KR970007029B1 - 고연성 박물 열간압연 연강판의 제조방법 - Google Patents

고연성 박물 열간압연 연강판의 제조방법 Download PDF

Info

Publication number
KR970007029B1
KR970007029B1 KR1019940027620A KR19940027620A KR970007029B1 KR 970007029 B1 KR970007029 B1 KR 970007029B1 KR 1019940027620 A KR1019940027620 A KR 1019940027620A KR 19940027620 A KR19940027620 A KR 19940027620A KR 970007029 B1 KR970007029 B1 KR 970007029B1
Authority
KR
South Korea
Prior art keywords
steel sheet
steel
hot
temperature
elongation
Prior art date
Application number
KR1019940027620A
Other languages
English (en)
Other versions
KR960014368A (ko
Inventor
조열래
이승복
Original Assignee
포항종합제철 주식회사
김만제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 김만제 filed Critical 포항종합제철 주식회사
Priority to KR1019940027620A priority Critical patent/KR970007029B1/ko
Publication of KR960014368A publication Critical patent/KR960014368A/ko
Application granted granted Critical
Publication of KR970007029B1 publication Critical patent/KR970007029B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

내용없음.

Description

고연성 박물 열간압연 연강판의 제조방법
제1도는 0.04%이하 C-0.15% Mn강에서의 권취온도에 따른 Cr함량과 기계적 성질과의 관계를 나타낸 그래프.
제2도는 본 발명재와 비교재에 대한 권취온도와 미소경도 변화의 관계를 나타내는 그래프.
제3도는 저탄소강에서의 Cr함량에 따른 Ar3변태점 변화를 나타내는 그래프.
본 발명은 에어콘 또는 냉장고의 압축기 케이스등의 소재로 사용되는 박물 열간압연 연강판의 제조방법에 관한 것으로서, 보다 상세하게는 고연성을 갖는 1.6-3.0mm 두께의 박물 열간압연 연강판의 제조방법에 관한 것이다.
통상 에어콘 또는 냉장고의 압축기 케이스와 같은 심가공용 소재 또는 복잡한 형상을 가지는 제품의 프레스 가공용 소재료는 두께가 1.6∼3.0mm정도의 박물 열연강판이 사용되는데, 이러한 박물의 열간압연 연강판에서는 고연성이 요구된다.
이러한 고연성을 갖는 박물의 열간압연연강판의 제조방법으로서, 종래에는 보통 0.04% C-0.25% Mn 강을 이용하여 Ar3변태점 이상의 온도에서 마무리 열간압연을 실시하고, 580-600℃의 온도범위에서 권취하여 고연성을 갖는 열연강판을 제조하였다.
그러나, 상기와 같이 제조된 심가공용 열연강판은 통상 2.0mm의 두께를 갖는 강판의 경우 그 인장강도가 34kg/mm2이상이나 연신율이 45%정도의 수준으로 에어콘 압축기 케이스와 같이 심가고용으로 사용하기에는 연성이 미흡한 단점이 있다. 특히, 상기 심가공용 열연강판의 경우 두께 감소에 의한 연신율은 더욱 저하되어 1.6mm의 두께일 때에는 연신율이 43%정도가되어 심가공용 열연강판으로서 부적절하게 되는 단점이 있다.
이러한 원인은 박물이므로 압연두께가 얇아짐에 따른 결정립 미세화와 열간압연후 냉각속도 증가에 따른 결정립계 세멘타이트의 미세화에 기인되는 것 이외에는 열간압연 온도 즉 열간압연 마무리 온도가 저하되어 Ar3변태점 부근 또는 오스테나이트와 페라이트가 공존하는 그 상역에서 최종압연이 진행되기 때문에 미세조직과 조대한 조직이 혼재된 혼립조직 또는 변형 조직이 생성되어 조직열화에 기인되는 것이다.
그러므로 종래에는 박물 열간압연 강판에서의 연성을 개선하기 위해서 극저탄소강을 이용하는 방법이 주로 사용되었는데, 그 대표적인 예를들면, 0.002%∼0.03% Ti강을 Ar3이상의 온도에서 열간압연을 행한 후 600℃ 이하의 온도에서 권취하여 인장강도 28∼29kg/mm2, 연신율 55% 정도의 심가고용 열간압연강판을 제조하는 방법이 있었다(일본 가와사끼 기보, Vol. 9,(1987), 3, p189-194 및 CAMP. ISIJ., Vol. 3, 1990, p1748).
또다른 시도로서, 0.02% C에 0.01∼0.02% Ti 또는 Nb을 단독으로 첨가하고, 640℃이상에서 고온권취를 행하여 인장강도 30kg/mm2이하, 연신율 50∼53% 정도인 열연강판을 제조하는 방법이 제시되어 있다(NKK Technical Report Overseas, No. 48, 1987. p21).
그러나, 이와같이 박물의 열간압연강판의 연성을 높이기 위한 방법에 있어 강중의 탄소량을 극도로 제한한 극저탄소강이 재질적으로 유효함에도 불구하고 그 제조에 있어서는 열간압연에서의 Ar3변태점이 높기 때문에 열간압연 온도의 확보가 어렵고, 특히 박물 열연강판 일수록 스트립 에지(edge)부의 온도저하가 급격해지기 때문에 기계적 성질의 렬화 가능성이 높아진다는 문제점이 있다. 또한 열간압연 연강판의 경우 KS 규격상 최소 28kg/mm2이상이나, 실제 사용상에 있어서는 32kg/mm2이상의 인장강도를 요구하기 있기 때문에 극저탄소강과 같이 극히 우수한 연신율을 가진다고 하여도 인장강도를 만족시키지 못하기 때문에 에어콘 또는 냉장고 압축기 케이스용의 열간압연 연강판으로서는 부적절한 단점이 있다.
이에 본 발명자들은 상기 문제점을 해결하고자 극저탄소강을 사용하는 대신 강중 Mn을 0.1∼0.2%로 하고 또한 N2량을 40ppm 이하고 제한한 저탄소강을 이용하여 열간 압연후 권취온도를 적절히 제어하므로서 인장강도가 34kg/㎟이상, 연신율이 47% 이상인 심가공용, 저탄소 열간압연 연강판을 제조하는 방법을 제지한 바 있다.
그러나, 상기 방법에 의해 제조된 고연성 저탄소 열연강판은 강판의 두께가 3.0mm이하에서는 박물화에 따른 온도저하가 심하여 사상 압연 마무리 온도를 Ar3이상으로 확보하기가 어렵고, 특히, 열간압연 후 스트립의 예지부에서는 온도저하에 기인한 혼립조직을 완전히 억제하지 못하는 단점이 있있다.
따라서, 본 발명은 이러한 문제점을 해결하고자 제안된 것으로서, 에어콘 압축기 케이스용과 같은 심가공용 열간압연 연강판의 제조에 있어 요구되는 고연성 및 박물 열간압연 제품에서 나타는 조직열화에 의한 연신율 감소 현상을 동시에 개선하기 위하여 종래법에 비하여 저 Mn화에 의한 가지의 연질화, Cr 첨가에 의한 기지의 고용탄소 저감 및 강중의 N2를 규제하고, 열간압연후의 냉각조건을 제어함으로서 박물 열간압연 연강판에서 인장강도 32kg/㎟ 이사, 연신율 47%이상인 고연성 박물 열간압연 연강판의 제조방법을 제공하고자 하는데 그 목적이 있다.
이하, 본 발명을 설명한다.
본 발명은 열연강판의 제조방법에 있어서, 중량%로 C : 0.03-0.05%, Mn : 0.1-0.2%, P : 0.02% 이하, S : 0.015% 이하, 가용성 Al : 0.005-0.04%, Cr : 0.4-0.5%, N2: 40ppm 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬리브를 통상의 방법으로 재가열 처리한 후, 열간압연시 사상압연 출측온도를 Ar3이상으로 하고, 상기 열간압연후 수냉대에서 권취온도를 650-700℃의 온도범위로 하여 권취하는 고연성 박물 열간압연 연강판의 제조방법에 관한 것이다.
이하, 본 발명에 대하여 상세히 설명한다.
상기 C은 열간압연 연강판의 제조에 있어 강도를 얻는데 필요한 원소로서 탄소가 0.03 중량%(이하, '%'라 함)이하로 낮아지면 Ar3변태점이 상승하기 때문에 열간압연시 압연온도가 충분히 높지 않으면, 스트립의 폭방향 단부가 이상역에시 압연되어 단부의 조직이 혼립조직으로 될 가능성이 높아지고, 0.05% 이상으로 높아지면, 상기 혼립조직의 발생은 완화하나, 강도가 상승하면서 연신율이 49% 이하로 감소하기 때문에 탄소함량은 0.03-0.05%로 제한함에 바람직하다.
상기 Mn은 고용강화원로시 강도를 확보하는데 유효한 원소인데, C과 더불어 열간 압연 연강판의 강도 및 연신율을 확보함에 있어 0.10% 이하로 낮아지면 강도가 확보되지 않으며, 0.20% 이상으로 되면 연신율이 확보되지 않기 때문에 Mn의 함량은 0.1∼0.2%로 제한함이 바람직하다.
상기 P, S는 강중의 불순물로서 불가피하게 존재하나 통상의 규제치를 초과하면 연성에 악영향을 미치기 때문에 각각 0.02% 및 0.015% 이하로 규제하여야만 한다.
상기 Al은 강의 탈산에 필요한 원소로서, 탈산을 위한 가용성-Al량은 0.04% 이하이면 충분하며, 그 이상이면, 연속주조시 슬라브의 냉각과정에서 슬라브 표면에 크랙결함이 발생될 가능성이 높아지기 때문에 상기 Al의 함유량은 0.005-0.04%로 규제함이 좋다.
상기 Cr은 열간압연후 입계 또는 입내의 Cr탄화물로 석출되면서 페라이트 기지의 고용탄소를 감소시키기 때문에 기지가 연질화되며, 아울러 강의 Ar3변태점을 저하시키는 효과가 있기 때문에 열간압연 후 스트립의 에지부 온도저하에 기인한 혼립조직의 발생을 억제할 수 있어 박물 열간압연 연강판의 제조에 유용한다. 그러나, Cr의 첨가량은 0.4-0.6%로 한정함이 바람직한데, 그 이유는 Cr은 상기 첨가범위에서 연신율이 최대치를 보이기 때문이고, 그 이상의 첨가에서는 퍼얼라이트 및 입계 세멘타이트의 증가에 기인한 연성저하로 총 연신율이 감소하기 때문이다.
상기 N2는 강중에 고용되어 있으면 연성을 저하시키는데, 본 발명에서 목적하는 연신율 47%이상을 확보가히 위해서는 40ppm 이하로 규제하는 것이 바람직하다.
상기한 조성을 갖는 강 슬라브를 통상의 방법으로 재가열 처리한 후 열간압연 하는데, 이때 열간압연 마무리 온도는 Ar3이상의 온도로 실시함이 바람직하다. 이와같이, 열간압연시 사상압연 출측온도를 Ar3이상으로 한정한 이유는 Ar3보다 낮으면 오스테나이트와 페라이트가 공존하는 영역에서 압연되어 최종조직이 혼립 조직으로 되기 때문이다.
또한, 열간압연을 실시한 후 열연 수냉대에서 권취온도를 650-700℃의 범위로 하여 열연권취함이 바람직한데, 이렇게 열원권취온도를 650-700℃로 한정한 이유는 상기 온도범위가 본 발명의 조성범위를 갖는 강을 이용하여 본 발명에서 얻고자 하는 목표 강도 및 연신율이 확보되는 권취온도이며, 650℃이하에서는 결정립계 탄화물이 미세해지고 분포밀도가 높아지기 때문에 강도는 증가하고 연신율은 감소하게 되어 본 발명에서 요구되는 기계적 성질을 만족시키지 못한다. 또한, 700℃이상의 권취온도에서는 연신율을 확보되나, 열간압연 제품의 산화물층, 다시말하여 스케일층이 두꺼워져 산세공정서의 시간이 길어지기 때문에 650-700℃의 범위에서 권취함이 바람직한다.
이와같이, 본 발명에 따라 제조된 열간압연 연강한은 두께가 1.6-3.00mm의 정도의 박물 강판에서도 인장강도가 43kg/㎟ 이상, 연신율이 47%이상인 기계적 성질을 갖게 되어 심가공용으로 매우 적합하다.
이하, 본 발명을 실시예를 동하여 구체적으로 설명한다.
(실시예 1)
0.04%이하 G-0.15%Mn을 기본 조성으로 하고 하기표 1과 같은 조성을 갖는 강 슬라브를 1200℃의 온도에서 3시간 동안 재가열 처리한 후, 재가열된 강 슬라브를 열간압연 하였다. 이때, 열간압시 사상 압연 출측 온도는 Ar3변태점 이상인 880℃의 온도로 하였으며, 최종 강판의 두께는 2.7mm 이었다. 이후 각 강종에 대하여 열연권취온도를 550-700℃C로 변화시키면서 권취하고, 권취된 강판의 시편에 대하여 Cr함량에 따른 기계적 성질을 측정하고, 그 결과를 제1도에 나타내었다.
[표 1]
제1도에 나타단 바와같이, 권취온도가 600℃ 이하로 되면 Cr함량에 관계없이 각 강종의 연신율이 47%이하로 됨을 알 수 있었다.
또한, 권취온도가 650℃이상이 되면, Cr 함량이 0.5%인 발명강(A) 및 비교강(D)의 경우에 연신율이 47%이상이 될 수 있음을 알 수 있으며, 특히 Cr 함량이 0.5%인 발명강(C)의 경우가 가장 연신율이 좋고, 인장강도도 32kg/㎟ 이상이 얻어짐을 알 수 있었다.
이와같이, 권취온도가 650℃ 이상에서 0.5% Cr 처가한 발명강(c)에서 최대 연신율을 나타내는 것을 결정립내 또는 입계에 석출하는 Cr 탄화물에 의하여 페라이트의 고용찬소량이 감소하기 때문이며, 그 이상을 Cr을 첨가한 비교강(D)의 경우에는 퍼얼라이트량 및 입계에 석출하는 세먼타이트 입자수의 증가로 인하여 연신율이 저하되는 것으로 판단된다. 또한, 권취온도가 550℃이하에서는 Cr이 Cr 탄화물로 석출되기 보다는 고용상태로 존재하는 경향이 커지기 때문에 연신율이 감소되는 것으로 판단된다.
한편, 본 발명강(C) 및 Cr이 첨가되지 않은 비교강(A)에 대하여 권취온도에 따른 기계적 성질을 보다 상세히 살펴보기 위해 각 각종에 대하여 권취온도에 따른 미소경도를 측정하고, 그 결과를 제2도에 나타내었다.
제2도에 나타난 바와같이, 발명강(C)의 경우 권취온도가 650℃이상으로 되면 비교강(A)의 경우보다 미소경도 값이 낮아지는데, 이는 권취온도가 600℃ 이상으로 상승됨에 따라 결정립계 또는 결정립 내에서의 Cr탄화물 석출에 의한 메라이트내 고용탄소량이 감소되어 기지가 연질화되는데 기인하기 때문으로 600℃이상에서의 연신율 증가와 관계가 있음을 의미하고 있다.
(실시예 2)
Cr 첨가에 따른 강의 Ar3변태점의 변화를 살펴보기 위해, 상기 표 1의 강종(A-D)에 대하여 1000℃에서 3분간 가열한 후 30℃/초의 냉각속도로 냉각시킨 다음, 각종강의 Ar3변태점을 측정하고, 그 결과를 제3도에 나타내었다.
제3도에 나타난 바와같이, Ar3변태점은 Cr의 첨가에 따라 연속적으로 감소하는데, 발명강(C)의 경우에는 비교강(A)에 비하여 약 21℃정도 저하하여, 비교강(B)의 경우에 비해서도 Ar3변태점이 낮음을 알 수 있다. 이러한 결과로 Cr의 함유향이 본 발명의 조성범위를 만족하면 Ar3변태점 이상의 온도에서 용이하게 마무리 열간압연을 실시할 수 있어 조직열화 현상을 방지는데 유효하다. 그러나, 비교강(D)의 경우에는 전술한 바와같이 퍼얼라이트량 및 입계에 석출하는 세멘타이트 입자수의 증가로 인하여 연신율이 저하되어 바람직하지 않다.
(실시예 3)
본 발명강을 종래강과 비교하기 위하여, C : 0.04%, M : 0.25%, P : 0.013%, S : 0.08%, 가용성 Al : 0.037% 및 N2: 40ppm 인 종래강(E)을 실시예 1과 동일한 방법으로 하되 권취온도를 600℃로 하여 최종두께가 2.7mm인 열간 압연강판을 제조하였다. 제조된 종래강(E) 및 비교강(A), 발명강(A)에 대하여 인장강도, 연신율 및 미소경도를 측정하고, 그 결과를 하기표 2에 나타내었다.
[표 2]
상기 표 2에 나타단 바와같이, 발명강(A)를 사용하여 본 발명의 권취온도 범위에서 실시된 발명재(1)(2)의 경우 종래재의 경우에 비하여 연신율 5-7% 정도 향상되어 인장강도 32kg/㎟ 이상, 연신율이 47% 이상되는 조건을 만족함을 알 수 있었다. 그러나, 발명강(C)을 사용하여 본 발명의 권추온도 조건을 벗어나는 비교재(1-2)의 경우에는 상기 기계적 성질의 조건 범위를 만족하지만, 1.6mm의 박물에서 연신율이 47% 이하로 저하되는 경향이 있었다.
또한, 비교재(3)의 경우에도 본 발명에서 목적하는 기계적 성질의 조건범위는 만족한, 본 발명자들의 실험에 의하면 두께가 1.6mm 로 박물화되면 연신율이 47% 이하로 감소되는 문제점이 있었다.
또한, 비교재(4-6) 및 종래재의 경우에는 본 발명에서 목적하는 기계적 성질의 조건범위를 만족하지 못함을 알 수 있었다.
한편, 본 발명자들의 실험 결과에 따르면 본 발명에 따라 제조된 최종두께가 1.6mm인 열연강판에 있어서도 인장강도가 32kg/㎟ 이상이고, 연신율이 47%이상인 기계적 특성이 얻어짐을 확인할 수 있었다.
상술한 바와같이, 본 발명은 종래방법에 비하여 Mn 첨가량을 감소시켜 0.01-0.20%로 하고, Cr을 0.4-0.6% 정도 첨가한 성분계를 이용하고, N2량을 40ppm이하로 제한하여 열간압연후 권취온도를 650-700℃의 온도 범위로 함으로서 인장강도가 32kg/㎟ 이상이고, 연신율이 47% 이상인 고연성 박물의 열간압연 연강판을 제조할 수 있어, 에어콘 또는 냉장고의 압축기 케이스등의 소재로 매우 유용한 효과가 있다.

Claims (1)

  1. 열연강판의 제조방법에 있어서, 중량%로 C : 0.03-0.05%, Mn : 0.1-0.2%, P : 0.02% 이하, S : 0.015% 이하, 가용성 Al : 0.005-0.04%, Cr : -0.4-0.5%, N2: ppm 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 통상의 방법으로 재가열 처리한 후 열간압시 사상압연 출측 온도를 Ar3이상으로 하고, 상기 열간압연후 권취온도를 650-700℃의 온도범위로 하여 권취하는 고연성 박물 열간압연 연강판의 제조방법.
KR1019940027620A 1994-10-27 1994-10-27 고연성 박물 열간압연 연강판의 제조방법 KR970007029B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940027620A KR970007029B1 (ko) 1994-10-27 1994-10-27 고연성 박물 열간압연 연강판의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940027620A KR970007029B1 (ko) 1994-10-27 1994-10-27 고연성 박물 열간압연 연강판의 제조방법

Publications (2)

Publication Number Publication Date
KR960014368A KR960014368A (ko) 1996-05-22
KR970007029B1 true KR970007029B1 (ko) 1997-05-02

Family

ID=19396108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940027620A KR970007029B1 (ko) 1994-10-27 1994-10-27 고연성 박물 열간압연 연강판의 제조방법

Country Status (1)

Country Link
KR (1) KR970007029B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802453B2 (en) 2003-08-13 2010-09-28 Lg Electronics Inc. Washing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431802B1 (ko) * 1999-12-15 2004-05-17 주식회사 포스코 가공성이 우수한 열연박판 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802453B2 (en) 2003-08-13 2010-09-28 Lg Electronics Inc. Washing machine

Also Published As

Publication number Publication date
KR960014368A (ko) 1996-05-22

Similar Documents

Publication Publication Date Title
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
JPS5827329B2 (ja) 延性に優れた低降伏比型高張力熱延鋼板の製造方法
JPH03277741A (ja) 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法
KR970007029B1 (ko) 고연성 박물 열간압연 연강판의 제조방법
JPH055887B2 (ko)
KR960005220B1 (ko) 연질 주석도금원판의 제조방법
JPH0582458B2 (ko)
JPH06104862B2 (ja) 焼付け硬化性及び常温非時効性に優れた加工用冷延鋼板の製造方法
US7005016B2 (en) Hot rolled steel having improved formability
KR100325537B1 (ko) 가공용박물열간압연연강판의제조방법
JP2582894B2 (ja) 深絞り用熱延鋼板及びその製法
KR100400867B1 (ko) 소성변형비이방성계수가작고가공성이우수한저탄소냉연강판및그제조방법
JPH05171285A (ja) 異方性の小さい耐時効性極軟質容器用鋼板の製造方法
KR100285649B1 (ko) 심가공용 박물 열연강판의 제조방법
JPS61264136A (ja) 面内異方性の小さい深絞り用極低炭素Alキルド鋼板の製造方法
KR100504369B1 (ko) 소성변형비 이방성계수가 낮은 저탄소 냉연강판 및 그제조방법
KR100530076B1 (ko) 내2차가공취성 및 성형성이 우수한 고장력강판과 그제조방법
KR20010062900A (ko) 딥드로잉성이 우수한 p첨가 극저탄소 냉연강판의 제조방법
KR930002739B1 (ko) 성형성이 우수한 Al-킬드 냉연강판의 제조방법
KR20010017609A (ko) 소성변형비 이방성계수가 낮은 저탄소 냉연강판 및 그 제조방법
KR100325707B1 (ko) 연성및드로잉성이우수한고강도열연강판및그제조방법
JP2712986B2 (ja) 成形性と化成処理性の優れた深絞り用冷延鋼板の製造方法
KR100276295B1 (ko) 저항용접이 우수한 고가공용 냉연강판의 제조방법
KR100530059B1 (ko) 드로잉성, 소부경화성 및 내2차가공취성이 우수한냉연강판의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020902

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee