepresē ar 0,8 MPa spiedienu, iegūstot augstāka blīvuma un stiprības bloku.[016] Example 3: A building block containing MFC and a bio-based aggregate is made analogously to Example 1 or 2, characterized in that the mixture obtained in the third step (iii) is molded into pre-formed block molds and pressed at 0.8 MPa. to obtain a block of higher density and strength.

[017] 4. piemērs: MFC un bioloģiskas izcelsmes pildvielu saturošs celtniecības bloks, ir izgatavots analogi 1.-3. piemēram, atšķiras ar to, ka trešajā solī (iii) iegūto maisījumu ieformē iepriekš sagatavotos bloku veidņos, kuri izgatavoti vai satur papildus ārējā slānī iestrādātu materiālu ar zemu siltumvadītspējas koeficientu (piemēram, putu polistirolu), kas ļauj ievērojami pazemināt bloka siltuma caurlaidības koeficientu, tādējādi paplašinot materiāla lietojumu aukstā klimatā.[017] Example 4: Building block containing MFC and biological filler, prepared analogously to Examples 1-3. is characterized in that the mixture obtained in step (iii) is molded into pre-fabricated block molds which are made of or contain an additional outer layer of low thermal conductivity material (e.g. polystyrene foam) which allows a significant reduction in block heat transmittance, expanding material use in cold climates.

[018] 5. piemērs: MFC un bioloģiskas izcelsmes pildvielu saturošs celtniecības bloks, ir izgatavots analogi 1.^4·. piemēram, atšķiras ar to, ka trešajā solī (iii) iegūto maisījumu ieformē iepriekš sagatavotos bloku veidņos, kuri satur ieliktņus, lai pēc atveidņošanas veidotu vertikālus dobumus (no 15 līdz 25 % no šķērsgriezuma), kas paaugstina bloka siltumizolācijas īpašības un samazina materiāla patēriņu.[018] Example 5: Building block containing MFC and biological filler, made analogously to 1. ^ 4 ·. for example, the mixture obtained in step (iii) is molded into preformed block molds containing inserts to form vertical cavities (15 to 25% of cross-section) after stripping, which increases the block's thermal insulation properties and reduces material consumption.

[019] 6. piemērs: MFC un bioloģiskas izcelsmes pildvielu saturošs celtniecības bloks, ir izgatavots analogi l.-5. piemēram, atšķiras ar to, ka trešajā solī (iii) presēšanas laikā pielieto veidņu vibrāciju no 5 līdz 50 Hz, ar amplitūdu no 0,5 līdz 5 mm, tādā veidā palielinot materiāla sablīvējumu.[019] Example 6: Building block containing MFC and biological filler, prepared analogously to Examples 1-5. for example, in the third step (iii), during the extrusion, mold vibration of 5 to 50 Hz is applied, with an amplitude of 0.5 to 5 mm, thereby increasing the material compaction.

[020] Saskaņā ar izgudrojumu, no MFC saistvielas un bioloģiskas izcelsmes pildvielas ir iespējams izgatavot ātri cietējošus, siltumizolējošus celtniecības blokus. Par pildvielu bloku izgatavošanai var tikt izmantotas dažāda veida bioloģiskas šķiedras, piemēram, lauksaimniecības blakusprodukti (kaņepju un linu spaļi, rapšu, labības salmi), kā arī citu veidu bioloģiskas šķiedras (niedres, bambuss, koka šķelda). Šī dažādo pildvielu pielietošana ļauj izmantot saistvielu lai ražotu blokus arī pēc dabas katastrofām, jo nepieciešams piegādāt tikai saistvielu. Tā aizņem mazāko bloka tilpuma daļu, tādējādi ievērojami tiek samazināts piegādājamā materiāla daudzums.[020] According to the invention, fast-setting, heat-insulating building blocks can be made from MFC binder and fillers of biological origin. Various types of organic fibers can be used as filler blocks, such as agricultural by-products (hemp and flax sprouts, rapeseed, cereal straw) as well as other types of organic fibers (reeds, bamboo, wood chips). This use of various fillers allows the use of binder to produce blocks even after natural disasters, since only binder is required. It occupies the smallest part of the block volume, thus significantly reducing the amount of material to be delivered.

[021] Ātri cietējošos MFC blokus var izgatavot pārvietojamās mini rūpnīcās, lai dabas stihijas/katastrofas vietās varētu uzcelt gan dzīvojamās, gan sabiedriskās ēkas. Uz potenciālo būvlaukumu piegādā tikai minimālo izejvielu daudzumu - saistvielas MgO un KH2PO4 sausu pulverveida maisījumu. Iekārtas - rotējoša tipa smalcināšanas iekārta, rotējoša tipa maisītājs un elektrības ģenerators (iekārtu darbībai), tiek samontētas vienā konteinerī un ir viegli transportējamas. Kā organisko pildvielu var izmantot gan sagrautu konstrukciju koka fragmentus, gan apkārt esošus bioloģiskas izcelsmes šķiedras saturošus materiālus.[021] Fast-curing MFC units can be manufactured in mobile mini-factories so that both residential and public buildings can be erected in areas of natural disaster / catastrophe. Only the minimum amount of raw materials - dry binder MgO and KH2PO4 - is supplied to the potential site. The equipment - a rotary crusher, a rotary mixer and an electric generator (for equipment operation) - is assembled in one container and is easily transportable. Wood fragments of demolished structures as well as surrounding materials containing biological fibers can be used as organic filler.

Izmantotie informācijas avoti [1] M. Sichel, “Method of producing dental cement,” US 492056 A, 1893.Sources of Information Used [1] M. Sichel, "Method of producing dental cement," US 492056 A, 1893.

[2] P. David and R. W. Limes, “Basic refractory compositions for intermediate temperature zones,” US 3285758 A, 1966.[2] P. David and R. W. Limes, "Basic Refractory Compositions for Intermediate Temperature Zones," US 3285758 A, 1966.

[3] H. Ma, B. Xu, and Z. Li, “Magnesium potassium phosphate cement paste: Degree of reaction, porosity and pore structure,” Cement and Concrete Research, vol. 65, pp. 96-104, 2014.[3] H. Ma, B. Xu, and Z. Li, "Magnesium potassium phosphate in cement paste: Degree of reaction, porosity and pore structure," Cement and Concrete Research, vol. 65, p. 96-104, 2014.

[4] C. Ma and B. Chen, “Experimental study on the preparation and properties of a novel foamed concrete based on magnesium phosphate cement,” Construction and Building Materials, vol. 137, pp. 160-168, 2017.[4] C. Ma and B. Chen, "Experimental study on the preparation and properties of a novel foamed concrete based on magnesium phosphate cement," Construction and Building Materials, vol. 137, p. 160-168, 2017.

[5] A. S. Wagh, R. Strain, S. Y. Jeong, D. Reed, T. Krause, and D. Singh, “Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics,” Journal of Nuclear Materials, vol. 265, no. 3, pp. 295-307, Mar. 1999.[5] A. S. Wagh, R. Strain, S. Y. Jeong, D. Reed, T. Krause, and D. Singh, "Stabilization of Rocky Flats by Contaminated Ash Within Chemically Bonded Phosphate Ceramics," Journal of Nuclear Materials, vol. 265, no. 3, p. 295-307, Mar. 1999

[6] D. Singh, V. R. Mandalika, S. J. Parulekar, and A. S. Wagh, “Magnesium potassium phosphate ceramic for 99Tc immobilization,” Journal of Nuclear Materials, vol. 348, no. 3, pp. 272-282, Feb. 2006.[6] D. Singh, V. R. Mandalika, S. J. Parulekar, and A. S. Wagh, "Magnesium potassium phosphate ceramic for 99Tc immobilization," Journal of Nuclear Materials, vol. 348, no. 3, p. 272-282, Feb. 2006

[7] R. Del Valle-Zermeno, J. E. Aubert, A. Laborel-Preneron, J. Formosa, and J. M. Chimenos, “Preliminary study of the mechanical and hygrothermal properties of hemp-magnesium phosphate cements,” Construction and Building Materials, vol. 105, pp. 62-68, 2016.[7] R. Del Valle-Zermeno, J. A. Aubert, A. Laborel-Preneron, J. Formosa, and J. M. Chimenos, "Preliminary Study of the Mechanical and Hygrothermal Properties of Hemp Magnesium Phosphate Cement," Construction and Building Materials, vol. . 105, p. 62-68, 2016.

[8] G. Zhang, G. Li, and T. He, “Effects of sulphoaluminate cement on the strength and water stability of magnesium potassium phosphate cement,” Construction and Building Materials, vol. 132, pp. 335-342, 2017.[8] G. Zhang, G. Li, and T. He, "Effects of sulphoaluminate cement on strength and water stability of magnesium potassium phosphate cement," Construction and Building Materials, vol. 132, p. 335-342, 2017.

[9] R. W. Limes and R. O. Russell, “Process for preparing fast-setting aggregate compositions and products of low porosity produced therewith,” US 3879209 A, 1975.[9] R. W. Limes and R. O. Russell, "Process for preparing fast-setting aggregate compositions and products of low porosity produced therewith," US 3879209 A, 1975.

[10] V. Jost and J. Kiehl, “Insulating refractory and a method for manufacturing same,” US 3752684 A, 1973.[10] V. Jost and J. Kiehl, "Insulating Refractory and Method for Manufacturing the Same," US 3752684 A, 1973.

[11] C. J. Cherry, “Ceramic fiber refractory mixture,” US 4417925 A, 1983.[11] C.J. Cherry, "Ceramic fiber refractory mixture," US 4417925 A, 1983.

[12] F. G. Sherif and R. E. Gallagher, “Process for making reinforced magnesium phosphate fastsetting cements,” US 5002610 A, 1991.[12] F. G. Sherif and R. E. Gallagher, "Process for making reinforced magnesium phosphate fastsetting cement," US 5002610 A, 1991.

Claims (6)

1. Celtniecības bloks, kas satur magnija fosfāta cementu un pildvielu, kas atšķiras ar to, ka par pildvielu izmanto sasmalcinātas bioloģiskas izcelsmes šķiedras šādās komponentu attiecībās (masas %):1. A building block containing magnesium phosphate cement and aggregate, characterized in that the aggregate is composed of chopped organic fibers in the following proportions (% by weight): - magnija oksīds no 20 līdz 30 masas %,- magnesium oxide from 20 to 30% by weight, - kālija ortofosfāts no 15 līdz 25 masas %,- potassium orthophosphate between 15 and 25% by weight, - bioloģiskas izcelsmes šķiedras no 10 līdz 20 masas %,- 10 to 20% by weight of organic fibers, - ūdens 34 līdz 44 masas %.water 34 to 44% by weight. 2. Bloks saskaņā ar l. pretenziju, kas atšķiras ar to, ka par pildvielu izmanto sasmalcinātas bioloģiskas izcelsmes šķiedras šādās komponentu attiecībās (masas %):2. The unit according to l. A claim, characterized in that the filler comprises the use of comminuted organic fibers in the following proportions (% by weight): - magnija oksīds no 37 līdz 45 masas %,- magnesium oxide from 37 to 45% by weight, - kālija ortofosfāts no 30 līdz 36 masas %,- potassium orthophosphate from 30 to 36% by weight, - bioloģiskas izcelsmes šķiedras no 5 līdz 10 masas %,- 5 to 10% by weight of organic fibers, - ūdens 20 līdz 30 masas %.water 20 to 30% by weight. 3. Bloka saskaņā ar l. vai 2. pretenziju izgatavošanas paņēmiens, kas ietver šādus secīgus soļus: (i) bioloģiskas izcelsmes šķiedras jeb pildvielas (koka konstrukciju atlikumi, niedres, bambusa stumbri, krūmi u.c.) samaļ dezintegratorā līdz daļiņas izmēram 5-30 mm, (ii) 15 masas % iegūtās bioloģiskas izcelsmes šķiedras ar daļiņas izmēru 5-30 mm ieber rotācijas maisītājā un maisa ar ātrumu 50-60 apgriezieni minūtē, uz pildvielas vienmērīgi izsmidzina ūdeni daudzumā no 14 līdz 24 masas %, pēc ūdens pievienošanas pildvielu maisa 40 līdz 120 sekundes ilgi, tad, neapturot maisīšanu, pievieno 20 līdz 30 masas % pārdedzinātu pulverveida magnija oksīdu ar daļiņu izmēru (d%)=0,02 mm) un 15 līdz 25 masas % kālija ortofosfāta pulveri, masu maisa 40 līdz 120 sekundes ilgi, vienmērīgi izsmidzina ūdeni - 20 masas %, masu maisa 100 līdz 180 sekundes ilgi, (iii) iegūto maisījumu ieformē iepriekš sagatavotos bloku veidņos, piepresē ar 0,2-0,4 MPa spiedienu, pēc 45-120 minūtēm blokus atveidņo.Block according to l. or 2. A process for the preparation of claims, comprising the following sequential steps: (i) grind organic fibers or fillers (wood residues, reeds, bamboo stems, shrubs, etc.) in a disintegrator to a particle size of 5-30 mm, (ii) 15% by weight. the resulting organic fibers with a particle size of 5-30 mm are poured into a rotary mixer and stirred at 50-60 rpm, water is evenly sprayed on the filler in an amount of 14 to 24% by weight, and after the addition of water, the filler is stirred for 40 to 120 seconds; without stirring, add 20 to 30% by weight of burnt powdered magnesium oxide with a particle size (d%) = 0.02 mm) and 15 to 25% by weight of potassium orthophosphate powder, mix for 40 to 120 seconds, evenly spray water %, the mass is stirred for 100 to 180 seconds, (iii) the resulting mixture is molded into pre-fabricated block molds, pressurized at 0.2-0.4 MPa, Blocks are rendered for 45-120 minutes. 4. Paņēmiens saskaņā ar 3. pretenziju, kas atšķiras ar to, ka solī (iii) veidņos papildus ievieto siltumizolācijas materiālu, piemēram, putu polistirolu.A process according to claim 3, characterized in that step (iii) further comprises inserting a heat-insulating material, such as polystyrene foam. 5. Paņēmiens saskaņā ar 3. vai 4. pretenziju, kas atšķiras ar to, ka solī (iii) iegūto maisījumu ieformē iepriekš sagatavotos bloku veidņos, kuri satur ieliktņus, lai pēc atveidņošanas veidotu vertikālus dobumus (no 15 līdz 25 % no šķērsgriezuma).Method according to claim 3 or 4, characterized in that the mixture obtained in step (iii) is molded into pre-formed block molds containing inserts to form vertical cavities (15 to 25% of the cross-section) after shaping. 6. Paņēmiens saskaņā ar jebkuru no 3. līdz 5. pretenzijai, kas atšķiras ar to, ka solī (iii) presēšanas laikā pielieto vibrāciju no 5 līdz 50 Hz ar amplitūdu no 0,5 līdz 5 mm.Method according to any one of claims 3 to 5, characterized in that, in step (iii), vibration of between 5 and 50 Hz is applied during the pressing with a range of 0.5 to 5 mm.
LV170086A 2017-12-12 2017-12-12 Magnesium phosphate cement and bio-based filler fast-curing construction block and its method of manufacture LV15379B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LV170086A LV15379B (en) 2017-12-12 2017-12-12 Magnesium phosphate cement and bio-based filler fast-curing construction block and its method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LV170086A LV15379B (en) 2017-12-12 2017-12-12 Magnesium phosphate cement and bio-based filler fast-curing construction block and its method of manufacture

Publications (2)

Publication Number Publication Date
LV15379A LV15379A (en) 2018-12-20
LV15379B true LV15379B (en) 2019-11-20

Family

ID=64662762

Family Applications (1)

Application Number Title Priority Date Filing Date
LV170086A LV15379B (en) 2017-12-12 2017-12-12 Magnesium phosphate cement and bio-based filler fast-curing construction block and its method of manufacture

Country Status (1)

Country Link
LV (1) LV15379B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110252252A (en) * 2019-06-21 2019-09-20 辽宁北环净化技术有限公司 A kind of preparation method of NGFX dry desulfurization absorption brick

Also Published As

Publication number Publication date
LV15379A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
CN100463881C (en) Heat preservation and energy saving type lightweight, gas filled wall bricks, and preparation method
EP2451758B1 (en) Geopolymeric concrete and methods of forming it from a basaltic precursor
CN100475733C (en) Adhesive, heat insulating and sound isolating material with the adhesive and preparing process thereof
CN102219415B (en) Light sand without burning and preparation method thereof
JP2008502572A (en) Composition and use of a new sprayable phosphate cement combined with styrofoam.
CN102951878A (en) Lightweight concrete exterior wall insulation building block and production method thereof
CN103964789B (en) Artificial stone plate's waste is utilized to produce the method for foamed concrete
CN103951358A (en) Overall residential foamed lightweight wall body manufactured from construction waste and manufacturing method thereof
US20100230844A1 (en) Process for Producing Environmental Protection Wall Plate
KR101481753B1 (en) Crack cleaner for repairing concrete microcrack with autogenous crack healing
US4505752A (en) Fast-setting cements from solid phosphorus pentoxide containing materials
CN109231948A (en) A kind of light fire-proof composite partition wall plate and preparation method thereof
CN100535351C (en) Ball-silicon composite building thermal insulation material and manufacturing method therefor
CN102320804B (en) Non-bearing insulating brick
CN106082821A (en) A kind of gangue with antimildew and antibacterial effect is non-burning brick
CN106082884B (en) A kind of insulating light wall slab and preparation process containing solid waste cinder
CN102452830A (en) Phosphate cement bond polystyrene foam particle thermal insulating material
JP2021181402A (en) System and method for preparing and applying non-portland cement-based material
LV15379B (en) Magnesium phosphate cement and bio-based filler fast-curing construction block and its method of manufacture
WO2009112873A1 (en) Structure of constructions and buildings from a fireproof and at the same time insulating, continuously solidifying material of fractional density as compared to concrete
CN106365684A (en) Method for preparing waterproof environmental-friendly bricks
US2462538A (en) Thermal insulating building material and its method of manufacture
BG65746B1 (en) Method for producing masonry and facing blocks
KR100799243B1 (en) Method for manufacturing bottom structure between floors of building using porous material for insulation and absorption of sound, method for manufacturing side wall structure of building using the same
WO2011014097A1 (en) Method for producing heat insulation and lagging material for construction articles