KR970006608B1 - Method of manufacturing optical switch - Google Patents

Method of manufacturing optical switch Download PDF

Info

Publication number
KR970006608B1
KR970006608B1 KR1019930027342A KR930027342A KR970006608B1 KR 970006608 B1 KR970006608 B1 KR 970006608B1 KR 1019930027342 A KR1019930027342 A KR 1019930027342A KR 930027342 A KR930027342 A KR 930027342A KR 970006608 B1 KR970006608 B1 KR 970006608B1
Authority
KR
South Korea
Prior art keywords
layer
inp
sinx
forming
optical switch
Prior art date
Application number
KR1019930027342A
Other languages
Korean (ko)
Other versions
KR950021811A (en
Inventor
박종대
박기성
오광룡
오대곤
김흥만
Original Assignee
양승택
재단법인한국전자통신연구소
조백제
한국전기통신공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 재단법인한국전자통신연구소, 조백제, 한국전기통신공사 filed Critical 양승택
Priority to KR1019930027342A priority Critical patent/KR970006608B1/en
Publication of KR950021811A publication Critical patent/KR950021811A/en
Application granted granted Critical
Publication of KR970006608B1 publication Critical patent/KR970006608B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors

Abstract

A method for fabricating an optical switch is described that performs an etching process using a self-aligned mask prior to a selective re-growing process. The method includes the steps of forming an n+-InP buffer region 3, n-InGaAsP light pass path layer 4, undoped InP layer 10 and a semi-insulated InP layer 11, depositing SiNx layer 12, forming a pattern for the part where current is applied, performing an etching until the boundary between the undoped InP layer 10 and light pass path layer 4 is exposed, forming a p+-InP layer 13 and p+-InGaAs ohmic contact layer 14 and thus forming n-ohmic layer 1, etching the SiNx layer 12 and then performing a selective etching until the boundary between the light pass path layer 4 and semi-insulated InP layer 11 is exposed, and forming an n-ohmic metal layer 1. Thereby, it is possible to make a total reflection surface, and improve a switching efficiency and ohmic characteristic.

Description

자기정합(Self-aligend) 구조를 이용한 전반사형 광스위치의 제조방법Manufacturing method of total reflection type optical switch using self-aligend structure

제1도는 종래의 아연(Zn) 확산공정을 이용한 전반사형 광스위치의 평면도.1 is a plan view of a total reflection optical switch using a conventional zinc (Zn) diffusion process.

제2도는 제1도의 A-A'선에 따른 단면도.2 is a cross-sectional view taken along the line AA ′ of FIG. 1.

제3도는 본 발명에 따른 전반사형 광스우치의 평면도.3 is a plan view of a total reflection type optical stitch according to the present invention.

제4도는 제3도의 A-A'선에 따른 단면도.4 is a cross-sectional view taken along line AA ′ of FIG. 3.

제5도는 본 발명에 따른 제조공정을 나타낸 단면도.5 is a cross-sectional view showing a manufacturing process according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : n-오믹금속충 2 : n+-InP기판1: n-omic metal insect 2: n + -InP substrate

3 : n+-InP버퍼영역(하층 클래딩 영역)3: n + -InP buffer area (lower cladding area)

4 : n-InGaAsP도파로 영역 5 : v-InP층(상층 클래딩 영역)4: n-InGaAsP waveguide region 5: v-InP layer (upper cladding region)

6 : p+-InGaAs접촉영역 7 : Zn도핑된 p+-InP영역6: p + -InGaAs contact region 7: Zn doped p + -InP region

8 : P-오믹금속층 9 : SiNx(패시베이션 영역)8: P-omic metal layer 9: SiNx (passivation region)

10 : 도핑되지 않은 InP층(상층 클래딩 영역)10: undoped InP layer (upper cladding area)

11 : 반절연 InP영역 12 : SiNx자기정합 마스크층11: semi-insulated InP region 12: SiNx self-aligned mask layer

13 : P+-InP영역 14 : P+-InGaAs오믹접촉영역13: P + -InP area 14: P + -InGaAs ohmic contact area

본 발명은 전류주입에 의한 내부 전반사를 이용한 광도파로형 광스위치 제조기술에 관한 것으로, 특히 종래의 Zn확산을 이용한 내부 전반사형 광스위치 제조공정에서 SiNx를 자기 정합 마스크로 이용하여 식각에 의해 트랜치(Trench)를 형성한 후 재성장 방법을 사용하여 전류확산문제와 재현성이 부족한 Zn확산에 의한 공정을 개선한 내부 전반사형 광스위치의 제조방법에 관한 것이다.The present invention relates to an optical waveguide optical switch manufacturing technology using total internal reflection by current injection, and in particular, in a conventional internal total reflection optical switch manufacturing process using Zn diffusion, trenches are formed by etching using SiNx as a self-aligning mask. After the formation of the trenches, the present invention relates to a method for fabricating an internal total reflection type optical switch that uses a regrowth method to improve a current diffusion problem and a process due to the lack of reproducibility of Zn diffusion.

광 스위치의 제조방법에 관한 것이다.It relates to a manufacturing method of an optical switch.

광 스위치는 현재 사용하는 전자식 교환기의 성능에 한계를 넘어선 초고속 대용량의 신호를 처리하기 위한 차세대 고속 광교환기에 필수적인 부품이다.Optical switches are an essential component in next-generation high-speed optical exchanges for processing ultra-high-capacity signals that push the limits of current electronic exchanges.

InP/InGaAsP 이중해테로 구조(Double Heterostructure=DH)형태의 반도체 구조를 갖는 내부 전반사 광도파로형 광스위치는 광도파를 진행하는 광파의 진행방향이 상하층 InP클래딩층에서 도파로 내로 주입되는 전류밀도에 따른 굴절율의 변화로 인하여 특정한 주입전류 이상의 상태에서는 광파의 진행면에 전반사면이 형성되어 광파의 진행방향을 바꾸어 줌으로서 스위칭 현상을 일으키게 한다.In the total internal reflection optical waveguide optical switch having a semiconductor structure of InP / InGaAsP double-heterostructure (DH) type, the propagation direction of the optical wave propagates to the current density injected from the upper and lower InP cladding layers into the waveguide. Due to the change of the refractive index, a total reflection surface is formed on the traveling surface of the light wave in a state of a specific injection current or more, thereby causing a switching phenomenon by changing the traveling direction of the light wave.

제1도는 종래 확산공정을 이용한 전반사형 광스위치의 평면도를 나타낸 것이다.1 is a plan view of a total reflection type optical switch using a conventional diffusion process.

전반사형 광스위치는 제1도에 표시된 바와같이 교차각(θ)을 갖는 크로스바(cross bar)형태의 전반사를 이용하여 전반사면의 굴절율 변화가 △n=n(1-cosθ)의 관계를 만족하도록 해야 한다.As shown in FIG. 1, the total reflection type optical switch utilizes a total reflection in the form of a cross bar having a cross angle θ such that the refractive index change of the total reflection surface satisfies the relationship of Δn = n (1-cosθ). Should be.

상기한 바와같이 전반사면을 형성하기 위한 종래의 기술은 다음과 같다.As described above, the prior art for forming the total reflection surface is as follows.

상층 InP클래딩 영역을 Zn확산법에 의해 형성하는 방법이 있고, 하층 InP클래딩 영역을 먼저 Zn확산법에 의해 형성한 뒤 상층 InP클래딩 영역을 Zn확산법에 의해 전류가 주입되어 흐르는 영역을 좁혀주는 방법이 있다.There is a method of forming the upper InP cladding region by the Zn diffusion method, and there is a method of forming the lower InP cladding region first by the Zn diffusion method and then narrowing the region through which the current is injected by the Zn diffusion method in the upper InP cladding region.

또한 1차 상층 InP클래딩까지를 성정시킨후 n+-InP기판까지 식각하여 전류가 주입되어 흐르는 영역을 형성하고 전체 기판면을 재성장한뒤 광도파로 부분을 식각에 의해 재형성시키는 방법등이 있다.In addition, the first upper layer InP cladding may be formed and then etched to n + -InP substrate to form a region through which current is injected, regrown the entire substrate surface, and then reforming the optical waveguide part by etching.

종래의 전류주입에 의한 전반사형 광스위치의 경우에 있어서는 주입된 전류의 분포가 상층 클래딩영역 부위에서 평면적으로 확산되지 않고 좁은 InGaAsP광도파 영역으로 주입될때 스위칭 효율은 증가한다.In the case of the conventional total reflection type optical switch, the switching efficiency is increased when the injected current distribution is injected into the narrow InGaAsP waveguide region without being spread flatly in the upper cladding region.

그러나 내부 전반사형 광스위치 제조를 위해 통상적으로 쓰이고 있는 Zn확산방법은 높은 농도의 p-형 InP전류주입층의 형성과 전반사를 위해 형성되는 Zn층의 확산깊이의 조절 및 도핑의 급격한 분포도를 위해 확산시 Zn시료의 양과 온도 및 확산시간등의 복합적인 변수를 설정하여야 하는 어려운 공정을 필요로 한다.However, Zn diffusion method, which is commonly used for the manufacture of internal total reflection type optical switch, is used to form a high concentration of p-type InP current injection layer and to control the depth of diffusion of the Zn layer formed for total reflection and for rapid distribution of doping. Samples require a difficult process that requires the setting of complex variables such as the amount of Zn sample, temperature and diffusion time.

그리고 수평면을 따라 Zn이 확산되므로 확산을 고려하여 마스크폭을 줄여야하는 문제점이 발생한다.In addition, since Zn is diffused along the horizontal plane, a problem arises in that the mask width is reduced in consideration of diffusion.

따라서 본 발명은 자기정합 마스크를 사용하여 식각을 수행한 후 선택적 재성장 방법을 이용한 내부 전반사형 광스위치를 제조하는데 그 목적이 있다.Therefore, an object of the present invention is to manufacture an internal total reflection type optical switch using a selective regrowth method after etching using a self-aligning mask.

다음은 첨부한 도면을 참조하여 본 발명을 상세하게 설명한다.The following describes the present invention in detail with reference to the accompanying drawings.

제3도는 자기정합구조의 전반사형 광스위치의 평면도를 나타낸 것이다.3 is a plan view of a total reflection type optical switch of self-aligning structure.

제4도는 제3도의 A-A'선에 따른 단면도이다.4 is a cross-sectional view taken along line AA ′ of FIG. 3.

제5도는 본 발명에 따른 제조공정을 단면도로 나타낸 것이다.5 is a cross-sectional view of the manufacturing process according to the present invention.

제조공정순서는 n+-InP(2)기판상에 하층이 클래딩영역인 n+-InP버퍼영역(3)과 n-InGaAsP도파로영역(4)과 상층이 클래딩영역인 도핑되지 않은 InP층(10)과 반절연 InP층(11)을 MOCVD를 이용하여 순차적으로 성장시킨다(제5도의 a).Manufacturing process order is n + -InP (2) the substrate in the lower cladding region is the n + -InP buffer region 3 and n-InGaAsP waveguide region 4 and the InP layer (the upper layer 10 is not doped in the cladding region ) And semi-insulating InP layer 11 are grown sequentially by MOCVD (a in FIG. 5).

그 다음, PECVD(Plasma Enhancement CVD)를 이용하여 SiNx를 전면에 증착시킨다.Then, SiNx is deposited on the front surface using PECVD (Plasma Enhancement CVD).

그리고 SiNx상에 포토레지스트 마스크를 이용하여 광학 리소그라피에 의한 전류주입을 할 부분의 패턴을 형성한 후 포토레지스트를 제거한다.Then, the photoresist is formed on the SiNx using a photoresist mask to form a pattern of a portion to be subjected to current injection by optical lithography and then the photoresist is removed.

그리고 SiNx를 마스크로 하여 건식 또는 습식식각을 이용하여 도핑되지않은 InP층(10)과 n-InGaAsP층(4)의 경계면까지 식각하여 트랜치(Trench)를 형성한다(제5도의 b).A trench is formed by etching to the interface between the undoped InP layer 10 and the n-InGaAsP layer 4 using dry or wet etching using SiNx as a mask (b in FIG. 5).

트랜치가 형성된 상태에서 기판전면을 MOCVD 방법으로 트랜치 형성부분에 P+-InP층(13)과 P+-InGaAs 오믹접촉층(14)을 순차적으로 재성장시킨다(제3도의 c).In the state where the trench is formed, the P + -InP layer 13 and the P + -InGaAs ohmic contact layer 14 are sequentially regrown in the trench formation portion by the MOCVD method (c in FIG. 3).

또한 n-오믹층(1)을 형성한다.In addition, the n-omic layer 1 is formed.

그 다음 제3도에 표시된 광스위치의 도파로 패턴을 형성하기 위해 전면을 포토레지스트 마스크로 SiNx를 BOE습식식각을 행한후 SiNx마스크를 이용하여 TIR광스위치의 광도파로가 교차되는 부분을 P-금속을 증착시키기 위하여 n-InGaAsP층(4)과 반절연 InP층(11)의 경계면까지 기판전체를 제3도의 d에 도시된 바와같이 선택식각하여 교차형 광도파로를 형성한다.Then, to form the waveguide pattern of the optical switch shown in FIG. 3, BOE wet etching SiNx with the photoresist mask on the entire surface, and then cross the portion where the optical waveguide of the TIR optical switch crosses the P-metal using the SiNx mask. To deposit, the entire substrate is selectively etched to the interface between the n-InGaAsP layer 4 and the semi-insulating InP layer 11 as shown in d of FIG. 3 to form an intersecting optical waveguide.

그다음 전자빔(Electron-beam) 증착기를 이용하여 P/오믹금속층(8)을 형성하는 공정을 거쳐 자기정합 구조를 이용한 전반사형 광스위치의 제조를 끝마친다.Then, the P / omic metal layer 8 is formed by using an electron-beam evaporator to complete the manufacture of the total reflection type optical switch using a self-aligning structure.

상기한 바에 의한 본 발명은 자기정렬방법을 이용하여 전반사면을 선택적 재성장법에 의해 형성되므로 좁은 전반사면을 제조할 수 있다.According to the present invention as described above, since the total reflection surface is formed by the selective regrowth method using a self-aligning method, a narrow total reflection surface can be manufactured.

그리고 전반사면 형성을 위한 도핑의 조절이 용이하며, 계단형 도핑분포를 구성함으로써 스위칭 효율을 증가시킬 수 있다.In addition, it is easy to adjust the doping to form a total reflection surface, it is possible to increase the switching efficiency by configuring a stepped doping distribution.

또한 비도핑 InP층과 반절연 InP를 상층 클래딩으로 사용하여 전류의 확산효과를 극소화하며 광도파로의 전파손실을 주지 않게하였으며, 전극증착을 위해 반사면이 형성되는 부분전면을 사용할 수 있으므로 오믹특성을 향상시키며, 제작이 용이하다.In addition, the undoped InP layer and the semi-insulated InP are used as the upper cladding to minimize the diffusion effect of the current and to avoid the propagation loss of the optical waveguide, and the partial front surface where the reflective surface is formed for electrode deposition can be used. Improved and easy to manufacture

또한 교착각(θ)을 고려할 필요가 없으며, 또한 단위전류 밀도를 증착시켜 스위칭 효율을 증가시킨다.In addition, there is no need to consider the deadlock angle θ and also increase the switching efficiency by depositing a unit current density.

Claims (1)

반도체 광스위치의 제조방법에 있어서, n+-InP기판(2)상에 n+-InP버퍼영역(3), n-InGaAsP도파로층(4), 도핑되지않은 InP층(10), 반절연 InP층(11)을 순차적으로 성장시키는 공정과; 전면에 SiNx(12)를 증착시키는 공정과; 상기 SiNx상에 포토레지스트로 광학리소그라피에 의한 전류주입을 할 부분의 패턴을 형성한 후 상기 포토레지스트를 제거하고, 상기 SiNx를 마스크로 하여 상기 도핑되지않은 InP층(10)과 상기 n-InGaAsP도파로층(4)의 경계면까지 식각하여 트랜치를 형성하는 공정과; 상기 트랜치를 마스크로하여 기판 전면에 P+-InP층(13)과 P+-InGaAs오믹접촉층(14)을 순차적으로 재성장시키고 n-오믹층(1)을 형성시키는 공정과; 기판전면에 포토레지스트 마스크로 SiNx를 식각한후, SiNx를 마스크로 하여 상기 n-InGaAsP층(4)과 상기 반절연 InP층(11)의 경계면까지 선택식각하는 공정과; 전자빔 증착2기를 이용하여 n-오믹금속층(1)을 형성하는 공정을 포함하는 것을 특징으로 하는 자기정합구조를 이용한 전반사형 광스위치의 제조방법.In the method of manufacturing a semiconductor optical switch, an n + -InP buffer region (3), an n-InGaAsP waveguide layer (4), an undoped InP layer (10), and a semi-insulated InP on an n + -InP substrate (2). Growing the layer 11 sequentially; Depositing SiNx 12 on the entire surface; The photoresist is formed on the SiNx with a photoresist, and the photoresist is removed. The undoped InP layer 10 and the n-InGaAsP waveguide are formed using the SiNx as a mask. Etching to the interface of the layer 4 to form a trench; Sequentially regrowing the P + -InP layer (13) and the P + -InGaAs ohmic contact layer (14) over the substrate using the trench as a mask, and forming an n-ohmic layer (1); Etching SiNx on the entire surface of the substrate using a photoresist mask and then selectively etching the SiNx as a mask to an interface between the n-InGaAsP layer (4) and the semi-insulating InP layer (11); A method of manufacturing a total reflection type optical switch using a self-aligning structure, comprising the step of forming an n-omic metal layer (1) using two electron beam deposition units.
KR1019930027342A 1993-12-11 1993-12-11 Method of manufacturing optical switch KR970006608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930027342A KR970006608B1 (en) 1993-12-11 1993-12-11 Method of manufacturing optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930027342A KR970006608B1 (en) 1993-12-11 1993-12-11 Method of manufacturing optical switch

Publications (2)

Publication Number Publication Date
KR950021811A KR950021811A (en) 1995-07-26
KR970006608B1 true KR970006608B1 (en) 1997-04-29

Family

ID=19370653

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930027342A KR970006608B1 (en) 1993-12-11 1993-12-11 Method of manufacturing optical switch

Country Status (1)

Country Link
KR (1) KR970006608B1 (en)

Also Published As

Publication number Publication date
KR950021811A (en) 1995-07-26

Similar Documents

Publication Publication Date Title
KR960014732B1 (en) Rwg type semiconductor laser diode and manufacture thereof
JPH08107251A (en) Manufacture of reflection digital tuning laser
JPS643078B2 (en)
US5737350A (en) Semiconductor laser having multi-quantum barrier including complex barrier structure and method of making the semiconductor laser
JPH1093197A (en) Monolithically integrated optical semiconductor component
US5452383A (en) Optical switch and method for producing the optical switch
US6226310B1 (en) Semiconductor optical device
EP0285104A2 (en) Distributed feedback semiconductor laser
US4647339A (en) Production of semiconductor devices
KR970006608B1 (en) Method of manufacturing optical switch
KR20030065054A (en) Method for fabricating monolithic integrated semiconductor photonic devices
US5472907A (en) Method of manufacturing an optoelectronic semiconductor device
JP2792826B2 (en) Optical switch and method of manufacturing the same
CN206225776U (en) A kind of semiconductor laser with pectination CURRENT DISTRIBUTION
US5249244A (en) Optical device with an optical coupler for effecting light branching/combining and a method for producing the same
KR100427581B1 (en) Method for manufacturing semiconductor optical device
US5789275A (en) Method for fabricating a laser diode
KR970011524B1 (en) Manufacturing method of inner full reflection type optical switch using trench
US5214661A (en) Optoelectric device on semi-insulator substrate and methods for making such a device
CN106785884A (en) A kind of semiconductor laser with pectination CURRENT DISTRIBUTION and preparation method thereof
KR970004495B1 (en) Process for manufacturing semiconductor light switch
GB2620487A (en) Photonic devices with improved lateral current confinement
JPS60173519A (en) Semiconductor optical switch
KR100276078B1 (en) Structure of planar buried semiconductor and fabricating method thereof
KR950009632B1 (en) Semiconductor optical switch apparatus

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030701

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee