KR970004696B1 - Support recovery from the gas phase selective oxidation catalysts - Google Patents

Support recovery from the gas phase selective oxidation catalysts Download PDF

Info

Publication number
KR970004696B1
KR970004696B1 KR1019940013302A KR19940013302A KR970004696B1 KR 970004696 B1 KR970004696 B1 KR 970004696B1 KR 1019940013302 A KR1019940013302 A KR 1019940013302A KR 19940013302 A KR19940013302 A KR 19940013302A KR 970004696 B1 KR970004696 B1 KR 970004696B1
Authority
KR
South Korea
Prior art keywords
catalyst
support
water
aqueous solution
separated
Prior art date
Application number
KR1019940013302A
Other languages
Korean (ko)
Other versions
KR960000303A (en
Inventor
이원호
고동현
이윤미
백광호
Original Assignee
주식회사 엘지화학
성재갑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 성재갑 filed Critical 주식회사 엘지화학
Priority to KR1019940013302A priority Critical patent/KR970004696B1/en
Publication of KR960000303A publication Critical patent/KR960000303A/en
Application granted granted Critical
Publication of KR970004696B1 publication Critical patent/KR970004696B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/64Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
    • B01J38/66Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts using ammonia or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

The wasted catalyst, the water, and the ammonia air mixed in the weight ratio of 1:0.6-3:0.1-2 and are tumbled at the speed of 15-100rpm. The property of the catalyst separates water solution and the supporter, and the separated catalyst supporter is washed, dipped in the separated water solution, heated at the temperature of 50-80 degree C. At this time, the solution is stirred up, the water solution and the supporter are tumbled as it is heated, the supporter and the water solution are separated, the supporter is washed in the water, or after washing, dipped in a nitric acid or acetic acid water solution, washed in the water and is dried up to collect a oxidation catalyst supporter.

Description

기상 접촉 부분 산화 촉매의 지지체 회수 방법Support recovery method of gas phase contact partial oxidation catalyst

제1도 : 실시예에서 이용한 텀블링 장치.Fig. 1: Tumbling apparatus used in the embodiment.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 촉매 투입구 2 : 수용액출구1: catalyst inlet 2: aqueous solution outlet

3 : 축 4 : 모터3: axis 4: motor

5 : 스팀입구, 출구 6 : 촉매층5: steam inlet, outlet 6: catalyst bed

7 : 관 8 : 수용액층7: tube 8: aqueous solution layer

9 : 다공판9: perforated plate

본 발명은 원하는 활성을 잃은 기상접촉 부분 산화 촉매로부터 지지체를 회수하는 방법에 관한 것이다. 더 상세하게는 아크롤레인 혹은 메타크롤레인을 선택적 기상산화방법에 의해 아크릴산 혹은 메타크릴산으로 제조할 때 쓰이는 촉매가 원하는 활성을 잃었을 때, 폐촉매로부터 지지체를 손상없이 회수하는 방법에 관한 것이다. 회수한 지지체는 그대로 촉매제조에 재 사용할 수 있다.The present invention relates to a method for recovering a support from a gas phase contact partial oxidation catalyst which has lost its desired activity. More particularly, the present invention relates to a method for recovering a support without damage from a spent catalyst when a catalyst used for producing acrolein or methacrolein to acrylic acid or methacrylic acid by a selective gas phase oxidation method loses desired activity. The recovered support can be reused as it is for catalyst production.

심한 발열을 수반하는 기상 부분 산화 반응에 쓰이는 촉매는 대체로 표면적이 적고 열전달을 잘하는 물질에 활성이 좋은 촉매 성분을 적은 양 담지 혹은 코팅하여 사용한다. 이는 과도한 반응을 방지하고 반응열의 신속한 제거를 통해 온도제어 및 고온에서의 원치않는 완전 산화 반응을 최소화하며 촉매의 수명을 연장시키기 위해서이다.Catalysts used in the gas phase partial oxidation reaction with severe exotherm generally use a small amount of surface active material and heat transfer material supported or coated with a small amount of active catalyst components. This is to prevent excessive reactions, to quickly remove the heat of reaction, to minimize unwanted complete oxidation reactions at temperature control and high temperatures and to extend the life of the catalyst.

미국 특허 3,567,772와 4,410,725, 일본 공개 특허 49-11371, 49-169에 의하면 아크롤레인을 부분 산화시켜 아크릴산을 제조하는데 사용되는 촉매의 제조시 촉매염의 수용액의 혼합물에 표면적이 적고 기공이 큰 구형의 알루미늄 스폰지, 카보란담, 알루미나, 알루미나-실리카, 실리콘 카바이드 등을 넣고 증발 건조하여 촉매 성분을 상기의 지지체에 담지하고 소정 과정을 거쳐 최종적으로 촉매를 얻는다.According to U.S. Patents 3,567,772 and 4,410,725, Japanese Patent Laid-Open Nos. 49-11371, 49-169, spherical aluminum sponges having a small surface area and large pores in a mixture of aqueous solutions of catalyst salts in the preparation of a catalyst used for producing acrylic acid by partial oxidation of acrolein, Carborandam, alumina, alumina-silica, silicon carbide, and the like are added and evaporated to dry to support the catalyst component on the support, and finally through a predetermined process to obtain a catalyst.

상기의 방법 또는 상기의 유사한 방법으로 제조된 상업 촉매의 대부분은 촉매 활성 성분이 지지체 내부의 기공 속과 지지체 겉 표면에 마모 강도를 높이기 위한 특별한 방법으로 형성된 일정한 두께의 촉매층으로 이루어져 있다. 상업적 반응기에 사용되는 이러한 촉매는 사용시간이 경과함에 따라 활성을 점차 잃어 주기적으로 교체하여야 한다. 이때 폐촉매를 재사용하는 경우 경제적으로 유용할 뿐 아니라, 폐기물 발생량을 크게 줄일 수 있다. 폐촉매의 재활용 방법들 가운데 폐촉매로부터 경제적 가치가 있는 성분을 회수하여 재사용하는 방법을 많이 채택하고 있다.Most of the commercial catalysts prepared by the above method or similar methods consist of a constant thickness catalyst layer in which the catalytically active component is formed in a special way to increase the wear strength in the pores inside the support and on the surface of the support. These catalysts used in commercial reactors gradually lose their activity over time and have to be replaced periodically. In this case, the reuse of the waste catalyst is not only economically useful, but also greatly reduces the amount of waste generated. Among the recycling methods of waste catalysts, many methods for recovering and reusing economically valuable components from waste catalysts are adopted.

앞에서 언급한 부분 산화 촉매에 사용하는 지지체는 대체로 가격이 비싸며 대부분 강도와 열적 안정성이 높아 장기간 촉매 반응 후에도 기계적 강도, 표면적, 기공 분포 등의 물성이 거의 변하지 않는 성질을 가지고 있으므로 폐촉매로부터 손상없이 회수할 경우 여러번 재사용할 수가 있어 경제적이다.The support used for the above-mentioned partial oxidation catalyst is generally expensive and most of them have high strength and thermal stability, so that the properties such as mechanical strength, surface area, and pore distribution are almost unchanged even after prolonged catalytic reaction, so that they can be recovered without damage from the spent catalyst. It is economical because it can be reused many times.

본 발명은 아크롤레인 혹은 메타크롤레인을 선택적 기상 산화 방법에 의해 아크릴산 혹은 메타크릴산으로 제조할 때 쓰이는 촉매가 원하는 활성을 잃었을 때 지지체의 물성의 변화없이 효과적으로 지지체를 회수하는 공정에 관한 것이다.The present invention relates to a process for effectively recovering a support without changing the physical properties of the support when the catalyst used when preparing acrolein or methacrolein to acrylic acid or methacrylic acid by a selective gas phase oxidation method loses the desired activity.

본 발명에 적용되는 촉매는 다음 일반식(Ⅰ)로 나타내는 것으로 촉매활성성분이 직경 2-10㎜이며 흡수율이 5-30%인 구형 또는 원주형의 알루미나 스폰지, 카보란담, 알루미나, 알루미나-실리카, 실리콘 카바이드 등의 재질로 이루어진 지지체의 기공 속과 표면에 존재해 있는 경우이다.The catalyst applied to the present invention is represented by the following general formula (I), and the spherical or columnar alumina sponge, carborandam, alumina, alumina-silica having a catalytically active component of 2-10 mm in diameter and a water absorption of 5-30%. And present in the pores and surfaces of a support made of a material such as silicon carbide.

Mo(a)V(b)A(c)B(d)C(e)D(f)…………………………………………(Ⅰ)Mo (a) V (b) A (c) B (d) C (e) D (f)... … … … … … … … … … … … … … … … (Ⅰ)

상기 식에서, A는 텅스텐 또는 니오비움 중에서 적어도 한 성분을 나타내며, B는 철, 구리, 비스무트, 크롬, 안티몬, 칼륨 중에서 적어도 한 성분을 나타내며, C는 알칼리 금속 또는 알칼리 토금속 족 중 적어도 한 성분을 나타내며, D는 산소를 나타낸다.Wherein A represents at least one component of tungsten or niobium, B represents at least one component of iron, copper, bismuth, chromium, antimony and potassium, and C represents at least one component of an alkali metal or alkaline earth metal group. And D represents oxygen.

또한, a,b,c,d,e,f는 각각 Mo,V,A,B,C,D의 조성비를 나타내며 a=12일 때, b=2에서 12, c=1에서 10, d=1에서 6, e=0에서 4 그리고 f는 다른 원소의 산화값에 의해 결정되는 값이다.In addition, a, b, c, d, e, and f represent Mo, V, A, B, C, and D, respectively, and when a = 12, b = 2 at 12, c = 1 at 10, and d = 1 to 6, e = 0 to 4 and f are values determined by the oxidation of other elements.

본 발명의 지지체 회수공정은 크게 두 단계로 구분할 수 있다. 지지체 겉표면에 형성된 일정한 두께의 촉매층을 제거하는 공정과, 지지체 기공속에 있는 촉매를 제거하는 공정으로 나눌 수 있다.The support recovery process of the present invention can be largely divided into two steps. It can be divided into a step of removing the catalyst layer of a constant thickness formed on the outer surface of the support, and a step of removing the catalyst in the support pores.

본 발명의 지지체 회수 공정은 다음과 같다.The support recovery process of the present invention is as follows.

1단계, 폐촉매, 물, 암모니아수의 혼합물의 텀블링Step 1, Tumbling of the Mixture of Waste Catalyst, Water and Ammonia Water

2단계, 촉매 지지체와 침전물, 수용액과의 분리Step 2, Separation of Catalyst Support, Precipitate and Aqueous Solution

3단계, 촉매 지지체의 세척Step 3, wash the catalyst support

4단계, 촉매 지지체를 2단계에서 분리한 수용액으로 가열Step 4, heating the catalyst support with the aqueous solution separated in step 2

5단계, 촉매 지지체와 푸른 수용액의 분리Step 5, separation of the catalyst support and the blue aqueous solution

6단계, 촉매 지지체의 세척Step 6, wash the catalyst support

7단계, 촉매 지지체의 산처리Step 7, acid treatment of the catalyst support

상기의 공정을 자세히 설명하면 다음과 같다.The above process is described in detail as follows.

1단계에서는 폐촉매와 물과 암모니아수(30% 암모니아)를 무게비로 1:0.5-10:0.1-5의 비율로 섞은 뒤 10-100rpm, 10분 -3시간 텀블링을 시켜 지지체 겉 표면에 형성되어 있는 촉매층끼리의 마모를 일으켜 촉매층을 제거한다. 이때 암모니아수는 촉매의 유효성분을 녹여내어 촉매층의 결합력을 약하게 함으로써 촉매층의 제거를 가속화하여 기공 속의 촉매성분도 용해시키는 역할을 한다. 이 때 초음파를 사용하여 촉매층의 제거를 가속화할 수 있다. 2단계에서는 1단계에서 지지체로부터 제거된 촉매층 때문에 생긴 침전물, 촉매성분이 녹아있는 수용액과 지지체를 분리한다. 먼저 침전물이 쉽게 통과할 수 있을 정도의 구멍을 가진 여과장치와 진공펌프를 이용하여 촉매 지지체를 나머지와 분리한다. 그 다음 여과장치를 이용하여 수용액과 침전물을 따로 분리한다. 수용액상에 구리이온이 존재할 때 수용액의 색은 짙은 청색을 띤다. 여과 케이크로 남는 침전물은 건조시킨 후 폐기처분하거나 유효한 금속성분을 추출하여 쓸 수가 있다. 이 유효 성분의 회수는 본 발명의 범주에 들어가지 않는다. 청색의 수용액은 따로 보관한다. 3단계에서는 두번째 단계에서 분리한 촉매 지지체를 물로 세척한다. 4단계에서는 2단계에서 분리한 수용액 속에 3단계에서 얻은 지지체를 담근 뒤 40-90℃에서 30분에서 8시간 동안 가열하였다. 이 때 수용액 부분을 교반 혹은 지지체와 수용액을 간헐적으로 텀블링하여 촉매성분이 기공에서 용해되어 나오는 속도를 증가시킨다. 지지체를 시험 채취, 육안으로 관찰하여 기공 속의 촉매성분이 모두 용해되어 나왔는지를 확인한다. 5단계에서는 지지체를 시험재취, 육안으로 관찰하여 기공 속의 촉매 성분이 모두 용해되었는지를 확인한 후 2단계에서 사용한 여과 장치를 이용하여 지지체와 수용액을 분리한다.In the first step, the waste catalyst, water and ammonia water (30% ammonia) are mixed at a weight ratio of 1: 0.5-10: 0.1-5, and then tumbling at 10-100 rpm for 10 minutes -3 hours to form the surface of the support. The catalyst layers are abraded to remove the catalyst layers. At this time, the ammonia water dissolves the active ingredient of the catalyst to weaken the bonding strength of the catalyst layer, thereby accelerating the removal of the catalyst layer, and serves to dissolve the catalyst component in the pores. At this time, ultrasonic waves may be used to accelerate the removal of the catalyst layer. In step 2, the precipitate separated from the catalyst layer removed from the support in step 1, an aqueous solution in which the catalyst component is dissolved, and the support are separated. First, the catalyst support is separated from the rest by using a filtration device and a vacuum pump having a hole enough to allow the precipitate to pass easily. The aqueous solution and sediment are then separated separately using a filtration device. When copper ions are present in the aqueous solution, the color of the aqueous solution is dark blue. The precipitate remaining as a filter cake may be dried and then disposed of or disposed of and extracted with effective metals. Recovery of this active ingredient is not within the scope of the present invention. Blue aqueous solution is stored separately. In step 3, the catalyst support separated in step 2 is washed with water. In step 4, the support obtained in step 3 was immersed in the aqueous solution separated in step 2 and heated at 40-90 ° C. for 30 minutes to 8 hours. At this time, the aqueous solution portion is stirred or the support and the aqueous solution are intermittently tumbled to increase the rate at which the catalyst component is dissolved in the pores. Examine the support and visually confirm that all the catalyst components in the pores are dissolved. In step 5, the support is retested and visually observed to confirm that all the catalyst components in the pores are dissolved, and then the support and the aqueous solution are separated using the filtration device used in step 2.

이 수용액은 재사용할 수 있다. 6단계에서는 지지체의 기공속에 수용액이 남아 있지 않도록 물로 세척한다. 지지체를 충분히 세척하지 않고 건조시켰을 때 지지체에 얼룩이 지는 경우가 있다. 이때는 건조한 지지체를 3-50%의 질산 또는 초산 수용액에 30분 가량 담근 후 다시 물로 세척하고 건조하여 최종적으로 지지체를 회수한다. 이 때 회수된 지지체의 무게는 회수 공정전의 무게로부터 촉매활성성분이 차지하는 무게의 98%-110% 범위내여야 하며 육안으로 촉매성분이 관찰되지 않아야 한다.This aqueous solution can be reused. In step 6, the solution is washed with water so that no aqueous solution remains in the pores of the support. When the support is dried without being sufficiently washed, the support may be stained. In this case, the dried support is immersed in 3-50% nitric acid or acetic acid aqueous solution for about 30 minutes, washed with water and dried to recover the support. At this time, the weight of the recovered support should be in the range of 98% -110% of the weight of the catalytically active component from the weight before the recovery process, and the catalyst component should not be observed visually.

위의 발명을 효과적으로 수행하기 위해서는 다음의 기능을 갖춘 장치를 이용하는 것이 바람직하다. 첫째, 용기 속에 폐촉매, 물, 암모니아수를 용기 내부 체적의 10-70%까지 자유로이 투입하고, 공정 중 발생하는 수용액과 침전물을 쉽게 용기로부터 제거할 수 있어야 한다. 둘째, 용기 내부에 촉매의 구경보다 작은 직경 1-3㎜ 크기의 구멍들이 뚫린 촉매 지지판이 부착되어 공정 중 발생한 침전물과 수용액만 구멍을 통해 쉽게 빠져나올 수 있어야 한다. 셋째, 위의 용기와 혼합물을 10-100rpm으로 텀블링시킬 수 있어야 한다. 넷째, 위의 용기를 스팀이나 전기로 가열하여 용기 내의 혼합물을 40-90℃로 가열할 수 있어야 한다. 텀블링하는 동안에는 가열을 중단할 수 있다.In order to effectively carry out the above invention, it is desirable to use an apparatus having the following functions. First, the spent catalyst, water, and ammonia water should be freely added to the vessel up to 10-70% of the volume, and the aqueous solution and sediment generated during the process should be easily removed from the vessel. Second, the catalyst support plate with holes 1-3 mm in diameter smaller than the diameter of the catalyst is attached to the vessel so that only precipitates and aqueous solutions generated during the process can be easily released through the holes. Third, the vessel and mixture above should be tumbling at 10-100 rpm. Fourth, the vessel above can be heated with steam or electricity to heat the mixture in the vessel to 40-90 ° C. Heating can be stopped while tumbling.

위와 같은 기능을 갖춘 장치의 한 예가 도면 제1도에 나타나 있다. 그러나 본 발명을 수행하기 위한 장치는 제1도에 나타나 있는 것에 국한되는 것은 아니다.An example of a device having such a function is shown in FIG. However, the apparatus for carrying out the invention is not limited to that shown in FIG.

이하 도면 제1도에 나타나 있는 장치를 이용하여 실시예로 설명하면 다음과 같다. 다음의 실시예로서 본 발명이 한정되는 것은 아니며 사용되는 단위도 M, KL, Ton등 상업적으로 사용되는 더 큰 단위로 환산하여 사용할 수 있다.Hereinafter, an embodiment will be described using the apparatus shown in FIG. 1 as follows. The present invention is not limited to the following examples, and the units used may also be converted to larger units used commercially, such as M, KL, and Ton.

<실시예 1><Example 1>

실시예 1에서 사용된 장치는 도면 제1도에 나타난 것과 같으며 용기의 내부 체적은 약 30L이다. 용기 속에 직경이 약 8㎜이고, 새 촉매의 활성성분이 Mo12V5W3Cu2.4Sr0.8O이며 흡수율이 20%이며 알루미나-실리카로 구성된 지지체와 무게비와 24-26:76-74로 구성된 촉매의 폐촉매 10KG, 물 10L, 28% 암모니아수 1L를 넣고 60rpm으로 15분 동안 회전시켰다. 도면에 표시된 입구 2를 아래로 향하게 하고 용기로부터 침전물과 수용액을 빼낸 후 여과장치를 이용하여 침전물과 청색의 수용액을 분리하였다. 입구 1을 통해 물을 10L가량 넣고 지지체를 15rpm으로 10분간 텀블링한 후 물을 빼내었다. 촉매를 임의로 100개 채취하여 육안과 현미경으로 관찰했을 때 지지체 표면에 형성되었던 촉매층은 대체로 벗겨져 나갔음이 확인되었다. 위의 샘플을 건조시켜 무게를 측정했을 때, 폐촉매 100개의 평균 무게의 약 12% 감소되었고, 이는 촉매 성분의 약 48%에 해당되는 양이다. 앞에서 분리한 청색의 수용액을 다시 용기 속에 채우고 스팀으로 수용액을 60℃에서 2시간 동안 가열하였다. 15분 간격으로 스팀의 투입을 중단하고 용기를 15rpm으로 1분 동안 텀블링 시켰다. 지지체를 푸른 수용액과 분리하고, 세척한 후 지지체를 100개를 채취하여 육안으로 혹은 광학 현미경으로 관찰하였을 때 가공속의 촉매가 모두 제거되었다. 건조 후의 지지체의 전체 무게는 약 7.5KG이었다. 이는 폐촉매 무게의 75%에 해당하며, 촉매 성분이 모두 제거되었음을 의미한다.The apparatus used in Example 1 is as shown in FIG. 1 and the internal volume of the vessel is about 30 liters. In the vessel, about 8 mm in diameter, the active ingredient of the new catalyst was Mo 12 V 5 W 3 Cu 2.4 Sr 0.8 O, the absorption rate was 20%, and the support was composed of alumina-silica and the weight ratio was 24-26: 76-74. 10 kg of spent catalyst, 10 L of water, and 1 L of 28% ammonia water were added and spun at 60 rpm for 15 minutes. The inlet 2 shown in the figure faced down and the precipitate and the aqueous solution were removed from the vessel, and the precipitate and the blue aqueous solution were separated using a filter. About 10L of water was added through the inlet 1, and the support was tumbled at 15 rpm for 10 minutes, and the water was drained. When 100 random catalysts were taken and observed with a naked eye and a microscope, it was confirmed that the catalyst layer formed on the surface of the support was generally peeled off. When the above samples were dried and weighed, about 12% of the average weight of the 100 spent catalysts was reduced, corresponding to about 48% of the catalyst component. The blue aqueous solution previously separated was filled back into the vessel and the aqueous solution was heated at 60 ° C. for 2 hours with steam. The steam was stopped at 15 minute intervals and the vessel was tumbled at 15 rpm for 1 minute. The support was separated from the blue aqueous solution, washed, and then 100 of the support was taken and observed by visual or optical microscope to remove all catalysts in the processing. The total weight of the support after drying was about 7.5 KG. This corresponds to 75% of the spent catalyst weight, meaning that all catalyst components have been removed.

<비교예 1><Comparative Example 1>

실시예 1에서 같은 양의 폐촉매, 물, 암모니아수를 용기에 넣었다. 30분후에 용기로부터 침전물과 수용액을 빼낸 후 실시예 1에서와 같이 물을 10L가량 넣고 지지체를 15rpm으로 10분간 텀블링한 후 물을 빼내었다. 촉매를 임의로 100개 채취하여 육안과 현미경으로 관찰했을 때 지지체 표면에 상당량의 촉매층이 그대로 있음이 확인되었다.In Example 1, the same amount of spent catalyst, water, and ammonia water were placed in a container. After 30 minutes, the precipitate and the aqueous solution were removed from the vessel, and 10 L of water was added as in Example 1, the support was tumbling at 15 rpm for 10 minutes, and then water was removed. When 100 random catalysts were taken and observed with the naked eye and a microscope, it was confirmed that a considerable amount of catalyst layer remained on the surface of the support.

위의 샘플을 건조시켜 무게를 측정했을 때, 폐촉매 100개의 평균 무게의 약 5.5% 감소되었고, 이는 촉매 성분의 약 22.2%에 해당되는 양이다.When the above samples were dried and weighed, about 5.5% of the average weight of the 100 spent catalysts was reduced, corresponding to about 22.2% of the catalyst component.

<비교예 2><Comparative Example 2>

실시예 1에서 같은 양의 폐촉매, 물을 용기에 넣고 60rpm으로 15분 동안 회전시켰다. 후에 용기로부터 침전물과 수용액을 빼낸 후 실시예 1에서와 같이 물을 10L가량 넣고 지지체를 15rpm으로 10분간 텀블링한 후 물을 빼내었다. 촉매를 임의로 100개 채취하여 육안과 현미경으로 관찰했을 때 비교예 1에서와 같이 지지체 표면에 상당량의 촉매층이 그대로 있었다. 건조시켜 무게를 측정했을 때, 폐촉매 100개의 평균 무게의 약 7%가 감소되었고, 이는 촉매 성분의 약 28%에 해당되는 양이다.In Example 1, the same amount of spent catalyst and water were placed in a vessel and spun at 60 rpm for 15 minutes. After the precipitate and the aqueous solution was removed from the vessel and 10L of water was added as in Example 1 and the support was tumbling at 15 rpm for 10 minutes, and then water was removed. When 100 random catalysts were collected and observed with a naked eye and a microscope, a substantial amount of catalyst layer remained on the surface of the support as in Comparative Example 1. When weighed by drying, about 7% of the average weight of the 100 spent catalysts was reduced, corresponding to about 28% of the catalyst component.

<비교예 3><Comparative Example 3>

회수한 푸른 수용액을 60℃에서 가열하지 않고 실온으로 유지하는 것을 제외하고는 실시예 1과 같은 조건에서 실험을 하였다. 촉매를 관찰했을 때 기공 속에 촉매 성분이 많이 남아있었다. 건조 후의 지지체의 전체무게는 약 8.21KG이었다. 이는 폐촉매 무게의 82.1%에 해당하며, 촉매 성분의 약 72%가 제거되었음을 의미한다.The recovered blue aqueous solution was tested under the same conditions as in Example 1 except that the solution was maintained at room temperature without heating at 60 ° C. When the catalyst was observed, many catalyst components remained in the pores. The total weight of the support after drying was about 8.21 KG. This corresponds to 82.1% of the spent catalyst weight, meaning that about 72% of the catalyst components have been removed.

<비교예 4><Comparative Example 4>

실시예 1에서와 같은 방법으로 지지체 표면의 촉매층을 제거한 후, 실시예 1에서와 같이 회수한 수용액을 사용하지 않고 새로운 암모니아수 1L를 물 10L와 넣고 스팀으로 수용액을 가열하였다. 이 때 암모니아수가 끓으면서 암모니아 증기가 심하게 배출되어 실험을 중단하였다.After removing the catalyst layer on the surface of the support in the same manner as in Example 1, 1L of fresh ammonia water was added with 10L of water without using the recovered aqueous solution as in Example 1, and the aqueous solution was heated with steam. At this time, the ammonia water was boiled and the ammonia vapor was severely discharged to stop the experiment.

Claims (1)

아크롤레인 또는 메타크롤레인을 선택적 기상산화방법에 의해 아크릴산 또는 메타크릴산으로 제조할 때 사용되는 촉매가 활성을 잃었을 때 폐촉매로부터 지지체를 손상없이 회수하는 방법에 있어서, 1단계에서 폐촉매와 물과 암모니아수를 무게비로 1:0.6-3:0.1-2의 비율로 혼합후 15-100rpm으로 텀블링시키고, 2단계에서 촉매 성분이 녹아있는 수용액과 지지체를 분리하며, 3단계에서 2단계에서 분리한 촉매 지지체를 물로 세척하고, 4단계에서 2단계에서 분리한 수용액 속에 3단계에서 얻은 지지체를 담근 뒤 50-80℃로 가열하며, 가열시 수용액 부분을 교반 또는 지지체와 수용액을 텀블링하며, 5단계에서 촉매 지지체와 수용액을 분리하고, 6단계에서 촉매 지지체를 물로 세척 또는 물로 세척 후 질산 또는 초산 수용액에 담근 후 물로 세척하고 건조함을 특징으로 하는 방법.A method for recovering a support without damage from a spent catalyst when the catalyst used to prepare acrolein or methacrolein into acrylic acid or methacrylic acid by a selective gas phase oxidation method has lost activity, in the first step, Ammonia water was mixed at a weight ratio of 1: 0.6-3: 0.1-2, and then tumbling at 15-100 rpm. In step 2, the aqueous solution and the support in which the catalyst components were dissolved were separated, and in step 3, the catalyst support was separated in step 2. Was washed with water, the support obtained in step 3 was immersed in an aqueous solution separated in step 4 to step 2 and heated to 50-80 ° C., during heating, the aqueous solution was stirred or tumbled the support and the aqueous solution, and in step 5 the catalyst support And the aqueous solution is separated, and in step 6, the catalyst support is washed with water or washed with water and then immersed in nitric acid or acetic acid aqueous solution and then washed with water and dried How to.
KR1019940013302A 1994-06-12 1994-06-12 Support recovery from the gas phase selective oxidation catalysts KR970004696B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940013302A KR970004696B1 (en) 1994-06-12 1994-06-12 Support recovery from the gas phase selective oxidation catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940013302A KR970004696B1 (en) 1994-06-12 1994-06-12 Support recovery from the gas phase selective oxidation catalysts

Publications (2)

Publication Number Publication Date
KR960000303A KR960000303A (en) 1996-01-25
KR970004696B1 true KR970004696B1 (en) 1997-04-02

Family

ID=19385213

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940013302A KR970004696B1 (en) 1994-06-12 1994-06-12 Support recovery from the gas phase selective oxidation catalysts

Country Status (1)

Country Link
KR (1) KR970004696B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800756B1 (en) 2016-06-13 2017-11-23 임근우 A seat for a flower bed

Also Published As

Publication number Publication date
KR960000303A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
JP4125344B2 (en) Purification method of alkaline aqueous solution
KR970004696B1 (en) Support recovery from the gas phase selective oxidation catalysts
JP4005291B2 (en) Regeneration method of used denitration catalyst
US4440729A (en) Procedure for chemical, automatic dissolution of molybdenum core wire in tungsten filament coil and a device for implementing the procedure
EP0058453B1 (en) Method of recovering nickel from a spent fat hardening catalyst
EP0528359A1 (en) Process for regenerating clogged filters
JP3101027B2 (en) Regeneration method of ceramic filter
GB2248559A (en) Cleaning filters
US5217629A (en) Procedure for cleaning filter used in production of hydrogen peroxide from anthraquinone
PL99331B1 (en) METHOD OF SEPARATING CATALYSTS FROM THE RESIDUES OF POST-STILATION EPOXYING AND HYDROXYLING REACTIONS
JP2775033B2 (en) Activation and regeneration of aldol condensation catalyst
JP3829361B2 (en) Propylene oxide production method
US5017345A (en) Method of producing uranium (IV) fluoride
JPH10251025A (en) Production of ammonium metavanadate
JP2514933B2 (en) Method for cleaning hollow fiber modules
CN220951187U (en) BDO waste sulfuric acid recovery system
JPS5852239A (en) Treatment of gas produced by oxidation reaction
JPH02209433A (en) Method for recovering plantinum group metal from metallic carrier catalyst
JPS5921520A (en) Hydrothermal treatment for chemical residue
JP3853452B2 (en) Method for recovering catalyst components from waste catalyst
JPS6383031A (en) Production of dehydrogenation reaction product or hydrogenation reaction product
SU1369763A1 (en) Method of cleaning candle filters
DE2351661A1 (en) Recovery of silver oxide and catalyst carrier - from spent silver catalysts used for mfr. of ethylene oxide
SU960290A1 (en) Method for purifying ore from impurities
JPS58114734A (en) Regenerating method for catalyst for wet oxidation of waste water

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120629

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 17

EXPY Expiration of term