LV15007B - Production of potato pvm virus-like particles - Google Patents

Production of potato pvm virus-like particles Download PDF

Info

Publication number
LV15007B
LV15007B LVP-13-158A LV130158A LV15007B LV 15007 B LV15007 B LV 15007B LV 130158 A LV130158 A LV 130158A LV 15007 B LV15007 B LV 15007B
Authority
LV
Latvia
Prior art keywords
pvm
protein
virus
seq
particles
Prior art date
Application number
LVP-13-158A
Other languages
Latvian (lv)
Other versions
LV15007A (en
Inventor
Andris Zeltiņš
Ieva Kalnciema
Velta Ose-Klinklāva
Ina Baļķe
Original Assignee
Latvijas Biomedicīnas Pētījumu Un Studiju Centrs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latvijas Biomedicīnas Pētījumu Un Studiju Centrs filed Critical Latvijas Biomedicīnas Pētījumu Un Studiju Centrs
Priority to LVP-13-158A priority Critical patent/LV15007B/en
Publication of LV15007A publication Critical patent/LV15007A/en
Publication of LV15007B publication Critical patent/LV15007B/en

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION

Izgudrojums attiecas uz biotehnoloģiju, molekulāro bioloģiju kā arī uz vakcīnu, diagnostikas līdzekļu komponentu un jaunu nanomateriālu iegūšanu. Tā pamatā ir vīrusu izcelsmes polipeptīdu pašsavākšanās procesu rezultātā izveidotas regulāras, organizētas nanometru izmēru pavedienveida struktūras, kuras satur mākslīgi pievienotas proteīnu sekvences.The invention relates to biotechnology, molecular biology as well as to the production of vaccines, diagnostic tools and new nanomaterials. It is based on regular, organized nanometer-sized filamentous structures that contain artificially attached protein sequences created by viral polypeptide self-assembly processes.

Tehnikas līmeņa analīzeAnalysis of the state of the art

Vīrusiem līdzīgās daļiņas (VLP) ir multisubvienību proteīnu struktūras, kas ir identiskas vai strukturāli analoģiskas attiecīgajiem vīrusiem un nav infekciozas. Vīrusiem līdzīgās daļiņas ir plaši pazīstamas kā vakcīnu kandidāti [1]. Hepatīta B un cilvēka papilomas vīrusiem līdzīgās daļiņas ir vispopulārākās un tiek izmantotas komerciālajā medicīnas praksē kā vakcīnas pret hepatītu B un dzemdes kakla ļaundabīgo audzēju izraisītāju - papilomas vīrusu. Vīrusiem līdzīgo daļiņu efektivitāte imūnatbildes stimulēšanā ir labi zināma: strukturāli stingri sakārtoti un daudzkārtīgi atkārtoti aminoskābju sekvenču motīvi uz vīrusu virsmas proteīnu virsmas ir noteicošie signāli imūnsistēmas B-šūnu aktivēšanai un kalpo kā signāls imūnsistēmai, ka organismā ir nonācis svešas izcelsmes aģents [2]. Bez tam, vīrusiem līdzīgo daļiņu izmēri (pārsvarā zem 50 nm diametrā) ir piemēroti nokļūšanai dendrītiskajās šūnās, kur notiek VLP sašķelšana ar sekojošu imūnsistēmas T-šūnu aktivāciju [3], Tādējādi, VLP izsauc efektīvu humorālo un šūnu imūnatbildi, pat bez plaši pielietoto adjuvantu klātbūtnes [4],Virus-like particles (VLPs) are multisubunit protein structures that are identical or structurally analogous to the viruses in question and are not infectious. Virus-like particles are widely known as candidates for vaccines [1]. Hepatitis B and human papillomavirus-like particles are the most popular and are used in commercial medical practice as vaccines against hepatitis B and cervical malignancy, the papillomavirus. The effectiveness of virus-like particles in stimulating the immune response is well-known: structurally tight and multiple repetitive amino acid sequence motifs on the surface of viral proteins are the determining signals for B-cell activation of the immune system and serve as a signal to the immune system. In addition, virus-like particle sizes (predominantly less than 50 nm in diameter) are suitable for entry into dendritic cells, where VLP is cleaved by subsequent immune system T-cell activation [3]. Thus, VLP elicits an effective humoral and cellular immune response, presence [4],

Augu vīrusi neizraisa zīdītāju organismu saslimšanu. Tomēr augu vīrusi un tiem līdzīgas, no to strukturālajiem proteīniem mākslīgi iegūtas daļiņas (vīrusiem līdzīgās daļiņas - VLP) var tikt izmantoti kā epitopu nesēji, kuri eksponē patogēniem raksturīgus epitopus uz savu strukturālo proteīnu virsmas. Jēdziens „epitops” tiek definēts kā īsākā aminoskābju sekvence, kura spējīga piesaistīt tam specifisko antivielu molekulas; epitopi var būt kā lineāri, tā arī konformacionāli [1], Lineārie epitopi ir īsas aminoskābju sekvences (garumā no 4 līdz 10), kuru aktivitāti neietekmē to telpiskā struktūra. Konformacionālie epitopi veidojas no polipeptīdu ķēdes attālinātiem reģioniem, tiem izveidojot noteiktu telpisko struktūru.Plant viruses do not cause mammalian disease. However, plant viruses and similar particles artificially derived from their structural proteins (virus-like particles - VLPs) can be used as epitope carriers that exhibit pathogen-specific epitopes on the surface of their structural proteins. The term "epitope" is defined as the shortest amino acid sequence capable of binding its specific antibody molecules; epitopes can be either linear or conformational [1], Linear epitopes are short amino acid sequences (4 to 10 in length) whose activity is not affected by their spatial structure. Conformational epitopes are formed from distant regions of the polypeptide chain, forming a distinct spatial structure.

Ideja par patogēniem raksturīgo peptīdu (epitopu) izmantošanu imunizācijā ir zināma jau vairāk 20 gadus. Ir zināms, ka zemmolekulārās vielas, tajā skaitā īsas aminoskābju sekvences (peptīdi), bieži izraisa vājas imūnatbildes. Tāpēc epitopus piesaista pie proteīnu-nesēju molekulām, kas izraisa paaugstinātas imūnatbildes zīdītāju organismos [5]. Attīstoties gēnu inženierijai un augu virusoloģijai, parādījās ideja, ka arī augu vīrusi var tikt izmantoti, kā svešu epitopu nesēji. Tā, klonējot poliovīrusam raksturīgo peptīdu kodējošās DNS sekvences tabakas mozaīkas vīrusa (TMV) virsmas proteīna gēna cDNS kopijā, un ekspresējot šos rekombinantos gēnus EscerichiaThe idea of using peptides (epitopes) specific for pathogens in immunization has been known for more than 20 years. Low molecular weight substances, including short amino acid sequences (peptides), are often known to cause poor immune responses. Therefore, epitopes are attracted to protein carrier molecules that elicit increased immune responses in mammals [5]. With the development of genetic engineering and plant virology, the idea emerged that plant viruses could also be used as carriers of alien epitopes. Thus, by cloning the DNA sequence cDNA of the tobacco mosaic virus (TMV) surface protein encoding the DNA sequence of the peptide-specific peptide and expressing these recombinant genes in Escerichia

-2coli, tika iegūts vakcīnas kandidāts. Uz TMV virsmas lokalizētie poliovīrusa epitopi izraisīja poliovīrusu neitralizējošas antivielas pēc injekcijas laboratorijas žurkās [6]. Līdzīga stratēģija tikusi demonstrēta arī vairāku citu augu vīrusu gadījumos, piem., Cowpea mosaic virus, Tomato bushy stunt virus, Cucumber mosaic virus, Potato virus X (PVX), Johnsongrass mosaic virus, Papaya mosaic virus [7]. Attiecīgo vakcīnu kandidātu iegūšanai ir tikuši izmantoti dažādi saimniekorganismi, piem., ar rekombinantiem vīrusiem inficēti augi, ar modificētiem bakulovīrusiem inficētas insektu šūnas, raugu, un arī E.coli platformas.-2coli, a vaccine candidate was obtained. Localized poliovirus epitopes on the TMV surface produced poliovirus neutralizing antibodies following injection in laboratory rats [6]. A similar strategy has been demonstrated for several other plant viruses such as Cowpea mosaic virus, Tomato bushy stunt virus, Cucumber mosaic virus, Potato virus X (PVX), Johnsongrass mosaic virus, Papaya mosaic virus [7]. Various host organisms have been used to obtain the relevant vaccine candidates, e.g., plants infected with recombinant viruses, insect cells infected with modified baculoviruses, yeasts, and also E. coli platforms.

Augu vīrusi vai no tiem atvasinātās VLP var tikt izmantotas arī jaunu nanomateriālu radīšanai. Tā uz tobamovīrusa bāzes ir izveidots jauns imunoadsorbents, kurš spējīgs piesaistīt līdz 2 g monoklonālo antivielu uz 1 g nesēja. Tas ir panākts, tobamovīrusa virsmas proteīnam C-galā ar gēnu inženierijas palīdzību pievienojot Staphylococcus aureus proteīna A funkcionālo fragmentu un izveidojot attiecīgo ekspresijas sistēmu VLP iegūšanai no tabakas lapām. Rezultātā tika iegūts nanodaļiņu materiāls (izmēri 18x200 nm), kur uz katras daļiņas virsmas ir izvietotas 2100 kopijas proteīna A atvasinājuma; autori piedāvāja to izmantot antivielu attīrīšanai kā ekonomisku, vienreiz lietojamu imūnadsorbentu [8].Plant viruses or VLPs derived from them can also be used to create new nanomaterials. Thus, a novel immunoadsorption based on tobamovirus has been developed which is capable of binding up to 2 g of monoclonal antibody per g of carrier. This is accomplished by adding the functional fragment of protein A of Staphylococcus aureus to the C-terminus of the tobamovirus surface protein and creating an appropriate expression system for obtaining VLP from tobacco leaves. As a result, nanoparticulate material (18x200 nm in size) was obtained, with 2100 copies of protein A derivative on each particle surface; it has been proposed by the authors to be used as a cost-effective, single-use immunosorbent for antibody purification [8].

Kartupeļu vīruss PVM pieder pie Carlavirus vīrusu grupas, pie kuras pieder 42 dažādu augu vīrusu sugas, tajā skaitā arī vēl citi kartupeļu vīrusi - PVP, PVS un PVX [9]. Genbank nukleotīdu sekvenču datubāzē atrodamas vairāk nekā 800 dažādu Carlavirus pārstāvju sekvenvces. Morfoloģiski PVM virioni ir viegli ieliektas, 650 x 12 nm pavedienveida struktūras (filamenti). To vienpavediena RNS sastāv no apmēram 8500 nukleotīdiem, kas kodē poliproteīnu, kurš sastāv metiltransferāzes, helikāzes un polimerāzes domēniem. Pārējie proteīni tiek sintezēti no 2 subgenomiskajām RNS (sgRNS), tajā skaitā virsmas proteīns (CP), kurš tiek translēts no mazākās, —1,5 kb sgRNS [10]. Nesen PVM virsmas proteīns ir ticis ekspresēts E.coli sistēmā sajūgtā formā ar nesējproteīnu GST pie +30°C, vīrusiem līdzīgo daļiņu veidošanās nav parādīta [11].Potato virus PVM belongs to the group of Carlavirus viruses, which includes 42 different species of plant viruses, including other potato viruses PVP, PVS and PVX [9]. The Genbank nucleotide sequence database contains sequences of more than 800 different Carlavirus representatives. The morphological PVM virions are lightly concave, 650 x 12 nm filamentous structures (filaments). Their single-stranded RNA consists of approximately 8500 nucleotides encoding a polyprotein consisting of methyltransferase, helicase, and polymerase domains. The remaining proteins are synthesized from 2 subgenomic RNAs (sgRNAs), including the surface protein (CP), which is translated from the smallest, -1.5 kb sgRNA [10]. Recently, the PVM surface protein has been expressed in the E.coli system in a coupled form with the carrier protein GST at + 30 ° C, no virus-like particle formation has been shown [11].

Līdzīgi kā daudziem pavedienveida vīrusiem, Carlavirus, tajā skaitā PVM, kristālu struktūra nav zināma. Tas apgrūtina to izmantošanu kā svešu aminoskābju sekvenču nesējus, jo nav iespējams noteikt uz vīrusu virsmas lokalizētos reģionus un paredzēt, vai ievietotās sekvences atradīsies uz VLP virsmas un kā šo sekvenču ievietošana vīrusa virsmas proteīna struktūrā ietekmēs VLP veidošanos. Tomēr filamentozo vīrusiem, ir iespējams izveidot struktūras modeļus, kas ir balstīti uz imunoloģisku un bioķīmisku eksperimentu rezultātiem [12]. Jāatzīmē, ka filamentozajiem vīrusiem virsmas proteīnu N- un/vai C-gali nereti ir lokalizēti uz daļiņu virsmas, kas ļauj epitopus vai proteīnu domēnus ievietot virsmas proteīnu N- vai C-galos. Tādos gadījumos gan ir nepieciešams eksperimentāli pārbaudīt VLP veidošanos;Like many filamentous viruses, the crystal structure of Carlavirus, including PVM, is unknown. This makes it difficult to use them as carriers of foreign amino acid sequences because it is not possible to determine localized regions on the viral surface and to predict whether the inserted sequences will be on the VLP surface and how their insertion into the viral surface protein structure will influence VLP formation. However, for filamentous viruses, it is possible to construct structural models based on the results of immunological and biochemical experiments [12]. It should be noted that in filamentous viruses, the N- and / or C-terminals of surface proteins are often localized to the surface of the particles, allowing epitopes or protein domains to be inserted at the N- or C-terminus of the surface protein. In such cases, however, it is necessary to experimentally test for VLP formation;

-3Ir zināmi vairāki piemēri, kad filamentozo augu VLP no E.coli ekspresijas sistēmām ir izmantotas kā medicīniski nozīmīgu epitopu nesēji ar augstu imunoloģisko aktivitāti. Papaya mosaic virus (PapMV - PVM radniecīgā Potexvirus grupa) VLP ar virsmas proteīna C-galā ievietotiem hepatīta C E2 epitopiem, kuras tika iegūtas no E.coli ekspresijas sistēmas, pēc izmantošanas imunizācijā inducēja ilgstošu humorālo imūnatbildi eksperimentālo dzīvnieku organismos. Interesanti, ka imūnatbilde tika novērota tikai tādā gadījumā, kad imunizācijā tika izmantotas E2-CP filamentozās daļiņas. E2-CP monomērs izrādījās vājš imunogēns [13]. Tādējādi, šie eksperimenti parāda epitopu multimerizācijas nozīmi efektīvas imūnatbildes izraisīšanā, ko panāk ar epitopu izvietošanu uz VLP virsmas. Jāatzīmē, ka filamentozas augu vīrusu daļiņas var tikt izmantotas arī kā antivielu veidošanos stimulējoši aģenti - adjuvanti [14]. Arī citu filamentozo augu vīrusu virsmas proteīnu C-gala sekvence ir izmantota svešu epitopu prezentācijai uz VLP virsmas, piem: Potyvirus grupas pārstāvji JGMV (Johnsongrass mosaic virus) [15] un PVA [16], kā arī Tobamovirus grupas vīrusi TMV [17] un CGMMV [18]. Jāatzīmē, ka pēdējie piemēri attiecas uz rekombinantu VLP iegūšanu no visai komplicētām augu ekspresijas sistēmām, un VLP šajos gadījumos satur infekciozas vīrusu nukleīnskābes, kas sarežģī to tālāko izmantošanu ražošanā un medicīnas praksē.There are several examples of filamentous plant VLPs from E.coli expression systems used as carriers of medically important epitopes with high immunological activity. Papaya mosaic virus (PapMV - PVM-related Potexvirus group) VLPs with the surface protein C-terminal hepatitis C E2 epitopes obtained from the E. coli expression system induced a sustained humoral immune response in experimental animals after use in immunization. Interestingly, an immune response was observed only when E2-CP filamentous particles were used for immunization. The E2-CP monomer was found to be weakly immunogenic [13]. Thus, these experiments demonstrate the importance of epitope multimerization in inducing an efficient immune response through the placement of epitopes on the surface of VLPs. It should be noted that filamentous plant virus particles can also be used as adjuvants to stimulate antibody formation [14]. The C-terminal sequence of other filamentous plant viral surface proteins has also been used to represent foreign epitopes on the surface of VLPs, for example: Potyvirus group JGMV (Johnsongrass mosaic virus) [15] and PVA [16], and Tobamovirus group TMV [17] and CGMMV [18]. It should be noted that recent examples relate to the production of recombinant VLPs from highly complex plant expression systems, in which case the VLPs contain infectious viral nucleic acids which complicate their further use in production and medical practice.

Mazāk ir zināmi gadījumi, kad svešu polipeptīdu sekvences ir ievietotas filamentozo vīrusu CP N-galos. Jau pieminētā infekciozu vīrusu un augu saimniekorganismu sistēma izmantota, lai Potexvirus PVX CP N-galā ievietotu īsus epitopus (6 aminoskābes) un panāktu relatīvi augstas imūnatbildes pret epitopu laboratorijas dzīvniekos [19], Afī jau pieminētā JGMV gadījumā virsmas proteīna N-gala 65 aminoskābes var tikt aizvietotas ar svešu proteīnu sekvencēm, netraucējot VLP veidošanos rekombinantu E.coli šūnās [20]. Tomēr šajā izgudrojumā nav datu par šādu VLP imunoloģiskajām īpašībām, kaut gan autori ir norādījuši uz šādi iegūtu VLP potenciālo pielietojumu kā vakcīnas. Šī darba autori ari apgalvoja, ka ir iespējams līdzīgā veidā daļēji vai pilnīgi aizvietot gan N- gan C-gala aminoskābes visu Potyvirus virsmas proteīnu struktūrās, netraucējot VLP veidošanos. Pretrunā ar šiem datiem, N- un C-gala aminoskābju būtisko nozīmi Potyvirus VLP veidošanā raksturo cita Potyvirus grupas vīrusa PVBV (Pepper vein banding virus) virionu veidošanās mehānisma modelis. Saskaņā ar šo modeli, virionu veidošanās sākas ar CP N- un C-gala pozitīvi un negatīvi lādēto aminoskābju mijiedarbību, izveidojot gredzenveida struktūras, kuras tālāk izveido vīrusu filamentus. Izveidojot PVBV CP N- vai C-termināli saīsinātus klonus, VLP veidošanās E.coli šūnās ir traucēta [21]. Tādējādi, apgalvojums, ka visu Potyvirus grupas vīrusu virsmas proteīniem ir iespējams aizvietot gan N-, gan C-galu aminoskābes, nav pareizs. To parāda arī mūsu nesenie dati par PVY vīrusiem līdzīgajām daļiņām, kur virsmas proteīna N-galā bija iespējams ievietot līdz 71 aminoskābju garus posmus, kamēr C-gala inserti izjauca VLP veidošanos. Bez tam, PVY nesējam VLPLess known cases of foreign polypeptide sequences are located at the N-terminus of filamentous viruses CP. The infectious virus and plant host system already mentioned has been used to insert short epitopes (6 amino acids) at the N-terminus of Potexvirus PVX CP and to achieve relatively high immune responses to the epitope in laboratory animals [19], in the case of JGMV to be replaced by foreign protein sequences without interfering with VLP formation in recombinant E.coli cells [20]. However, the present invention does not provide data on the immunological properties of such VLPs, although the authors have indicated the potential use of such VLPs as vaccines. The authors also argued that it is possible to similarly partially or completely substitute both the N- and C-terminal amino acids in the structure of all Potyvirus surface proteins without interfering with VLP formation. Contrary to these data, the role of the N- and C-terminal amino acids in the formation of Potyvirus VLP is characterized by another mechanism for the formation of the PVVV (Pepper vein banding virus) viruses of the Potyvirus group. According to this model, virion formation begins with the interaction of the N- and C-terminus of the CP with positively and negatively charged amino acids, creating ring structures that further form viral filaments. The formation of PVBV CP N- or C-terminal truncated clones has been shown to interfere with VLP formation in E.coli cells [21]. Thus, the assertion that all N-terminal and C-terminal amino acids can be substituted for the surface proteins of all Potyvirus viruses is incorrect. This is also illustrated by our recent data on PVY virus-like particles, where up to 71 amino acid lengths could be inserted at the N-terminus of the surface protein, while C-terminal inserts disrupted VLP formation. In addition, PVY carrier VLP

-4veidošanās procesā notiek daļēja virsmas proteīna N-gala aminoskābju proteolītiska atšķelšana, kas noved pie samazināta ievietoto epitopu daudzuma uz VLP virsmas, kas savukārt var samazināt antivielu veidošanās aktivitāti pret šiem epitopiem [22].In the formation process, partial proteolytic cleavage of the N-terminal amino acids of the surface protein occurs, leading to a reduced amount of inserted epitopes on the surface of VLPs, which in turn may reduce antibody formation activity against these epitopes [22].

Tādējādi, ir skaidri redzams, ka, neraugoties uz zināmajiem piemēriem, joprojām pastāv tehnoloģiska nepieciešamība pēc alternatīviem, uz VLP balstītiem polipeptīdu nesējiem, kuri var tikt iegūti no vienkāršām bakteriālām ekspresijas sistēmām un kuri var tikt izmantoti kā jauni nanomateriāli ar visdažādāko pielietojumu, ieskaitot imunoloģiski aktīvus materiālus un jaunus adsorbentus, kuri var tikt izmantoti antivielu iegūšanai, bioloģiski aktīvu vielu attīrīšanas procesos un jaunu bioķīmisku analīzes metožu izstrādē.Thus, it is clear that, despite known examples, there is still a technological need for alternative VLP-based polypeptide carriers, which can be derived from simple bacterial expression systems and can be used as novel nanomaterials for a wide variety of applications, including immunologically active materials and novel adsorbents that can be used for antibody production, purification processes of biologically active substances and development of new biochemical analysis methods.

Attēlu aprakstiImage descriptions

1. att. Ekspresijas plazmīda, kas satur aprakstīto PVM virsmas proteīna gēnu. PVM-CP gēns iegūts ar RT-PCR palīdzību no inficētiem kartupeļu meristēmu augiem, klonēts E.coli ekspresijas vektorā pET-28a+ (Novagen). Norādīta PVY-CP gēna, kanamicīna rezistences gēna (KmR) lokalizācija, kā arī daži nozīmīgākie restriktāžu šķelšanas saiti.Fig. 1 Expression plasmid containing the described PVM surface protein gene. The PVM-CP gene was obtained by RT-PCR from infected potato meristem plants, cloned in the E. coli expression vector pET-28a + (Novagen). The localization of the PVY-CP gene, the kanamycin resistance gene (KmR), as well as some of the major restriction cleavage links are indicated.

2. att. pET-28a+ E.coli ekspresijas plazmīdas fragments, kas satur aprakstīto PVM virsmas proteīna gēnu ar glicīna-serīna atkārtojumu cDNS gēna 5’ galā. Zem fragmenta attēlota PVM-CP proteīna aminoskābju sekvence, proteīna N-galā pievienotās aminoskābes pasvītrotas.Fig. 2 a plasmid fragment of pET-28a + E.coli expression containing the described PVM surface protein gene with a glycine-serine repeat at the 5 'end of the cDNA gene. The amino acid sequence of the PVM-CP protein is depicted below the fragment, the amino acids added at the N-terminus of the protein are underlined.

3. att. pET-28a+ E.coli ekspresijas plazmīdas fragments, kas satur aprakstīto PVM virsmas proteīna gēnu hepatīta B preSl epitopa sekvences un glicīna-serīna atkārtojuma cDNS gēna 5’ galā. Zem fragmenta attēlota PVM-CP proteīna aminoskābju sekvence, proteīna N-galā pievienotās aminoskābes pasvītrotas, preSl aminoskābes attēlotas kursīvā ar treknu druku.Fig. 3 a plasmid fragment of pET-28a + E.coli expression containing the described PVM surface protein gene at the 5 'end of the hepatitis B preSl epitope and the glycine-serine repeat cDNA gene. Below the fragment is the amino acid sequence of the PVM-CP protein, the amino acids attached to the N-terminus of the protein are underlined, the preSl amino acids are shown in italics in bold.

4. att. pET-28a+ E.coli ekspresijas plazmīdas fragments, kas satur aprakstīto PVM virsmas proteīna gēnu ar glicīna-serīna atkārtojuma un dubultotu proteīna Α Z domēna sekvences cDNS gēna 5’ galā. Zem fragmenta attēlota PVM-CP proteīna aminoskābju sekvence, proteīna N-galā pievienotās aminoskābes pasvītrotas, abu Z domēnu aminoskābes attēlotas kursīvā ar treknu druku.Fig. 4 A plasmid fragment of pET-28a + E.coli expression containing the described PVM surface protein gene with a glycine-serine repeat and a doubled protein ΑZ domain at the 5 'end of the cDNA gene. Below the fragment is the amino acid sequence of the PVM-CP protein, the amino acids added at the N-terminus of the protein are underlined, and the amino acids of both Z domains are shown in bold italics.

5. att. PVM-CP iegūšanas un attīrīšanas analīze SDS-poliakrilamīda gēlā.Fig. 5 Analysis of PVM-CP acquisition and purification on SDS-polyacrylamide gel.

M - proteīnu marķieris (Fermentas, Lietuva), T - kopējie proteīni, S - šķīstošie proteīni, P nešķīstošie proteīni, 1 - 6 saharozes gradienta frakcijas.M - protein marker (Fermentas, Lithuania), T - total protein, S - soluble protein, P insoluble protein, 1-6 sucrose gradient fractions.

6. att. Kartupeļu vīrusam PVM līdzīgās daļiņas (VLP), kas iegūtas no rekombinantu E.coli pETPVM-CP šūnām. Apakšējā malā iezīmētā mēroga līnija atbilst 200 nm.Fig. 6 Potato virus PVM-like particles (VLPs) derived from recombinant E.coli pETPVM-CP cells. The scaled line at the bottom is 200 nm.

7. att. Kartupeļu vīrusam PVM līdzīgās daļiņas (VLP), kas iegūtas no rekombinantu E.coli pETPVM-CP-NpreSl šūnām. Apakšējā malā iezīmētā mēroga līnija atbilst 100 nm.Fig. 7 Potato virus PVM-like particles (VLPs) derived from recombinant E.coli pETPVM-CP-NpreSl cells. The scaled line at the bottom is 100 nm.

-58. att. Kartupeļu vīrusam PVM līdzīgās daļiņas (VLP), kas iegūtas no rekombinantu E.coli pETPVM-CP-Nzz šūnām. Labajā apakšējā stūrī iezīmētā mēroga līnija atbilst 100 nm.-58. fig. Potato virus PVM-like particles (VLPs) derived from recombinant E.coli pETPVM-CP-Nzz cells. The scale line in the lower right corner corresponds to 100 nm.

Izgudrojuma aprakstsDescription of the Invention

Šis izgudrojums parāda, ka no inficētiem kartupeļu augiem iegūta PVM vīrusa RNS virsmas proteīna (CP) gēna cDNS kopija (SEQ ID NO: 2), ja to ievieto E.coli ekspresijas plazmīdā (vektorā), ir spējīga izraisīt virsmas proteīna sintēzi ar augstu iznākumu baktēriju kultūrās. Kā ekspresijas vektors var tikt izmantots šeit pieminētais pET-28a+ vektors, kas satur T7 promotora sekvenci, ribosomu saistīšanās saitu, antibiotika (kanamicīna) rezistences gēnu un ekspresiju regulējošo Lāci gēnu. Tādā gadījumā nepieciešams izmantot tādus rekombinantus T7 polimerāzes gēnu saturošus E.coli celmus, kā BL21(DE3), C2566, C3010 vai arī citus, kas nodrošina aktīvu mērķproteīna sintēzi no T7 promotora pie dažādām kultivēšanas temperatūrām. Principā ir iespējams izmantot arī citus vektorus un baktēriju celmus. Tos ir iespējams pārbaudīt līdzīgā veidā, kā aprakstīts 1. piemērā.The present invention demonstrates that a cDNA copy of the PVM RNA surface protein (CP) gene obtained from infected potato plants (SEQ ID NO: 2), when inserted into an E. coli expression plasmid (vector), is capable of inducing high yield surface protein synthesis. in bacterial cultures. As the expression vector, the pET-28a + vector mentioned herein containing the T7 promoter sequence, the ribosome binding site, the antibiotic (kanamycin) resistance gene and the expression regulating bear gene may be used. In this case, recombinant E. coli strains containing the T7 polymerase gene, such as BL21 (DE3), C2566, C3010 or others, which provide for the active synthesis of the target protein from the T7 promoter at various culture temperatures, should be used. In principle, other vectors and bacterial strains can also be used. They can be tested in a similar way as described in Example 1.

Baktēriju šūnās CP molekulas (SEQ ID NO: 1) sintēzes procesa laikā spontāni izveido vīrusiem līdzīgas daļiņas (VLP), kuras morfoloģiski ir līdzīgas natīvajiem PVM virioniem, kā to parāda elektroumikroskopijas analīžu rezultāti. Izgudrojums demonstrē paņēmienus, kā, izmantojot piemērotas E.coli saimniekšūnas un ekspresijas vektorus, iegūt PVM vīrusiem līdzīgās daļiņas. Šo VLP sastāvā ar gēnu inženierijas metodēm var tikt ievadītas polipeptīdu sekvences, netraucējot VLP autopolimerizāeijas procesam baktēriju šūnās, kā tas ir aprakstīts 2. piemērā.In bacterial cells, the CP molecule (SEQ ID NO: 1) synthesizes spontaneously virus-like particles (VLPs) that are morphologically similar to native PVM virions, as shown by electro-microscopic analysis. The invention demonstrates techniques for obtaining PVM virus-like particles using appropriate E.coli host cells and expression vectors. Genetic engineering of these VLPs can introduce polypeptide sequences without interfering with the autopolymerization process of VLPs in bacterial cells as described in Example 2.

Šie polipeptīdi var būt visdažādākās izcelsmes aminoskābju sekvences, tajā skaitā dažādu slimību izraisītājiem raksturīgie antigēni - kā hepatīta B preSl epitops (SEQ ID NO: 10), proteīnu domēni, piem., proteīna A dubultots Z domēns (SEQ ID NO:16), kā ari mākslīgi izveidotas sekvences atkarībā no to plānotā izmantošanas veida. Mūsu eksperimentāli iegūtie dati liecina, ka kartupeļu vīrusa PVM virsmas proteīna N-galam var tikt pievienotas papildus aminoskābju sekvences tā, lai netraucētu vīrusiem līdzīgo daļiņu veidošanos heterologu saimnieku, it īpaši rekombinantu E.coli šūnās.These polypeptides can be of a wide variety of amino acid sequences, including antigens specific to various disease-causing agents, such as the hepatitis B preSl epitope (SEQ ID NO: 10), protein domains, e.g., the double A domain of protein A (SEQ ID NO: 16), also artificial sequences depending on their intended use. Our experimental data suggest that additional amino acid sequences may be added to the N-terminus of the potato virus PVM surface protein so as not to interfere with virus-like particle formation in heterologous host cells, particularly recombinant E.coli cells.

Fakts, ka iegūtās rekombinantās, svešus polipeptīdus saturošās VLP uzrāda augstu morfoloģisko līdzību ar natīvajiem vīrusiem, norāda uz iespēju, ka šie polipeptīdi izkārtoti VLP struktūrā regulāri organizētā veidā. PVM VIT gadījumā tas nodrošina vienmērīgu, regulāru polipeptīda izvietojumu uz pavedienveidīgās VLP virsmas. Šādi regulāri uz nesēja virsmas izvietoti epitopi vai proteīnu domēni ir nepieciešami kvalitatīvu antivielu iegūšanai imunizācijas procesā. Piedevām daudzskaitlīga noteiktas aminoskābju sekvences izvietošana uz VLP virsmas var kalpot arī par dažādu analītisku metožu būtisku komponentu, lai paaugstinātu signāla intensitāti uz laukuma vienību, kas, piemēram, ir svarīgi efektīvu mikročipu izveidošanā.The fact that the resulting recombinant foreign polypeptide-containing VLPs show high morphological similarity to native viruses suggests the possibility that these polypeptides are arranged in a regularly organized manner within the structure of the VLP. In the case of PVM VIT, it provides a smooth, regular placement of the polypeptide on the surface of the filamentous VLP. Such regular epitopes or protein domains on the surface of the carrier are required for the production of high quality antibodies during the immunization process. In addition, the multiple placement of a particular amino acid sequence on the surface of a VLP can also serve as an essential component of various analytical techniques to increase the signal intensity per unit area, which is important, for example, for efficient microchipping.

-6Turklāt izgudrojums demonstrē arī efektīvu rekomomantu PVM VLP attīrīšanas metodi, izmantojot vairākkārtēju frakcionēšanu ar ultracentrifugēšanas palīdzību.Furthermore, the invention also demonstrates an effective method for purifying recombinant PVM VLPs by multiple fractionation by ultracentrifugation.

Kartupeļu vīrusa PVM gadījumā efektīvs paņēmiens vīrusiem līdzīgo daļiņu iegūšanai no rekombinantām E.coli šūnām, kā arī PVM VLP ar virsmas proteīna struktūrā iekļautām heterologu proteīnu sekvencēm (līdz 137 papildus aminoskābēm) patentu un cita veida literatūrā nav atrasti.In the case of potato virus PVM, an effective technique for obtaining virus-like particles from recombinant E.coli cells, as well as PVM VLPs with heterologous protein sequences (up to 137 additional amino acids) in the surface protein structure, has not been found in the patent and other literature.

Izgudrojumā aprakstītās VLP var tikt izmantotas kā imūnatbildi stimulējoši aģenti, ja tās ievada zīdītāju organismos. Ar epitopu un proteīnu domēnu saturošu PVM izcelsmes rekombinanto VLP palīdzību iegūtās antivielas var tikt izmantotas kā slimību ārstēšanā un profilaksē, tā ari attiecīgo saslimšanu diagnosticēšanā. Šādi iegūtas antivielas var tikt izmantotas arī kā pamatkomponents diagnostikas reaģentu komplektos (piemēram, ELISA kitos), lai konstatētu PVM infekcijas kartupeļos un citos PVM jūtīgās lauksaimniecības kultūrās. Bez tam, šādas VLP var izmantot jaunu nanomateriālu izveidošanai. Proteīna A Z-domēnus saturošas PVM VLP var tikt pielietotas monoklonālo antivielu attīrīšanā.The VLPs of the invention may be used as immune response stimulating agents when administered to mammals. Antibodies derived from recombinant VLPs containing epitopes and protein domains can be used in the treatment and prevention of diseases as well as in the diagnosis of the respective diseases. Antibodies thus obtained can also be used as a key component in diagnostic reagent kits (eg ELISA kits) for detection of PVA infections in potatoes and other PVA sensitive crops. In addition, such VLPs can be used to create new nanomaterials. PVM VLPs containing protein A Z-domains can be used for purification of monoclonal antibodies.

Kā tas ir saprotams tehnikas līmeņa speciālistiem, šī izgudrojums balstās uz tādām rekombinantu nukleīnskābju tehnoloģijām, kā DNS un RNS attīrīšanu no dažādu organismu šūnām, polimerāzes ķēdes un citām enzimātiskām reakcijām, klonēšanu, rekombinantu proteīnu ekspresiju prokariotu šūnās un to attīrīšanu un citām tehnoloģijām. Šīs tehnoloģijas speciālistiem ir labi pazīstamas un to detalizēti apraksti ir atrodami populāros metožu krājumos [24-27]. Izgudrojuma labākai izpratnei zemāk izklāstītajos piemēros ir parādīta PVM VLP iegūšana un polipeptīdu sekvenču ievietošana VLP struktūrā.As will be understood by those skilled in the art, the present invention is based on recombinant nucleic acid technologies such as purification of DNA and RNA from cells of various organisms, polymerase chain and other enzymatic reactions, cloning, expression and purification of recombinant proteins in prokaryotic cells and other technologies. These techniques are well known to those skilled in the art and their detailed descriptions can be found in popular collections of methods [24-27]. For a better understanding of the invention, the examples below illustrate the generation of PVM VLPs and the insertion of polypeptide sequences into the structure of VLPs.

1. piemērs. PVM virsmas proteīna gēna klon ēšana, ekspresija E.coli šūnās, vīrusiem līdzīgo daļiņu iegūšanaExample 1: Cloning of PVM surface protein gene, expression in E.coli cells, production of virus-like particles

Kopējā RNS no inficētiem kartupeļu meristēmu augiem augu tika izolēta ar TRI reaģentu (Sigma, USA) saskaņā ar ražotāja norādījumiem. Reakcijā izmantojot M-MuLV H(-) reverso transkriptāzi (Fermantas, Lietuva) ar „random” oligoheksamēriem, tika iegūta PVM cDNS.Total RNA from infected potato meristem plants was isolated with TRI reagent (Sigma, USA) according to the manufacturer's instructions. A PVM cDNA was obtained by reaction with M-MuLV H (-) reverse transcriptase (Fermantas, Lithuania) with 'random' oligohexamers.

Praimeru sekvences cDNS klonēšanai tika izvēlētas, analizējot Genbank datu bāzē publicētāsThe primer sequences for cDNA cloning were selected by analyzing those published in the Genbank database

PVM sekvences virsmas proteīnu gēnu reģionos. Virsmas proteīna (CP) gēna klonēšanai tika izvēlēti praimeri no tādiem genoma reģioniem, kas iekļauj CP gēnu ar iespējami augstāko sekvenču identitāti starp zināmajiem izolātiem - PVM_CP1F (SEQ ID NO: 3) un PVM_CP1R (SEQ ID NO: 4). Tālāk PCR reakcijās ar šiem izvēlētajiem praimeriem ieguva CP gēna cDNS 1 kopiju.PVM sequences in surface protein gene regions. For cloning the surface protein (CP) gene, primers were selected from regions of the genome that contain the CP gene with the highest possible sequence identity between the known isolates PVM_CP1F (SEQ ID NO: 3) and PVM_CP1R (SEQ ID NO: 4). Further, PCR reactions with these selected primers yielded a cDNA 1 copy of the CP gene.

Iegūtais vīrusu virsmas proteīna cDNS PCR produkts tika izolēts no agarozes gēla un tieši ligēti pTZ57R/T PCR produktu klonēšanas palīgvektorā (Fermentas, Lietuva). cDNS insertus saturošieThe resulting viral surface protein cDNA PCR product was isolated from an agarose gel and directly ligated into the auxiliary vector for cloning pTZ57R / T PCR products (Fermentas, Lithuania). containing cDNA inserts

-7kloni tika sekvencēti ar universālajiem praimeriem M13/pUC tiešais (-46) un M13/pUC reversais (-46), lai pārliecinātos par gēna atbilstību nepieciešamai sekvencei saskaņā ar Applied Biosystems protokolu. Lai izvairītos no RT-PCR reakciju iespējamajām kļūdām, tika sekvencēti vismaz 4 dažādi kloni un salīdzināti ar Genbank datu bāzē atrodamajām sekvencēm kā nukleotīdu, tā arī aminoskābju līmenī.The -7 clones were sequenced with the universal primers M13 / pUC direct (-46) and M13 / pUC reverse (-46) to confirm the gene match to the required sequence according to the Applied Biosystems protocol. To avoid possible errors in the RT-PCR reactions, at least 4 different clones were sequenced and compared to the sequences found in the Genbank database at both nucleotide and amino acid levels.

Mūsu izolāta PVM CP gēna nukleotīdu sekvence (SEQ ID NO:2) ir atšķirīga no visām iepriekš zināmajām - tā atšķiras par 24 nukleotīdiem no tuvākā publicētā PVM izolāta (Genbank KC866622), gēns kodē proteīnu (SEQ ID NO:1), kuram salīdzinājumā ir divas atšķirīgas aminoskābes (Arg44/Lys un Tyr278/Phe).The nucleotide sequence of our isolate PVM CP gene (SEQ ID NO: 2) is different from all previously known - it is 24 nucleotides away from the nearest published PVM isolate (Genbank KC866622), the gene encodes a protein (SEQ ID NO: 1) two different amino acids (Arg44 / Lys and Tyr278 / Phe).

No iegūtajiem cDNS sekvenču datiem tika atvasināta praimera sekvence attiecīgo CP gēnu subklonēšanai ekspresijas vektorā pET-28a+ (Novagen, USA) PVM_CP_Nco_F (SEQ ID NO:From the cDNA sequences obtained, a primer sequence was derived for subcloning the respective CP genes in the expression vector pET-28a + (Novagen, USA) PVM_CP_Nco_F (SEQ ID NO:

5) un PVM_CP_Hind_R (SEQ ID NO: 6), pievienojot attiecīgi Ncol un HindIII restriktāžu šķelšanas saitus. Ar šiem praimeriem iegūtos PCR produktus un E.coli ekspresijas vektoru pET28a(+) šķēla pa restrikcijas saitiem Ncol un HindIII, iegūtie vektora un PVM-CP fragmenti tika savienoti ar T4 ligāzi (Fermentas, Lietuva) . Ar iegūto ligācijas maisījumu transformēja kompetentas E.coli XLI šūnas. Transformāciju maisījumi tika izsēti uz LB platēm ar kanamicīnu. Izolēto plazmīdu DNS tika pārbaudītas ar restrikciju analīzēm; kloniem ar atbilstošu restrikcijas ainu tika sagatavotas sekvenču reakcijas. Izanalizējot sekvencēšanas rezultātus, tika izvēlēta kartupeļu vīrusa PVM CP ekspresijas plazmīda virsmas proteīna iegūšanai no E.coli preparatīvos daudzumos.5) and PVM_CP_Hind_R (SEQ ID NO: 6) by adding Ncol and HindIII restriction cleavage sites, respectively. The PCR products obtained with these primers and the E. coli expression vector pET28a (+) were cleaved at the restriction sites Ncol and HindIII, and the resulting vector and PVM-CP fragments were ligated with T4 ligase (Fermentas, Lithuania). Competent E.coli XLI cells were transformed with the resulting ligation mixture. Transformation mixtures were seeded on LB plates with kanamycin. Isolated plasmid DNA was screened by restriction analysis; sequences were prepared for clones with the appropriate restriction picture. The potato virus PVM CP expression plasmid surface protein from E.coli in preparative amounts was selected for analysis of sequencing results.

Attiecīgā plazmīdas karte (pET-PVM-CP) parādīta 1. att. Ar iegūto ekspresijas vektoru pETPVM-CP transformēja kompetentas E.coli C2566 (NEB, USA) ekspresijas šūnās. Lai atlasītu klonus ar visaugstāko ekspresijas līmeni, transformētās šūnas kultivēja analītiskos (20 ml) daudzumos 2xTY barotnē ar kanamicīnu (Km; 25 mg/l) uz kratītāja (200 apgr./min) pie +30°C līdz OD(600 nm) -0.8-1.0. Šūnas inducēja ar 0.2 mM IPTG, bez tam tika pievienoti 2mM CaClo un 5mM MgCE. Kultūras pēc inducēšanas tika kultivētas vēl 18 h uz kratītāja pie +20°C. Ekspresijas līmenis tika noskaidrots, analizējot SDS/poliakrilamīda gēlos šūnu kopējos Iizātus. Klons ar visaugstāko ekspresijas līmeni tika kultivēts preparatīvos daudzumos 200 ml kolbās tajos pašos apstākļos kā klonu atlases eksperimentos. Pēc fermentācijas iegūtā biomasa tika iesaldēta (-20°C). Šķīstošās frakcijas proteīni pēc šūnu sagraušanas PBS buferšķīdumā ar ultraskaņas dezintegrāciju un nešķīstošo proteīnu un membrānu fragmentu atdalīšanas tika frakcionēti ultracentrifugā (Beckman, USA; SW28 rotors, 25000 rpm, 6h, +5°C), saharozes gradientā (20-60%). Gradients tika sadalīts sešas frakcijās, sākot no gradienta apakšas, kuras tālāk tika analizētas ar SDS-poliakrilamīda (SDS/PAA) gēlā (5. att.). Kā redzams no SDS/PAA gēlu analīzes, PVM virsmas proteīns tika sintezēts ievērojamos daudzumos un atrodams pārsvarāThe corresponding plasmid map (pET-PVM-CP) is shown in Fig. 1. The resulting expression vector pETPVM-CP was transformed into competent E. coli C2566 (NEB, USA) expression cells. To select the highest expression clones, transformed cells were cultured in analytical (20 ml) volumes in 2xTY medium with kanamycin (Km; 25 mg / l) on a shaker (200 rpm) at + 30 ° C to OD (600 nm) - 0.8-1.0. Cells were induced with 0.2 mM IPTG and 2mM CaClo and 5mM MgCE were added. After induction, cultures were cultured for another 18 h on a shaker at + 20 ° C. Expression levels were determined by analysis of total cell lysates in SDS / polyacrylamide gels. The highest expression clone was cultured in preparative amounts in 200 ml flasks under the same conditions as in the clone selection experiments. The biomass obtained after fermentation was frozen (-20 ° C). Soluble fraction proteins after cell disruption in PBS buffer by ultrasonic disintegration and separation of insoluble proteins and membrane fragments were fractionated in an ultracentrifuge (Beckman, USA; SW28 rotor, 25000 rpm, 6h, + 5 ° C), sucrose gradient (20-60%). The gradient was divided into six fractions starting from the bottom of the gradient, which were further analyzed by SDS-polyacrylamide (SDS / PAA) gel (Fig. 5). As can be seen from SDS / PAA gel analysis, the PVM surface protein was synthesized in significant amounts and found predominantly

-8šķīstošo proteīnu frakcijās. PVM-CP proteīns pēc sadalīšanas gradientā tika konstatēts arī apakšējās l.un 2. frakcijā (50/60% saharozes), kas norāda uz to iespējamo klātbūtni augstmolekulāru agregātu formā. PVM-CP 1. un 2. frakcija tika apvienotas un dializētas pret 200 tilpumiem lx PBS, lai atbrīvotos no saharozes. Pēc dialīzes CP preparāti tika sakoncentrēti, izmantojot Amicon Ultra 15 centrifugējamu filtru (Millipore, USA). Nepieciešamības gadījumā, lai iegūtu tīrus preparātus, ultracentrifugācijas procedūra var tikt atkārtota. Koncentrētie vīrusu virsmas proteīnu preparāti tika analizēti ar elektronmikroskopijas palīdzību. Kā redzams no elektronmikroskopijas analīzēs iegūtā attēla (6. att.), klonētā kartupeļu vīrusa PVM virsmas proteīnu gēns, ekspresējot E.coli, veido vīrusiem līdzīgās daļiņas. No E.coli izdalītās PVM-CP VLP E.coli šūnās veido pavedienveida vīrusiem līdzīgās daļiņas, kuras morfoloģiski atgādina natīvos PVM virionus un to izmēri sasniedz līdz 600 nm.-8 soluble protein fractions. The PVM-CP protein was also found in the lower fractions I and 2 (50/60% sucrose) after graduation, indicating their possible presence in the form of high molecular weight aggregates. Fractions 1 and 2 of PVM-CP were pooled and dialyzed against 200 volumes of 1x PBS to remove sucrose. After dialysis, CP preparations were concentrated using an Amicon Ultra 15 centrifugation filter (Millipore, USA). If necessary, the ultracentrifugation procedure may be repeated to obtain clean preparations. Concentrated viral surface protein preparations were analyzed by electron microscopy. As can be seen from the image obtained by electron microscopy analysis (Fig. 6), the PVM surface protein gene of the cloned potato virus expresses E.coli-like particles. The PVM-CP VLP isolated from E.coli in E.coli cells forms filamentous virus-like particles that morphologically resemble native PVM virions and reach sizes up to 600 nm.

2. piemērs. Heterologus polipeptīdus saturošu PVM VLP iegūšanaExample 2: Preparation of PVM VLPs containing heterologous polypeptides

Lai izveidotu PVM CP konstrukciju, kas varētu kalpot par svešu epitopu vai proteīnu domēnu nesēju, vispirms bija nepieciešams izveidot starpkonstrukcijas, kurās ievietotie epitopi vai proteīnu domēni netraucētu CP aminoskābēm VLP savākšanās procesā. Tika nolemts PVM-CP N-galā pievienot glicīnu un serīnu atkārtojumu sekvences (SEQ ID NO:7), kura kalpotu par elastīgu aminoskābju starpposmu (linkeri) starp CP aminoskābēm un ievietojamo svešo proteīna sekvenci un nodrošinātu netraucētu VLP veidošanos. Pēc jau aprakstītās metodikas ar PCR palīdzību PVM-CP gēnā ar attiecīgajiem praimeriem linkera ievadīšanai N-galā (SEQ ID NO: 8/ SEQ ID NO: 9) 5’ galā tika ievestas (G4S)3 kodējošā sekvence un papildus BamHI restriktāzes saits epitopu un proteīnu domēnu cDNS klonēšanai (2. att.). Ekspresijas vektoru pET-PVM-CP un PCR produktu šķēla pa restrikcijas saitiem Ncol un EcoRl (PVM CP gēna intemālais saits). Fragmenti tika izolēti no 0.8% agarozes gēla un ligēti ar T4 ligāzi; ar ligācijas maisījumiem tika transformētas E.coli XLI kompetentās šūnas. Pēc plazmīdu izolēšanas no atsevišķu koloniju kultūrām ar restrikcijas analīzes un sekvencēšanas palīdzību tika atlasīti kloni, kas atbilda attiecīgo gēnu sekvencēm. Tālāk ar izvēlēto pET-PVM-CP-NG4S plazmīdu transformēja E.coli C2566 ekspresijas celma šūnas.In order to construct a PVM CP construct that could serve as a carrier for foreign epitopes or protein domains, it was first necessary to construct intermediate constructs in which the inserted epitopes or protein domains would not interfere with CP amino acids in the VLP assembly process. It was decided to add glycine and serine repeat sequences (SEQ ID NO: 7) at the N-terminus of PVM-CP, which would serve as a flexible amino acid linker (linker) between the CP amino acids and the inserted foreign protein sequence and ensure smooth VLP formation. Following the protocol already described, a (G4S) 3 coding sequence and an additional BamHI restriction site epitope was introduced at the 5 'end of the PVM-CP gene with the appropriate primers for introduction of the linker at the N-terminus (SEQ ID NO: 8 / SEQ ID NO: 9). protein cDNA cloning (Fig. 2). The expression vector pET-PVM-CP and the PCR product were cleaved at the restriction sites Ncol and EcoR1 (intimal site of the PVM CP gene). Fragments were isolated from 0.8% agarose gel and ligated with T4 ligase; competent cells of E.coli XLI were transformed with ligation mixtures. After plasmid isolation from single colony cultures, clones corresponding to the respective gene sequences were selected by restriction analysis and sequencing. Next, E.coli C2566 expression strain cells were transformed with the selected pET-PVM-CP-NG4S plasmid.

PVM-CP-NG4S proteīns tika attīrīts saskaņā ar iepriekš aprakstīto protokolu (1. piemērs).The PVM-CP-NG4S protein was purified according to the protocol described above (Example 1).

Līdzīgi kā PVM-CP gadījumā, liela daļa no pētāmā proteīna tika atrasta 50/60% saharozes gradienta frakcijās (frakcijas 1 un 2), kas liecina, ka tie veido lielmolekulāras VLP struktūras. Tādējādi, tika parādīts, ka PVM-CP N-galam var tikt pievienotas svešu peptīdu sekvences.Similar to PVM-CP, much of the protein under investigation was found in 50/60% sucrose gradient fractions (fractions 1 and 2), suggesting that they form high molecular weight VLP structures. Thus, it was shown that foreign peptide sequences can be added to the N-terminus of PVM-CP.

PVM VLP kā epitopu nesēja pārbaudei tika izvēlēts hepatīta B vīrusa preS 1 epitops (SEQ ID NO: 10), kura cDNS ir Latvijas Biomedicīnas centra kolekcijā [27].The hepatitis B virus preS 1 epitope (SEQ ID NO: 10), whose cDNA is in the collection of the Latvian Biomedical Center [27], was selected for PVM VLP as an epitope carrier.

-9Klonēšanai paredzētā preSl epitopa cDNS tika iegūta PCR reakcijā no komplementāriem specifiskiem praimeriem PVM-NpreSlF (SEQ ID NO: 11) un PVM-NpreSlR (SEQ ID NO: 12), neizmantojot references DNS („template DNA”). PCR produkts tika sagriezts ar Ncol un BamHI un ligēts plazmidā pET-PVM-CP-NG4S, kura tika sagriezta ar Ncol un daļēju BamHI šķelšanu. Ar ligācijas maisījumu transformēja XL1 šūnas, izolēja plazmīdu DNS. Ar sekvencēšanas palīdzību tika atlasīts klons, kura sekvence atbilda plānotajai, tādējādi iegūstot ekspresijas vektoru pET-PVM-CP-NpreS 1 (plazmīdas fragmenta karte un mērķproteīna aminoskābju sekvence - 3.att.), ko ar transformācijas palīdzību ievadīja C2566 ekspresijās šūnās. Pēc ekspresijas klonu atlases, kultūra ar augstāko ekspresiju tika kultivēta preparatīvos daudzumos, šūnu lizāts tika attīrīts saharozes gradientā, ultracentrifugējot saskaņā ar iepriekš aprakstīto protokolu. Līdzīgi kā PVM-CP gadījumā, mērķproteīns tika atrasts lielos daudzumos 50/60% saharozes frakcijās, kas liecina, ka tas, iespējams, veido multimēru struktūras. Lai pārliecinātos par VLP veidošanos no šī rekombinantā proteīna, minētās frakcijas tika apvienotas, dializētas un, pēc koncentrēšanas ar Amicon Ultra-15 (lOOkDa) ultrafiltrēšanas ierīci, sagatavotas elektronu mikroskopijas analīzei. Kā redzams no 7. attēla, izveidotā proteīna konstrukcija, kurā PVM virsmas proteīnam N-galā ir pievienotas HBV preSl 22 aminoskābes un 17 glicīna-serīna linkeris, spēj veidot vīrusiem līdzīgās daļiņas, kuras morfoloģiski neatšķiras no jau aprakstītajām PVM-CP VLP. Tas norāda, ka PVM VLP struktūrā var tikt „iebūvētas” svešu epitopu sekvences un tās netraucē VLP veidošanās procesu.The preSl epitope cDNA for cloning was obtained by PCR from complement-specific primers PVM-NpreSlF (SEQ ID NO: 11) and PVM-NpreSlR (SEQ ID NO: 12) without the use of reference DNA ("template DNA"). The PCR product was cut with NcoI and BamHI and ligated into pET-PVM-CP-NG4S, which was cut by NcoI and partial BamHI digestion. XL1 cells were transformed with the ligation mixture, plasmid DNA was isolated. By sequencing, a clone with the sequence planned was selected, thereby obtaining the expression vector pET-PVM-CP-NpreS1 (plasmid fragment map and target protein amino acid sequence - Fig. 3), which was introduced into C2566 expression cells by transformation. After selection of expression clones, the culture with the highest expression was cultured in preparative amounts, and cell lysate was purified in a sucrose gradient by ultracentrifugation according to the protocol described above. Similar to PVM-CP, the target protein was found in large amounts in 50/60% sucrose fractions, suggesting that it may form multimeric structures. To verify the formation of VLPs from this recombinant protein, these fractions were pooled, dialyzed and, after concentration with an Amicon Ultra-15 (100kDa) ultrafiltration device, prepared for electron microscopy analysis. As shown in Figure 7, the resulting protein construct, in which the HBV preSl 22 amino acids and 17 glycine-serine linker are added to the PVM surface protein at the N-terminus, is capable of forming virus-like particles that do not morphologically differ from the PVM-CP VLPs already described. This indicates that foreign epitope sequences can be "incorporated" into the PVM VLP structure and do not interfere with the VLP formation process.

Lai pārbaudītu garāku, N-galā ievietotu polipeptīdu ietekmi uz VLP veidošanos PVM-CP autopolimerizācijas rezultātā, kā modeļproteīns tika izvēlēts dubultots Z domēns no Staphylococcus aureus, par kuru ir zināms, ka šīs domēns ir spējīgs piesaistīt dažādus imunoglobulīnus un var tikt izmantots antivielu attīrīšanas procesos. Z domēns ir'sekmīgi ekspresēts E.coli šūnās [29]. Dubultota Z domēna cDNS kopija (SEQ ID NO: 13) PCR amplifikācijai ir atrodama komerciālā vektorā pEZZ18 (Pharmacia, USA). Lai ieklonētu Z domēnu cDNS PVM CP gēna 5’ galā, attiecīgais pEZZ18 fragments tika amplificēts PCR reakcijā izmantojot specifiskus praimerus (SEQ ID NO: 14/(SEQ ID NO: 15). Līdzīgi kā iepriekš, iegūtais PCR produkts pa saitiem Ncol un BamHI tika tieši klonēts pET-PVM-CPNG4S. Ar restrikcijas analīzes un sekvencēšanas palīdzību tika atlasīts klons bez PCR kļūdām, iegūstot ekspresijas vektoru pET-PVM-CP-Nzz (4.att.). Šo plazmīdu ar transformācijas palīdzību ievadīja C2566 ekspresijās šūnās. PVM-CP-Nzz proteīns tika iegūts pēc analoģiska protokola, kā pārējie PVM-CP atvasinājumi. Arī šajā gadījumā saharozes gradientā attīrītais proteīns saskaņā ar elektronu mikroskopijas analīzēm ir autopolimerizējies vīrusiem līdzīgo daļiņu formā (8. att), kuru morfoloģija īpaši neatšķiras no PVM-CP VLP, kaut gan dominē īsāki filamenti nekā PVM-CP gadījumā. Tādējādi, ir parādīts, ka PVM N-galā var tikt pievienotaTo test the effect of longer, N-terminal polypeptides on VLP formation by PVM-CP autopolymerization, a double Z domain from Staphylococcus aureus, which is known to be capable of binding various immunoglobulins and can be used in antibody purification processes, was selected as model protein . The Z domain has been successfully expressed in E.coli cells [29]. A duplicate Z domain cDNA copy (SEQ ID NO: 13) for PCR amplification is found in the commercial vector pEZZ18 (Pharmacia, USA). To clone the Z domain cDNA at the 5 'end of the PVM CP gene, the corresponding pEZZ18 fragment was amplified in a PCR reaction using specific primers (SEQ ID NO: 14 / (SEQ ID NO: 15). Similarly, the resulting PCR product was Ncol and BamHI). directly cloned pET-PVM-CPNG4S A clone without PCR errors was selected by restriction analysis and sequencing to obtain the expression vector pET-PVM-CP-Nzz (Fig. 4). This plasmid was introduced into C2566 expression cells by transformation. The CP-Nzz protein was obtained by an analogous protocol as the other PVM-CP derivatives, again in the sucrose gradient the purified protein was autopolymerized in the form of virus-like particles according to electron microscopy (Fig. 8) with a morphology not significantly different from PVM-CP VLP. , although shorter filaments are predominant than in the case of VAT-CP, so it is shown that VAT can be added at the N-terminus

-10vismaz 137 aminoskābes gara polipeptīdu sekvence, kas satur no 116 Z domēna aminoskābes (SEQ ID NO: 16), netraucējot VLP veidošanās procesam.A polypeptide sequence of at least 137 amino acids long comprising 116 amino acids of the Z domain (SEQ ID NO: 16) without interfering with the process of VLP formation.

AtsaucesReferences

1. Pumpens, P., Grens, E. (2002). Artificial genes for chimeric virus-like pārticies. In: Artificial DNA: Methods and Applications. Edited by Y.E.Khudyakov & H.A.Fields. CRC Press LLC, Boca Raton, pp. 249-327.1. Pumpens, P., Grens, E. (2002). Artificial genes for chimeric virus-like prosperity. In: Artificial DNA: Methods and Applications. Edited by Y.E.Khudyakov & H.A.Fields. CRC Press LLC, Boca Raton, pp. 249-327.

2. Bachmann, M.F., Hengartner, H. and Zinkemagel, R.M. (1995). T helper cellindependent neutralizing B celi response against vesicular stomatitis virus: role of antigen pattems in B celi induction. Eur. J. Immunol. 25: 3445-3451.2. Bachmann, M.F., Hengartner, H. and Zinkemagel, R.M. (1995). T helper cell-dependent neutralizing B cell response against vesicular stomatitis virus: role of antigen pattems in B cell induction. Eur. J. Immunol. 25: 3445-3451.

3. Fifis, T. et al. (2004). Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors, J. Immunol. 173: 3148-3154.3. Fifis, T. et al. (2004). Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors, J. Immunol. 173: 3148-3154.

4. Lenz, P. et al. (2003). Interaction of papillomavirus virus-like pārticies with human myeloid antigen-presenting celis, Clin Immunol. 106: 231-237.4. Lenz, P. et al. (2003). Interaction of Papillomavirus Virus-Like Foods with Human Myeloid Antigen-Presenting Cell, Clin Immunol. 106: 231-237.

5. Chow, M. et al. (1985). Synthetic peptides from four separate reģions of the poliovirus type 1 capsid protein VP1 inducē neutralizing antibodies, Proc. Nati. Acad. Sci. USA. 82: 910-914.5. Chow, M. et al. (1985). Synthetic peptides from four distinct regions of the poliovirus type 1 capsid protein VP1 are induced by neutralizing antibodies, Proc. Nati. Acad. Sci. USA. 82: 910-914.

6. Haynes, J.R. et al. (1986). Development of a genetically-engineered, candidate polio vaccine employing the self-assembling properties of the tobacco mosaic virus coat protein, Bio/Technology, 4: 637-641.6. Haynes, J.R. et al. (1986). Development of a genetically engineered candidate polio vaccine employing self-assembling properties of tobacco mosaic virus coat protein, Bio / Technology, 4: 637-641.

7. Zeltiņš A. (2009). Plant virus biotechnology platforms for expression of medicīnai proteīns. In: Medicīnai Protein Engineering, Y.E.Khudyakov, Ed., CRC Press, pp. 481517.7. Zeltins A. (2009). Plant virus biotechnology platforms for expression of medicine protein. In: For Medical Protein Engineering, Y.E.Khudyakov, Ed., CRC Press, pp. 481517.

8. Wemer, S. et al. (2006). Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proc.Natl. Acad. Sci. USA 103: 17678-17683.8. Wemer, S. et al. (2006). Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proc.Natl. Acad. Sci. USA 103: 17678-17683.

9. Fauquet C. M. et al. (2005) Virus Taxonomy: Classification and Nomenclature of Viruses. 8th Report of the International Committee on the Taxonomy of Viruses. New York: Elsevier-Academic Press.9. Fauquet C.M. et al. (2005) Virus Taxonomy: Classification and Nomenclature of Viruses. 8th Report of the International Committee on Taxonomy of Viruses. New York: Elsevier-Academic Press.

10. Khan J.A., Dijkstra J. (2006). Description of positive-sense, single-stranded RNA viruses. In: Handbook of Plant Virology. Binghamton, Haworth Press.10. Khan J. A., Dijkstra J. (2006). Description of positive-sense, single-stranded RNA viruses. In: Handbook of Plant Virology. Binghamton, Haworth Press.

11. Li et al. (2013) Discovery and Characterization of a Novel Carlavirus Infecting Potatoes in China. PLoS ONE 8(6): e69255.11. Li et al. (2013) Discovery and Characterization of a Novel Carlavirus Infecting Potatoes in China. PLoS ONE 8 (6): e69255.

12. Nemykh M.A. (2008). One more probable structural transition in potato virus X virions and a revised modei of the virus coat protein structure. Virology 373: 61-71.12. Nemykh M.A. (2008). One more probable structural transition in potato virus X virions and a revised fashion of viral coat protein structure. Virology 373: 61-71.

-1113. Denis J. et al. (2007). Immunogenicity of papaya mosaic virus-like pārticies fused to a hepatitis C virus epitope: Evidence for the critical function of multimerization. Virology 363: 59-68.-1113. Denis J. et al. (2007). Immunogenicity of papaya mosaic virus-like foods fused to a hepatitis C virus epitope: Evidence for critical function of multimerization. Virology 363: 59-68.

14. Leclerc, D., Lopez-Macias C.R. Adjuvant virai particle. USA Patent appl. 20090280145.14. Leclerc, D., Lopez-Macias C.R. Adjuvant virai particle. USA Patent appl. 20090280145.

15. Saini M., Vrati,S. (2003). A Japanese encephalitis virus peptide present on Johnson grass mosaic virus-like pārticies inducēs virus-neutralizing antibodies and protects mice against lethal challenge. J. Virol. 77: 3487-3494.15. Saini M., Vrati, S. (2003). The Japanese encephalitis virus peptide present on Johnson grass mosaic virus-like induces virus-neutralizing antibodies and protects mice against lethal challenge. J. Virol. 77: 3487-3494.

16. Pokorna, D. et al. (2005). DNA vaccines based on chimeric potyvirus-like pārticies carrying HPV16 E7 peptide (aa 44-60), Oncology Rep. 14: 1045-1053,.16. Pokorna, D. et al. (2005). DNA vaccines based on chimeric potyvirus-like foods carrying HPV16 E7 peptide (aa 44-60), Oncology Rep. 14: 1045-1053,.

17. Staczek, J. et al. (2000). Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa. Vaccine 18, 2266-2274.17. Staczek, J. et al. (2000). Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa. Vaccine 18, 2266–2274.

18. Ooi, A.S. et al. (2006). The full-length clone of cucumber green mottle mosaic virus and its application as an expression system for hepatitis B surface antigen. J. Biotechnol. 121: 471-481.18. Ooi, A.S. et al. (2006). The full-length clone of cucumber green mottle mosaic virus and its application as an expression system for hepatitis B surface antigen. J. Biotechnol. 121: 471-481.

19. Marusic, C. et al. (2001). Chimeric plant virus pārticies as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. J. Virol. 75: 8434-8439.19. Marusic, C. et al. (2001). Chimeric plant virus is as an immunogen for inducing murine and human immune responses against human immunodeficiency virus type 1. J. Virol. 75: 8434-8439.

20. Jagadish, M.N., Ward, C. W., Shukla, D. D. Self-polymerising expression system based on modified potyvirus coat proteins. World patent WO/1991/015587.20. Jagadish, M.N., Ward, C.W., Shukla, D.D. Self-polymerizing expression system based on modified potyvirus coat proteins. World Patent WO / 1991/015587.

21. Anindya R., Savithri H.S. (2003). Surface-exposed amino- and carbox-terminal residues are crucial for the initation of assembley in Pepper vein banding virus: a flexuous rodshaped virus. Virology 316: 325-336.21. Anindya R., Savithri H.S. (2003). Surface-exposed amino- and carboxyl-terminal residues are crucial for the initiation of assembley in Pepper vein banding virus: a flexuous rodshaped virus. Virology 316: 325-336.

22. Kalnciema I. et al. (2012). Potato virus y-like pārticies as a new carrier for the presentation of foreign protein stretches. Mol. Biotechnol. 52:129-39.22. Kalnciema I. et al. (2012). Potato virus y-like prosperous as a new carrier for the presentation of foreign protein stretches. Mol. Biotechnol. 52: 129-39.

23. Sambrook, J. et al., eds. (1989). Molecular Cloning, a Laboratory Manual, 2nd. edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Ν.Υ.;23. Sambrook, J. et al., Eds. (1989). Molecular Cloning, Laboratory Manual, 2nd. edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Ν.Υ .;

24. Ausubel, F. et al., eds., (1997). Current Protocols in Molecular Biology, John H. Wiley & Sons, Inc.24. Ausubel, F., et al., Eds. (1997). Current Protocols in Molecular Biology, by John H. Wiley & Sons, Inc.

25. Harlow, E., Lane, D. (1988). Antibodies: a Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, Ν.Υ.;25. Harlow, E., Lane, D. (1988). Antibodies: Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, Ν.Υ .;

26. Scopes, R. K. (1994) Protein Purification Principles and Practice, 3 rd ed., SpringerVerlag, New York.26. Scopes, RK (1994) Principles and Practice of Protein Purification, 3 rd ed., SpringerVerlag, New York.

27. Bichko V. et al. (1985). Subtype ayw variant of hepatitis B virus. DNA primary structure analysis. FEBS Lett. 185:208-212.27. Bichko V. et al. (1985). Subtype ayw variant of hepatitis B virus. DNA primary structure analysis. FEBS Lett. 185: 208-212.

-1228. Nilsson B. et al. (1987). A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1:107-113.-1228. Nilsson B. et al. (1987). The synthetic IgG-binding domain is based on staphylococcal protein A. Protein Eng. 1: 107-113.

SEQUENCE LISTINGSEQUENCE LISTING

SEQ ID NO: 1SEQ ID NO: 1

ΤΥΡΕ: proteinΤΥΡΕ: protein

LENGTH: 304 amino acidsLENGTH: 304 amino acids

ORGĀNISM: Potato virus M (PVM) TOPOLOGY: linearORGANISM: Potato virus M (PVM) TOPOLOGY: linear

MOLECULAR ΤΥΡΕ: coat protein (CP)MOLECULAR ΤΥΡΕ: coat protein (CP)

SEQUENCE:1SEQUENCE: 1

Met Gly Asp Met Gly Asp Ser Thr 5 Ser Thr 5 Lys Lys Lys Lys Ala Ala Glu Ala Ala Lys 10 Glu Ala Ala Lys 10 Asp Asp Vai Or Gly 15 Gly 15th Thr Thr Ser Ser Gln Gln Glu Glu Lys Lys Arg Arg Glu Glu Ala Ala Arg Arg Pro Pro Leu Leu Pro Pro Thr Thr Ala Ala Ala Ala Asp Asp Phe Phe Glu Glu Gly Gly Arg Arg Asp Asp Thr Thr Ser Ser 20 20th 25 25th 30 30th 35 35 Glu Glu Asn Asn Thr Thr Asp Asp Gly Gly Arg Arg Ala Ala Ala Ala Asp Asp Ala Ala Asp Asp Gly Gly Glu Glu Met Met Ser Ser Leu Leu Glu Glu Arg Arg Arg Arg 40 40 45 45 50 50 55 55 Leu Leu Asp Asp Ser Ser Leu Leu Arg Arg Glu Glu Phe Phe Leu Leu Arg Arg Glu Glu Arg Arg Arg Arg Gly Gly Ala Ala Īle Ile Arg Arg Vai Or Thr Thr Asn Asn 60 60 65 65 70 70 75 75 Pro Pro Gly Gly Leu Leu Glu Glu Thr Thr Gly Gly Arg Arg Pro Pro Arg Arg Leu Leu Gln Gln Leu Leu Ala Ala Glu Glu Asn Asn Met Met Arg Arg Pro Pro Asp Asp 80 80 85 85 90 90 95 95 Pro Pro Thr Thr Asn Asn Pro Pro Tyr Tyr Asn Asn Arg Arg Pro Pro Ser Ser Ile Ile Glu Glu Ala Ala Leu Leu Ser Ser Arg Arg Ile Ile Lys Lys Pro Pro Ile Ile 100 100 105 105 110 110 Ala Ala Īle Ile Ser Ser Asn Asn Asn Asn Met Met Ala Ala Thr Thr Ser Ser Glu Glu Asp Asp Met Met Met Met Arg Arg Ile Ile Tyr Tyr Vai Or Asn Asn Leu Leu 115 115 120 120 125 125 130 130 Glu Glu Gly Gly Leu Leu Gly Gly Vai Or Pro Pro Thr Thr Glu Glu His His Vai Or Gln Gln Gln Gln Vai Or Vai Or Īle Ile Gln Gln Ala Ala Vai Or Leu Leu 135 135 140 140 145 145 150 150 Phe Phe Cys Cys Lys Lys Asp Asp Ala Ala Ser Ser Ser Ser Ser Ser Vai Or Phe Phe Leu Leu Asp Asp Pro Pro Arg Arg Gly Gly Ser Ser Phe Phe Glu Glu Trp Trp 155 155 160 160 165 165 170 170 Pro Pro Arg Arg Gly Gly Ala Ala Ile Ile Thr Thr Ala Ala Asp Asp Ala Ala Vai Or Leu Leu Ala Ala Vai Or Leu Leu Lys Lys Lys Lys Asp Asp Ala Ala Glu Glu 175 175 180 180 185 185 190 190 Thr Thr Leu Leu Arg Arg Arg Arg Vai Or Cys Cys Arg Arg Leu Leu Tyr Tyr Ala Ala Pro Pro Vai Or Thr Thr Trp Trp Asn Asn His His Met Met Leu Leu Thr Thr 195 195 200 200 205 205 His His Asn Asn Ala Ala Pro Pro Pro Pro Ala Ala Asp Asp Trp Trp Ala Ala Ala Ala Met Met Gly Gly Phe Phe Gln Gln Tyr Tyr Glu Glu Asp Asp Arg Arg Phe Phe 210 210 215 215 220 220 225 225 Ala Ala Ala Ala Phe Phe Asp Asp Cys Cys Phe Phe Asp Asp Tyr Tyr Vai Or Glu Glu Asn Asn Thr Thr Ala Ala Ala Ala Vai Or Gln Gln Pro Pro Leu Leu Glu Glu 230 230 235 235 240 240 245 245 Gly Gly Leu Leu Ile Ile Arg Arg Arg Arg Pro Pro Thr Thr Pro Pro Arg Arg Glu Glu Lys Lys Ile Ile Ala Ala His His Asn Asn Thr Thr His His Lys Lys Asp Asp 250 250 255 255 260 260 265 265 Ile Ile Ala Ala Leu Leu Arg Arg Gly Gly Ala Ala Asn Asn Arg Arg Asn Asn Gln Gln Vai Or Tyr Tyr Ser Ser Ser Ser Leu Leu Asn Asn Ala Ala Glu Glu Vai Or 270 270 275 275 280 280 285 285 Thr Thr Gly Gly Gly Gly Met Met Asn Asn Gly Gly Pro Pro Glu Glu Leu Leu Thr Thr Arg Arg Asp Asp Tyr Tyr Gly Gly Lys Lys Ser Ser Asn Asn Arg Arg Lys Lys 290 290 295 295 300 300

SEQ ID NO: 2SEQ ID NO: 2

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 912 basesLENGTH: 912 bases

ORGANISM: Potato virus MORGANISM: Potato virus M

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: coat protein cDNAMOLECULAR ΤΥΡΕ: coat protein cDNA

SEQUENCE:2 atgggagattcaacgaagaaagctgaagctgccaaagatgtgggcacttcgcaagaaaagSEQUENCE: 2 atgggagattcaacgaagaaagctgaagctgccaaagatgtgggcacttcgcaagaaaag

-13agagaagcgcgaccactgccgactgctgctgactttgaggggagggacacatcggagaac 120 actgatgggcgtgctgcagatgctgatggggagatgtcattggagcggaggcttgacagc 180 ctccgagaattcctgcgagagcggaggggcgctattcgggtgacaaacccggggttagag 240 actggcaggccaaggttgcagctagctgaaaatatgcgccctgatcccacgaatccgtac 300 aacaggccgtccatagaagctctcagccggatcaaaccaatcgcgatctcaaacaatatg 360 gccacatctgaggatatgatgcgcatatatgtgaacctagaggggctaggggtgccgact 420 gagcacgtgcagcaggtggtgattcaggctgtgctattttgcaaggatgcgagcagctcc 480 gtattcctggatccgcgaggctcgtttgagtggccaaggggtgctataaccgctgatgcc 540 gtcttggctgtgctgaagaaggacgcagaaacactacgaagggtgtgtaggctgtatgcc 600 ccggtgacatggaatcatatgctgacgcacaacgcgcctccggccgactgggctgccatg 660 gggtttcagtatgaggatcgcttcgctgctttcgactgctttgattacgttgagaatact 720 gctgcagtccaacccctagagggattgatcaggcgacctaccccaagggaaaagatagct 780 cacaatacgcacaaagacatcgcactgcgtggagcaaatcgcaatcaggtgtacagctct 840 ctcaatgccgaggtcactggtggcatgaatggtccggagctcactagggattatgggaag 900 tcgaatagaaaa-13agagaagcgcgaccactgccgactgctgctgactttgaggggagggacacatcggagaac 120 actgatgggcgtgctgcagatgctgatggggagatgtcattggagcggaggcttgacagc 180 ctccgagaattcctgcgagagcggaggggcgctattcgggtgacaaacccggggttagag 240 actggcaggccaaggttgcagctagctgaaaatatgcgccctgatcccacgaatccgtac 300 aacaggccgtccatagaagctctcagccggatcaaaccaatcgcgatctcaaacaatatg 360 gccacatctgaggatatgatgcgcatatatgtgaacctagaggggctaggggtgccgact 420 gagcacgtgcagcaggtggtgattcaggctgtgctattttgcaaggatgcgagcagctcc 480 gtattcctggatccgcgaggctcgtttgagtggccaaggggtgctataaccgctgatgcc 540 gtcttggctgtgctgaagaaggacgcagaaacactacgaagggtgtgtaggctgtatgcc 600 ccggtgacatggaatcatatgctgacgcacaacgcgcctccggccgactgggctgccatg 660 gggtttcagtatgaggatcgcttcgctgctttcgactgctttgattacgttgagaatact 720 gctgcagtccaacccctagagggattgatcaggcgacctaccccaagggaaaagatagct 780 cacaatacgcacaaagacatcgcactgcgtggagcaaatcgcaatcaggtgtacagctct 840 ctcaatgccgaggtcactggtggcatgaatggtccggagctcactagggattatgggaag 900 tcgaatagaaaa

SEQ ID NO: 3SEQ ID NO: 3

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 25 basesLENGTH: 25 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM_CP1F primerOTHER INFORMATION: PVM_CP1F primer

SEQUENCE: 3 cgtttgggtgtggttcctttaggtc 25SEQUENCE: 3 cgtttgggtgtggttcctttaggtc 25

SEQ ID NO: 4SEQ ID NO: 4

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 35 basesLENGTH: 35 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM_CPlR primerOTHER INFORMATION: PVM_CPlR primer

SEQUENCE: 4 gcacactcagcaatactaaagcaatttcaaacaca 35SEQUENCE: 4 gcacactcagcaatactaaagcaatttcaaacaca 35

SEQ ĪD NO: 5SEQ ID NO: 5

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 34 basesLENGTH: 34 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM_CP_Nco_F primerOTHER INFORMATION: PVM_CP_Nco_F primer

SEQUENCE: 5 caccatgggagattcaacgaagaaagctgaagct 34SEQUENCE: 5 caccatgggagattcaacgaagaaagctgaagct 34

SEQ ID NO: 6SEQ ID NO: 6

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

-14LENGTH: 34 bases-14LENGTH: 34 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM_CP_Hind_R primerOTHER INFORMATION: PVM_CP_Hind_R primer

SEQUENCE: 6 gcaagctttaaagccaccttggttacgtgcttca 34SEQUENCE: 6 gcaagctttaaagccaccttggttacgtgcttca 34

SEQ ID NO:7SEQ ID NO: 7

ΤΥΡΕ: proteinΤΥΡΕ: protein

LENGTH: 17 amino acidsLENGTH: 17 amino acids

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: amino acid linkerMOLECULAR ΤΥΡΕ: amino acid linker

OTHER INFORMATION: PVM-CP N-terminalOTHER INFORMATION: VAT-CP N-terminal

SEQUENCE: 7SEQUENCE: 7

Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 15 10 15Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser 15 10 15

SEQ ID NO: 8SEQ ID NO: 8

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 93 basesLENGTH: 93 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM_Ng4sF primerOTHER INFORMATION: PVM_Ng4sF primer

SEQUENCE: 8 taccatgggaaatgacggatccggaggaggtggaagcggaggaggtggatctggaggagg 60 tggttctatgggagattcaacgaagaaagctga 93SEQUENCE: 8 taccatgggaaatgacggatccggaggaggtggaagcggaggaggtggatctggaggagg 60 tggttctatgggagattcaacgaagaaagctga 93

SEQ ID NO: 9SEQ ID NO: 9

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 22 basesLENGTH: 22 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotide OTHER INFORMATION: PVM_EcoR primerMOLECULAR ΤΥΡΕ: synthetic oligonucleotide OTHER INFORMATION: PVM_EcoR primer

SEQUENCE: 9 cgctctcgcaggaattctcggaSEQUENCE: 9 cgctctcgcaggaattctcgga

SEQ ID NO:10SEQ ID NO: 10

ΤΥΡΕ: proteinΤΥΡΕ: protein

LENGTH: 21 amino acidsLENGTH: 21 amino acids

-15ORGANISM: hepatitis B virus-15ORGANISM: Hepatitis B virus

TOPOLOGĪ: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: preSl proteinMOLECULAR ΤΥΡΕ: preSl protein

OTHER INFORMATION: N-terminal fragmentOTHER INFORMATION: N-terminal fragment

SEQUENCE: 10SEQUENCE: 10

Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Arg Ala Asn Thr 15 10 15Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Lower Phe Arg Lower Asn Thr 15 10 15

Ala Asn 20Area Asn 20

SEQ ID NO: 11SEQ ID NO: 11

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 55 basesLENGTH: 55 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGĪ: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM-NpreSlF primerOTHER INFORMATION: PVM-NpreSlF primer

SEQUENCE: 15 taccatgggaaatgacaatcctctgggattctttcccgaccaccagttggaccca 55SEQUENCE: 15 taccatgggaaatgacaatcctctgggattctttcccgaccaccagttggaccca 55

SEQ ID NO: 12SEQ ID NO: 12

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 58 basesLENGTH: 58 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM-NpreSlRprimerOTHER INFORMATION: PVM-NpreSlRprimer

SEQUENCE: 12 tccggatcctggatttgcggtgtttgctctgaaggctgggtccaactggtggtcggga 58SEQUENCE: 12 tccggatcctggatttgcggtgtttgctctgaaggctgggtccaactggtggtcggga 58

SEQ ID NO: 13SEQ ID NO: 13

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 348 basesLENGTH: 348 bases

ORGANISM: Staphylococcus aureusORGANISM: Staphylococcus aureus

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: duplicated antibody binding domain Z cDNAMOLECULAR ΤΥΡΕ: duplicated antibody binding domain Z cDNA

SEQUENCE:13 gtagacaacaaattcaacaaagaacaacaaaacgcgttctatgagatcttacatttacctSEQUENCE: 13 gtagacaacaaattcaacaaagaacaacaaaacgcgttctatgagatcttacatttacct

-16aacttaaacgaagaacaacgaaacgccttcatccaaagtttaaaagatgacccaagccaa 120 agcgctaaccttttagcagaagctaaaaagctaaatgatgctcaggcgccgaaagtagac 180 aacaaattcaacaaagaacaacaaaacgcgttctatgagatcttacatttacctaactta 240 aacgaagaacaacgaaacgccttcatccaaagtttaaaagatgacccaagccaaagcgct 300 aaccttttagcagaagctaaaaagctaaatgatgctcaggcgccgaaa 348-16aacttaaacgaagaacaacgaaacgccttcatccaaagtttaaaagatgacccaagccaa 120 agcgctaaccttttagcagaagctaaaaagctaaatgatgctcaggcgccgaaagtagac 180 aacaaattcaacaaagaacaacaaaacgcgttctatgagatcttacatttacctaactta 240 aacgaagaacaacgaaacgccttcatccaaagtttaaaagatgacccaagccaaagcgct 300 348 aaccttttagcagaagctaaaaagctaaatgatgctcaggcgccgaaa

SEQ ID NO: 14SEQ ID NO: 14

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 51 basesLENGTH: 51 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM-NzzF primerOTHER INFORMATION: PVM-NzzF primer

SEQUENCE: 14 taccatgggaaatgacgtagacaacaaattcaacaaagaacaacaaaacgc 51SEQUENCE: 14 taccatgggaaatgacgtagacaacaaattcaacaaagaacaacaaaacgc 51

SEQ ID NO: 15SEQ ID NO: 15

ΤΥΡΕ: nucleic acidΤΥΡΕ: nucleic acid

LENGTH: 34 basesLENGTH: 34 bases

ORGANISM: artificial sequenceORGANISM: artificial sequence

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: synthetic oligonucleotideMOLECULAR ΤΥΡΕ: synthetic oligonucleotide

OTHER INFORMATION: PVM-NzzF primerOTHER INFORMATION: PVM-NzzF primer

SEQUENCE: 15 ccggatcctttcggcgcctgagcatcatttagct 34SEQUENCE: 15 ccggatcctttcggcgcctgagcatcatttagct 34

SEQ ID NO:16SEQ ID NO: 16

ΤΥΡΕ: proteinΤΥΡΕ: protein

LENGTH: 116 amino acidsLENGTH: 116 amino acids

ORGANISM: Staphylococcus aureusORGANISM: Staphylococcus aureus

TOPOLOGY: linearTOPOLOGY: linear

MOLECULAR ΤΥΡΕ: duplicated antibody binding domain Z OTHER INFORMATION: Sequence from pEZZ18MOLECULAR ΤΥΡΕ: duplicated antibody binding domain Z OTHER INFORMATION: Sequence from pEZZ18

SEQUENCE: 16SEQUENCE: 16

Vai 1 Or 1 Asp Asp Asn Lys Asn Lys Phe Phe Asn Lys 5 Asn Lys 5 Glu Glu Gln Gln Gln Gln Asn 10 Asn 10th Ala Ala Phe Phe Tyr Tyr Glu Glu Ile 15 Ile 15th Leu Leu His His Leu Leu Pro Pro Asn Asn Leu Leu Asn Asn Glu Glu Glu Glu Gln Gln Arg Arg Asn Asn Ala Ala Phe Phe Ile Ile Gln Gln Ser Ser Leu Leu Lys Lys Asp Asp Asp Asp Pro Pro 20 20th 25 25th 30 30th 35 35 Ser Ser Gln Gln Ser Ser Ala Ala Asn Asn Leu Leu Leu Leu Ala Ala Glu Glu Ala Ala Lys Lys Lys Lys Leu Leu Asn Asn Asp Asp Ala Ala Gln Gln Ala Ala Pro Pro 40 40 45 45 50 50 55 55 Lys Lys Vai Or Asp Asp Asn Asn Lys Lys Phe Phe Asn Asn Lys Lys Glu Glu Gln Gln Gln Gln Asn Asn Ala Ala Phe Phe Tyr Tyr Glu Glu Ile Ile Leu Leu His His 60 60 65 65 70 70 75 75 Leu Leu Pro Pro Asn Asn Leu Leu Asn Asn Glu Glu Glu Glu Gln Gln Arg Arg Asn Asn Ala Ala Phe Phe Ile Ile Gln Gln Ser Ser Leu Leu Lys Lys Asp Asp Asp Asp 80 80 85 85 90 90 Pro Pro Ser Ser Gln Gln Ser Ser Ala Ala Asn Asn Leu Leu Leu Leu Ala Ala Glu Glu Ala Ala Lys Lys Lys Lys Leu Leu Asn Asn Asp Asp Ala Ala Gln Gln Ala Ala 95 95 100 100 105 105 110 110 Pro Pro Lys Lys 115 115

Claims (4)

Patenta pretenzijasPatent Claims 1. Kartupeļu vīrusa PVM virsmas proteīna kodējoša nukleīnskābes molekula saskaņā ar SEQ ID NO:2.A nucleic acid molecule encoding a potato virus PVM surface protein according to SEQ ID NO: 2. 2. Pavedienveida vīrusiem līdzīgo daļiņu iegūšanas paņēmiens, kas ietver sevī (a) kartupeļu vīrusa PVM nukleīnskābes molekulas saskaņā ar SEQ ID NO: 2 sagatavošanu;A method for obtaining filamentous virus-like particles comprising (a) preparing a potato virus PVM nucleic acid molecule according to SEQ ID NO: 2; (b) minētās nukleīnskābes ievadīšanu saimniekšūnās;(b) administering said nucleic acid to the host cells; (c) saimniekšūnu kultivēšanu tādos apstākļos, lai iegūtu proteīnu, kas spēj veidot vīrusiem līdzīgās daļiņas.(c) culturing the host cells under conditions which yield a protein capable of forming virus-like particles. 3. Pavedienveida vīrusiem līdzīgo daļiņu iegūšanas paņēmiens saskaņā ar 2. pretenziju, kurā minētās saimniekšūnas ir Escherichia coli, kas tiek kultivētas pie +20°C.A method for obtaining filamentous virus-like particles according to claim 2, wherein said host cells are Escherichia coli cultured at + 20 ° C. 4. Pavedienveida vīrusiem līdzīgas daļiņas, kas satur vismaz vienu proteīnu no sekojošas grupas:4. Filamentous virus-like particles containing at least one protein of the following group: (a) proteīns, kura sastāvā ietilpst aminoskābes 1-304 no SEQ ID NO:1;(a) a protein comprising amino acids 1-304 of SEQ ID NO: 1; (b) proteīns, kura aminoskābju sekvence uzrāda vismaz 90% identitāti ar PVM virsmas proteīna aminoskābēm saskaņā ar SEQ ID NO:1;(b) a protein having an amino acid sequence showing at least 90% identity to the PVM surface protein amino acids of SEQ ID NO: 1; (c) proteīns, kura sastāvā ietilpst aminoskābes 1-304 no SEQ ĪD NO: 1 un kuram Ngalā ir pievienota līdz 137 aminoskābju gara polipeptīda sekvence.(c) a protein comprising amino acids 1-304 of SEQ ID NO: 1 to which a polypeptide sequence of up to 137 amino acids has been added in Ngal.
LVP-13-158A 2013-10-22 2013-10-22 Production of potato pvm virus-like particles LV15007B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-13-158A LV15007B (en) 2013-10-22 2013-10-22 Production of potato pvm virus-like particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-13-158A LV15007B (en) 2013-10-22 2013-10-22 Production of potato pvm virus-like particles

Publications (2)

Publication Number Publication Date
LV15007A LV15007A (en) 2015-05-20
LV15007B true LV15007B (en) 2015-10-20

Family

ID=53055666

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-13-158A LV15007B (en) 2013-10-22 2013-10-22 Production of potato pvm virus-like particles

Country Status (1)

Country Link
LV (1) LV15007B (en)

Also Published As

Publication number Publication date
LV15007A (en) 2015-05-20

Similar Documents

Publication Publication Date Title
AU2020200303B9 (en) Novel multivalent nanoparticle-based vaccines
KR102236497B1 (en) Stabilized soluble prefusion rsv f polypeptides
JP2023533228A (en) Stabilized coronavirus spike (S) protein immunogens and related vaccines
KR102313153B1 (en) Stabilized soluble pre-fusion rsv f polypeptides
Kalnciema et al. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches
Blokhina et al. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles
Chatterji et al. Cowpea mosaic virus: from the presentation of antigenic peptides to the display of active biomaterials
CN109311946A (en) RSV F protein before stabilized fusion
JP2023524879A (en) Stabilized coronavirus spike protein fusion protein
JP2003525619A (en) Production of foreign polypeptides in plants as virus coat protein fusions
JP2014530224A (en) Self-assembled peptide nanoparticles as a vaccine against norovirus infection
GB2535753A (en) Particles comprising fusion proteins
CN112552413A (en) Novel coronavirus recombinant protein subunit vaccine
AU2016313660B2 (en) Polypeptide carrier for presenting target polypeptide and uses thereof
Ogrina et al. Bacterial expression systems based on Tymovirus-like particles for the presentation of vaccine antigens
CN113736825B (en) Recombinant Drosophila cell line for expressing porcine atypical pestivirus fusion protein as well as preparation method and application thereof
CN109851678A (en) A kind of inferior stable state bovine respiratory syncytial virus of improvement merges DNA molecular and its application of precursor F protein matter and coding
LV15007B (en) Production of potato pvm virus-like particles
RU2745558C2 (en) Method of producing recombinant capsid protein of hepatitis e virus
CN103214561B (en) Human hepatitis c virus core antigen and preparation method and application thereof
WO2024199469A1 (en) Respiratory syncytial virus f protein having stable pre-fusion conformation
LV14204B (en) Production and use of potato virus pvy like particles for expression of heterologous protein sequences
TWI339217B (en)
Kamzina et al. Virus-like particles presenting conformational epitopes as a promising vaccine platform
CN116731192A (en) Recombinant spike protein and preparation method and application thereof