KR970004495B1 - Process for manufacturing semiconductor light switch - Google Patents

Process for manufacturing semiconductor light switch Download PDF

Info

Publication number
KR970004495B1
KR970004495B1 KR1019930018267A KR930018267A KR970004495B1 KR 970004495 B1 KR970004495 B1 KR 970004495B1 KR 1019930018267 A KR1019930018267 A KR 1019930018267A KR 930018267 A KR930018267 A KR 930018267A KR 970004495 B1 KR970004495 B1 KR 970004495B1
Authority
KR
South Korea
Prior art keywords
type
layer
waveguide
electrode
spreading
Prior art date
Application number
KR1019930018267A
Other languages
Korean (ko)
Other versions
KR950010147A (en
Inventor
오광룡
박기성
박종대
김홍만
Original Assignee
재단법인 한국전자통신연구소
양승택
한국전기통신공사
조백제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국전자통신연구소, 양승택, 한국전기통신공사, 조백제 filed Critical 재단법인 한국전자통신연구소
Priority to KR1019930018267A priority Critical patent/KR970004495B1/en
Priority to US08/301,998 priority patent/US5581108A/en
Priority to DE4432010A priority patent/DE4432010C2/en
Priority to GB9418153A priority patent/GB2281786B/en
Priority to FR9410930A priority patent/FR2709842B1/en
Priority to JP6216322A priority patent/JP2792826B2/en
Publication of KR950010147A publication Critical patent/KR950010147A/en
Application granted granted Critical
Publication of KR970004495B1 publication Critical patent/KR970004495B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/8605Resistors with PN junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A semiconductor light-switch manufacturing method using band rate change to light waveguide by current infusion. In case of previouse light-switch having to Zn spreading inside of waveguide line, by making P electrode inside of Zn spreading area, in production limitation was given in decreasing waveguide width and minus contact area. The purpose of this invention is providing method of manufacturing semiconductor light-switch in order to design waveguide line width freely. The said method comprising the steps of : on the n type InP board using epitecthing method orderly growing n type waveguide line layer and n type InP, spreading Zn at front side, spreading P type electrode at reflecting sife depositing n typr electrode after etching each layer on the waveguide line layer.

Description

반도체 광스위치 제조방법Semiconductor Optical Switch Manufacturing Method

제1a도 및 제1b도는 종래의 내부전반사형 반도체 광스위치의 평면도 및 단면도.1A and 1B are plan and cross-sectional views of a conventional internal reflection type semiconductor optical switch.

제2a도 및 제2b도는 본 발명의 내부전반사형 반도체 광스위치 구조의 평면도 및 단면도.2A and 2B are a plan view and a cross-sectional view of the internal reflection type semiconductor optical switch structure of the present invention.

제3도는 본 발명의 실시예에 따른 광스위치의 제작 공정 단계별 반사영역의 단면도.3 is a cross-sectional view of the reflective area for each step of the manufacturing process of the optical switch according to the embodiment of the present invention.

제4도는 본 발명의 변형예에 따른 내부전반사형 반도체 광스위치 구조의 단면도.4 is a cross-sectional view of an internal reflection type semiconductor optical switch structure according to a modification of the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : n+-InP기판2 : n-InGaAsP 광도파로층1: n + -InP substrate 2: n-InGaAsP optical waveguide layer

2' : p--InGaAsP 광도파로층3 : n-InP클래드(clad)층2 ': p--InGaAsP optical waveguide layer 3: n-InP clad layer

4 : p-InP블로킹(blocking)층5 : n-InP캡(cap)층4: p-InP blocking layer 5: n-InP cap layer

6 : n--InGaAsP캡(cap)층7 : p형 전극6: n - InGaAsP cap layer 7: p-type electrode

8 : n형 전극9 : 아연(Zn)8 n-type electrode 9: zinc (Zn)

10 : 제1광입력포트11 : 제2광입력포트10: first optical input port 11: second optical input port

12 : 제1광출력포트13 : 제2광출력포트12: first optical output port 13: second optical output port

본 발명은 전류주입에 의한 광도파로의 굴절율의 변화를 이용한 내부전반사형 광스위치의 제조방법에 관한 것이다. 내부 전반사형 반도체 광스위치의 동작원리는 전류가 주입되면 광도파로층의 굴절율이 변하게 되는(감소하게 되는) 효과를 이용하는 것으로, 광도파로층의 소정영역으로 전류가 주입되면 전류가 주입된 영역과 주입되지 않은 영역사이에 굴절율의 차가 생기게 되고 이 굴절율 차에 의해 도파로를 따라 진행하던 빛이 스넬(Snell)의 법칙에 따라 전류주입 경계면에서 전반사를 일으키므로써 광진행 경로가 바뀌게 되어 스위칭이 일어나게 된다.The present invention relates to a method for manufacturing an internal reflection type optical switch using a change in refractive index of an optical waveguide by current injection. The operation principle of the total internal reflection type semiconductor optical switch utilizes the effect that the refractive index of the optical waveguide layer changes (reduces) when current is injected, and when the current is injected into a predetermined region of the optical waveguide layer, the current is injected and There is a difference in refractive index between the unrestricted regions, and the light traveling along the waveguide causes total reflection at the current injection interface according to Snell's law.

즉 전반사를 일으키는 굴절율 차를 얻기 위하여 일정량 이상의 전류주입이 요구되는데 이때 필요한 전력은 P=IV=I2R로서 R에 의하여 전력손질이 비례하게 된다.That is, a certain amount of current injection is required in order to obtain a refractive index difference that causes total reflection. The power required is P = IV = I 2 R, and power loss is proportional to R.

지금까지 발명된 내부전반사형 반도체 광스위치중에서 가장 대표적인 구조가 제1도에 있다.The most representative structure of the internal reflection type semiconductor optical switch invented so far is shown in FIG.

제1a도는 평면도이며, 제1b도는 제1a도에서 A 와 A' 방햐으로 절단하였을 때의 단면도이다.FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line A and A 'in FIG. 1A.

n형 InP기판(1)위에 InP기판과 격자 정합을 이루는 n형 InGaAsP광도파로층(2), n형 InP클래드층(3) 및 InP기판과 격자 정합을 이루는 n형 InGaAsP캡층(6)을 에피택시(epitaxy)법에 의해 순차적으로 성장시킨 후, (9)번영역에 아연(Zn)을 확산시켜 이 부분을 p형으로 만든다.An n-type InGaAsP optical waveguide layer (2) forming a lattice match with an InP substrate (2), an n-type InP cladding layer (3) and an n-type InGaAsP cap layer (6) making a lattice match with an InP substrate are epitaxially deposited on the n-type InP substrate (1). After sequentially growing by the taxi method, zinc (Zn) is diffused into region (9) to make this portion p-type.

그리고 InGaAsP캡층(6) 및 InP클래드층(3)을 식각하여 마루(ridge)형태의 광도파로 구조를 형성한 후 전류주입을 위한 전극(7)번 및 (8)번을 반도체와 저항성 접촉을 이루는 금속을 증착하여 형성한다.Then, the InGaAsP cap layer 6 and the InP cladding layer 3 are etched to form a ridge type optical waveguide structure, and then electrodes 7 and 8 for current injection are in ohmic contact with the semiconductor. It is formed by depositing a metal.

이와같이 제작된 광스위치에 입력포트(10)을 통하여 입사된 빛은 마루형태의 광도파로층(2)을 따라 진행하게 된다.The light incident through the input port 10 to the optical switch fabricated as described above proceeds along the optical waveguide layer 2 having a floor shape.

이때, 신호전류 주입을 위한 전극(7)과 (8) 사이에 신호 전류를 주입하지 않으면 광도파로층(2)에 아무런 굴절율의 변화가 없으므로 빛은 광도파로층(2)의 교차점을 직진 통과하여 제2출력포트(13)를 통하여 나오게 된다.At this time, if no signal current is injected between the electrodes 7 and 8 for signal current injection, there is no change in the refractive index of the optical waveguide layer 2, so the light passes straight through the intersection point of the optical waveguide layer 2. It exits through the second output port 13.

그러나 (7) 와 (8)번 전극사이에 순방향 전압을 걸어 전류가 흐르도록 하면 주입된 반송자(carrier)들이 모여 있는 p형의 클래드영역(3) 아래부분의 광도파로층(2)만 굴절율이 감소하게 되고, 이 굴절율 감소량이 스넬의 범칙에 따라 다음식을 만족하게 되면 이 부분에서 빛의 전반사가 일어나 빛은 제1출력포트(12)로 나가게 된다.However, if the current flows by applying a forward voltage between electrodes (7) and (8), only the optical waveguide layer 2 under the p-type cladding region 3 where the injected carriers are gathered has a refractive index. When the refractive index reduction amount satisfies the following equation according to Snell's law, total reflection of light occurs in this portion, and the light goes to the first output port 12.

△n≥n(1-cosθ)Δn≥n (1-cosθ)

여기에서, n은 광도파로층의 굴절율이고, △n은 전류주입에 의한 광도파로층의 굴절율변화량이며, θ는 진행하는 빛의 굴절율 변화영역(p형전극(7)의 아래부분)에 대한 반사 각도이다.Here, n is the refractive index of the optical waveguide layer, Δn is the amount of change in the refractive index of the optical waveguide layer by current injection, θ is the reflection on the refractive index change region (lower portion of the p-type electrode 7) of the light to proceed Angle.

제1도에서 보듯이 기존의 광스위치의 경우에는 도파로 부분안에서 Zn확산이 이루어져야 하고, 또한 Zn확산 부분안에서 p-전극(7)이 형성되어짐으로써 제작상에서 도파로폭과 옴접촉면적을 줄이는데 제한이 주어지게 된다.As shown in FIG. 1, in the conventional optical switch, Zn diffusion must be performed in the waveguide portion, and p-electrode 7 is formed in the Zn diffusion portion, thereby limiting the reduction in waveguide width and ohmic contact area in manufacturing. You lose.

본 발명의 목적은 도파로폭의 설계를 자유롭게 할 수 있는 반도체 광스위치의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method of manufacturing a semiconductor optical switch that can freely design the waveguide width.

이제부터 첨부된 도면을 참조하면서 본 발명에 대해 상세히 설명하겠다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제2a도는 본 발명에 따른 광스위치 소자의 평면도이고, 제2b도는 제2a도의 A-A'방향으로 절단한 단면도이다.FIG. 2A is a plan view of the optical switch element according to the present invention, and FIG. 2B is a cross-sectional view taken along the line AA ′ of FIG. 2A.

이와같은 구조를 갖는 광스위치 소자의 구체적 실시에는 다음과 같으며, 각 공정단계별 반사면 부분의 단면도가 제3도에 나타내었다.Specific implementation of the optical switch element having such a structure is as follows, and a cross-sectional view of the reflecting surface portion of each process step is shown in FIG.

n형 InP기판(1)위에 n형 InGaAsP 광도파로층(2)과, n형 InP 클래드층(3), 전류차단을 위한 p형 InP블로킹 층(4) 및, n형 InP캡층(5)을 MOCVD 또는 LPE에 의한 에피택시(epitaxy)법으로 순차적으로 성장시키다(제3도(a)).An n-type InGaAsP optical waveguide layer 2, an n-type InP cladding layer 3, a p-type InP blocking layer 4 for blocking current, and an n-type InP cap layer 5 are disposed on the n-type InP substrate 1; Growing sequentially by epitaxy method by MOCVD or LPE (Fig. 3 (a)).

그리고 반사면을 이루는 부분의 n형 InP캡층(5)을 홈(groove) 모양으로 식각한 후에(제3도(b)) 전면에 Zn확산을 시킨다(제3도(c)).Then, the n-type InP cap layer 5 forming the reflective surface is etched into a groove shape (FIG. 3 (b)), and then Zn diffusion is performed on the entire surface (FIG. 3C).

반사면을 이루는 부분에 p형 전극(7)을 증착하고(제3도(d)) 상기 광도파로층(2)위의 각층을 습식 또는 건식식각법에 의해 식각해낸 후에 n형 전극(8)을 증착한다(제3도(e)).The p-type electrode 7 is deposited on the part forming the reflective surface (FIG. 3 (d)), and each layer on the optical waveguide layer 2 is etched by wet or dry etching, and then the n-type electrode 8 Is deposited (FIG. 3 (e)).

이와같이 제작된 광스위치는 제3도(e)에서 보듯이 전극면의 폭이 Zn확산부분 보다 넓게되어 p형 접촉저항을 줄일 수 있게 된다.In the optical switch fabricated as described above, as shown in FIG. 3E, the width of the electrode surface is wider than that of the Zn diffusion portion, thereby reducing the p-type contact resistance.

Zn확산부분 옆의 p형 전극(7)아래는 p/n/p/n 접합이 형성되어 전류가 차단되어져 반사면에만 효과적인 전류주입이 이루어지고 접촉면적을 극대화시키게 되는 것이다.Under the p-type electrode 7 next to the Zn diffusion, a p / n / p / n junction is formed so that the current is cut off so that effective current injection is made only on the reflective surface and the contact area is maximized.

제4도는 본 발명의 변형된 예로서 도파로의 p형의 InGaAsP일 경우이다.4 is a modified example of the present invention when the p-type InGaAsP of the waveguide.

이 경우에는 제2도의 경우와 달리 전류차단층인 p-InP가 따로 삽입되지 않는 구조로 접촉저항의 극대화가 가능한 구조이다.In this case, unlike the case of FIG. 2, the contact resistance is maximized because the current blocking layer p-InP is not inserted separately.

이상에서 설명된 바와같이 본 발명에 의하면 다음과 같은 효과를 얻을 수 있다.As described above, according to the present invention, the following effects can be obtained.

-p옴 저항접촉면적을 극대화시켜 접촉저항을 최소화 시킨다.-Maximize contact resistance by maximizing pohm resistance contact area.

-종래 구조의 경우에 전극 증착시의 리쏘그라피 정렬이 약 1㎛ 이내로 요구되나 본 발명의 경우에는 이러한 제한 요수가 사라진다.In the case of conventional structures, lithographic alignment at the time of electrode deposition is required within about 1 μm, but in the case of the present invention this limiting factor disappears.

-종래의 경우에는 도파로 부분안에 반사면을 이루는 확산 영역이 들어가야하고 또한 확산영역안에 적극부분이 들어 가야하는 등의 제한요건으로 도파로 폭의 제한이 있게 된다.-In the conventional case, the waveguide width is limited because the diffusion region forming the reflecting surface should enter the waveguide portion and the active portion should enter the diffusion region.

그러나 본 발명의 구조에서는 확산이 전면에 걸쳐서 이루어지고 전극이 반사면을 이루는 지점의 도파로 전면에 형성됨으로 제작상의 제한요소를 제거시켜 도파로 폭의 설계를 자유롭게 할 수 있다.However, in the structure of the present invention, the diffusion is made over the entire surface and the electrode is formed on the front side of the waveguide at the point where the electrode forms the reflective surface, thereby eliminating manufacturing limitations and freeing the design of the waveguide width.

-상기한 효과들에 의해 광스위치 제작조건을 완화시켜 모듈의 제작비용을 절감할 수 있다.The above-described effects can be alleviated the manufacturing conditions of the optical switch to reduce the manufacturing cost of the module.

Claims (3)

반도체 광스위치를 제조하는 방법에 있어서, n형 InP기판(1)위에 에피택시법으로 n형 광도파로층(2)과, n형 InP클래드층(3) 및, n형 InP캡층(5)을 순차로 성장시키는 단계와, 반사면을 이루는 부분의 상기 캡층(5)을 홈모양으로 식각한 후에 전면 Zn을 확산시키는 단계와, 상기 반사면을 이루는 부분에 p형 전극(7)을 증착하고 상기 광도파로층(2)위의 각층을 식각한 후 n형 전극(8)을 증착하는 단계를 포함하는 것을 특징으로 하는 반도체 광스위치 제조방법.In the method of manufacturing a semiconductor optical switch, an n-type optical waveguide layer 2, an n-type InP clad layer 3, and an n-type InP cap layer 5 are epitaxially deposited on an n-type InP substrate 1. Growing sequentially, etching the cap layer 5 of the portion forming the reflective surface into a groove shape and diffusing the front surface Zn, depositing a p-type electrode 7 on the portion forming the reflective surface and And etching the respective layers on the optical waveguide layer (2) and then depositing an n-type electrode (8). 제1항에 있어서, 상기 클래드층(3)의 형성이 완료된 후 전류차단을 위한 p형 InP블로킹층(4)을 추가로 성장시키고 상기 캡층(5)을 성장시키는 것을 특징으로 하는 반도체 광스위치 제조방법.The method of claim 1, wherein after the formation of the cladding layer 3 is completed, the p-type InP blocking layer 4 for current blocking is further grown, and the cap layer 5 is grown. Way. 제1항 또는 제2항에 있어서, 상기 광도파로층(2)은 도핑되지 않는 InGaAsP나 p형의 InGaAsP로 구성되는 것을 특징으로 하는 반도체 광스위치 제조방법.The method of manufacturing a semiconductor optical switch according to claim 1 or 2, wherein the optical waveguide layer (2) is composed of undoped InGaAsP or p-type InGaAsP.
KR1019930018267A 1993-09-09 1993-09-10 Process for manufacturing semiconductor light switch KR970004495B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019930018267A KR970004495B1 (en) 1993-09-10 1993-09-10 Process for manufacturing semiconductor light switch
US08/301,998 US5581108A (en) 1993-09-09 1994-09-07 Optical Switching device
DE4432010A DE4432010C2 (en) 1993-09-09 1994-09-08 Optical switching device and manufacturing method therefor
GB9418153A GB2281786B (en) 1993-09-09 1994-09-08 Optical switching device and manufacturing method of the same
FR9410930A FR2709842B1 (en) 1993-09-09 1994-09-08 Optical switching device and method of manufacturing such a device.
JP6216322A JP2792826B2 (en) 1993-09-09 1994-09-09 Optical switch and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930018267A KR970004495B1 (en) 1993-09-10 1993-09-10 Process for manufacturing semiconductor light switch

Publications (2)

Publication Number Publication Date
KR950010147A KR950010147A (en) 1995-04-26
KR970004495B1 true KR970004495B1 (en) 1997-03-28

Family

ID=19363351

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930018267A KR970004495B1 (en) 1993-09-09 1993-09-10 Process for manufacturing semiconductor light switch

Country Status (1)

Country Link
KR (1) KR970004495B1 (en)

Also Published As

Publication number Publication date
KR950010147A (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
EP0543369B1 (en) Modulator or switch with vertically-coupled anti-resonant reflecting optical waveguides ("arrow") on silicon
JPS643078B2 (en)
JPH0685035B2 (en) Light switch
US6072812A (en) Distributed feedback laser with loss coupling
KR970004495B1 (en) Process for manufacturing semiconductor light switch
US5581108A (en) Optical Switching device
KR0155509B1 (en) The fabrication method of opto-electronic ic
KR950009631B1 (en) Internal total reflection type semiconductor optical switch
US5048039A (en) Laser diode
JPH06130236A (en) Cross type optical switch
KR970008342B1 (en) High speed switch manufacturing method to ion injection
KR970006608B1 (en) Method of manufacturing optical switch
KR950009632B1 (en) Semiconductor optical switch apparatus
KR970011524B1 (en) Manufacturing method of inner full reflection type optical switch using trench
KR970006607B1 (en) Method of manufacturing high speed optical switch
JPS6329596A (en) Semiconductor laser
KR100212000B1 (en) Swmiconductor optical tunable filter having wavelength selectivity and method for fabricating the same
JPS6318874B2 (en)
JPS57139984A (en) Buried photo emitting and receiving semiconductor integrated device
JPH0548889B2 (en)
JPS60173519A (en) Semiconductor optical switch
JPH02298923A (en) Semiconductor optical switch
JPH023024A (en) Semiconductor optical switch
JPS5858783A (en) Semiconductor laser

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
G160 Decision to publish patent application
E902 Notification of reason for refusal
E601 Decision to refuse application