JPS6383031A - Production of dehydrogenation reaction product or hydrogenation reaction product - Google Patents

Production of dehydrogenation reaction product or hydrogenation reaction product

Info

Publication number
JPS6383031A
JPS6383031A JP61227839A JP22783986A JPS6383031A JP S6383031 A JPS6383031 A JP S6383031A JP 61227839 A JP61227839 A JP 61227839A JP 22783986 A JP22783986 A JP 22783986A JP S6383031 A JPS6383031 A JP S6383031A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
dehydrogenation
hydrogenation
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61227839A
Other languages
Japanese (ja)
Inventor
Yasuo Imai
康夫 今井
Toshiaki Matsuo
利昭 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP61227839A priority Critical patent/JPS6383031A/en
Publication of JPS6383031A publication Critical patent/JPS6383031A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Indole Compounds (AREA)

Abstract

PURPOSE:To circulate a catalyst dispersion through a reaction system for use, by carrying out dehydrogenation or hydrogenation reaction using a Pd based solid catalyst, introducing a reaction solution into a filtering machine capable of automatically discharging filter cakes in a hermetically sealed system to separate the catalyst and washing the catalyst with a reaction solvent. CONSTITUTION:Dehydrogenation reaction e.g. cycloalkene ring aromatic ring, or hydrogenation reaction, e.g. acetylene alcohol olefin alcohol, is carried out in the liquid phase in the presence of a Pd based solid catalyst and the resultant reaction solution is introduced into a filtering machine capable of automatically discharging filter cakes in a hermetically sealed system to separate the catalyst, which is then washed with a reaction solvent and prepare a catalyst dispersion. The resultant catalyst dispersion is then circulated through the reaction system for use. A recovered reaction solvent by distilling the filtrate is economically used as the reaction solvent. Catalyst loss, danger of ignition, deterioration in reaction yield in repeated use, etc., can be suppressed and handling of the sludgelike filter cakes can be avoided. The catalyst life is prolonged at the same time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は脱水素反応物又は水素添加反応物の製造法に関
し、さらに詳しくは、パラジウム系固体触媒の存在下に
原料化合物の脱水素反応又は水素添加反応を行なう方法
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a dehydrogenation reactant or a hydrogenation reactant, and more specifically, to a method for producing a dehydrogenation reaction product or a hydrogenation reaction product, and more specifically, a method for producing a dehydrogenation reaction product or a hydrogenation reaction product in the presence of a palladium-based solid catalyst. This invention relates to a method for carrying out a hydrogenation reaction.

(従来の技術) 従来よりパラジウム系固体触媒の存在下に原料化合物の
脱水素反応又は水素添加反応を行なう方法が知られてい
る。脱水素反応としては、例えばシクロアルケン環を芳
香族環にする方法(特開昭54−19971号、同56
−105160号等)が挙げられ、又、水素添加反応と
しては、例えばアセチレンアルコールやアルキニルアル
コールヲ部分水添して対応するオレフィンアルコールに
する方法(特公昭27−1280号、%開昭56−12
326号、同51−110507号、同60−9793
7号等)やシクロアルケノンをシクロアルカノンにする
方法(特公昭55−12883号等)などが挙げられる
(Prior Art) A method of carrying out a dehydrogenation reaction or a hydrogenation reaction of a raw material compound in the presence of a palladium-based solid catalyst is conventionally known. As a dehydrogenation reaction, for example, a method of converting a cycloalkene ring into an aromatic ring (JP-A No. 54-19971, No. 56
-105160, etc.), and examples of the hydrogenation reaction include, for example, a method of partially hydrogenating acetylene alcohol or alkynyl alcohol to produce the corresponding olefin alcohol (Japanese Patent Publication No. 1280/1983,
No. 326, No. 51-110507, No. 60-9793
7 etc.) and a method of converting a cycloalkenone into a cycloalkanone (Japanese Patent Publication No. 55-12883 etc.).

これらの反応において一度使用した触媒を再使用するに
あたっては、一般に濾過等の操作で触媒を反応系から外
部に取り出した後、反応器内に再度投入する方法がとら
れている。
In order to reuse a catalyst that has been used once in these reactions, a method is generally used in which the catalyst is removed from the reaction system by an operation such as filtration and then reinjected into the reactor.

しかし、この方法では(1)触媒を濾過により取り出し
反応器に投入する工程で5%程度のロスが発生する、(
2)ヘドロ状の濾滓のハンドリングが必要である、(3
)触媒を外部に取り出すため大気との接触によって発火
の危険性がある、(4)触媒の寿命が低下する、(5)
繰り返えし使用時の反応収率が低下する等の問題があっ
た。
However, in this method, (1) a loss of about 5% occurs in the step of removing the catalyst by filtration and introducing it into the reactor;
2) It is necessary to handle the sludge-like filter slag, (3)
) Since the catalyst is taken out, there is a risk of ignition due to contact with the atmosphere. (4) The life of the catalyst will be shortened. (5)
There were problems such as a decrease in reaction yield upon repeated use.

(発明が解決しようとする問題点〕 そこで本発明者らはこれらの問題点を解決すべ(鋭意慣
肘の結果、パラジウム系固体触媒を用いた脱水素又は水
素添加反応及び触媒の回収、再利用の工程を密閉系で行
なうことにより前記(1)〜(5)の欠点を解決できる
ことを見い出し、この知見に基づいて本発明を完成する
に到った。
(Problems to be Solved by the Invention) Therefore, the inventors of the present invention have attempted to solve these problems (as a result of extensive efforts, we have conducted a dehydrogenation or hydrogenation reaction using a palladium-based solid catalyst, and recovered and reused the catalyst. It has been discovered that the above-mentioned drawbacks (1) to (5) can be solved by carrying out the steps in a closed system, and based on this knowledge, the present invention has been completed.

(問題点を解決するための手段) かくして本発明によれば、原料化合物の脱水素反応又は
水素添加反応をパラジウム系固体触媒の存在下に液相で
実施した後、密閉系で濾滓の自動排出が可能な濾過様に
反応液を導入して触媒を濾滓として分離し、次いで濾滓
を反応溶剤で洗浄して触媒分散液を調整し、それを反応
系に循環使用することを特徴とする脱水素反応物又は水
素添加反応物の製造法が提供される。
(Means for Solving the Problems) Thus, according to the present invention, after the dehydrogenation reaction or hydrogenation reaction of the raw material compound is carried out in the liquid phase in the presence of a palladium-based solid catalyst, the filter cake is automatically removed in a closed system. The reaction solution is introduced in a filtration-like manner that can be discharged, the catalyst is separated as a filtrate, and the filtrate is then washed with a reaction solvent to prepare a catalyst dispersion, which is then recycled to the reaction system. A method for producing a dehydrogenation reactant or a hydrogenation reactant is provided.

本発明におけるパラジウム系固体触媒を用いた脱水素反
応又は水素添加反応は通常行なわれているものであれば
と(に制限されるものではない。
The dehydrogenation reaction or hydrogenation reaction using a palladium-based solid catalyst in the present invention is not limited to any conventional reaction.

脱水素反応の具体例としては、例えばパラジウム−カー
ボン触媒の存在下に4−ヒドロキシキノリンを合成する
方法(米国特許第2558211号)、パラジウム−カ
ーボン触媒の存在下に4−オキソ−4,5,6,7−チ
トラヒドロインドールを4−ヒドロキシインドールにす
る方法(特開昭54−19971号、同56−1031
50号)等が挙げられる。また、水素添加反応としては
、パラジウム−炭酸カルシウム触媒の存在下にアセチレ
ンアルコールまたはその誘導体をアリルアルコールやオ
レフィンアルコールにする方法(%公昭27−1280
号、特開昭56−12326号、淋151−11050
7号、同60−97957号等)、パラジウム−カーボ
ン触媒の存在下にシクロベンテノン銹導体をシクロペン
タノン誘導体にする方法(特公昭55−12883号)
等が挙げられる。
Specific examples of dehydrogenation include, for example, a method of synthesizing 4-hydroxyquinoline in the presence of a palladium-carbon catalyst (US Pat. No. 2,558,211), a method of synthesizing 4-oxo-4,5, Method for converting 6,7-titrahydroindole to 4-hydroxyindole (JP-A-54-19971, JP-A-56-1031)
No. 50), etc. In addition, as a hydrogenation reaction, a method of converting acetylene alcohol or its derivatives to allyl alcohol or olefin alcohol in the presence of a palladium-calcium carbonate catalyst (% Kosho 27-1280
No., JP-A-56-12326, Hino 151-11050
7, No. 60-97957, etc.), a method for converting a cyclobentenone rust conductor into a cyclopentanone derivative in the presence of a palladium-carbon catalyst (Japanese Patent Publication No. 12883/1983)
etc.

本発明において用いられるパラジウム系固体触媒はパラ
ジウムを触媒活性成分として含有するものであり、その
具体例としてはパラジウム−カーボン、パラジウム黒、
コロイドパラジウム、パラジウム−炭酸カルシウム、パ
ラジウム−硫酸バリウム、パラジウム−シリカゲル、パ
ラジウム−酸化アルミニウム等が挙げられる。
The palladium-based solid catalyst used in the present invention contains palladium as a catalytically active component, and specific examples include palladium-carbon, palladium black,
Examples include colloidal palladium, palladium-calcium carbonate, palladium-barium sulfate, palladium-silica gel, palladium-aluminum oxide, and the like.

本発明の反応溶剤は、反応生成物に対し不活性であれば
特に制限されず、通常、脱水素又は水素添加反応におい
て用いられているものであれば構わない。
The reaction solvent of the present invention is not particularly limited as long as it is inert to the reaction product, and any solvent that is normally used in dehydrogenation or hydrogenation reactions may be used.

また、反応時間、反応温度、圧力、触媒の添加量等の反
応に係わる種々の条件は、各反応ごとに異なるものであ
り、適宜選択される。
Further, various conditions related to the reaction, such as reaction time, reaction temperature, pressure, amount of catalyst added, etc., differ for each reaction and are appropriately selected.

本発明において脱水素又は水素添加反応及び触媒の回収
、再利用の工程は密閉系で実施される。
In the present invention, the dehydrogenation or hydrogenation reaction and the catalyst recovery and reuse steps are performed in a closed system.

反応終了後、固体触媒を含む反応生成液は濾過機に導入
され、触媒が濾滓として分離される。使用される濾過機
は密閉系で濾滓の自動排出が可能なものであり、例えば
、濾滓を掻き取り装置によって掻き落し、更に濾過機内
に設けられたスフIJ。
After the reaction is completed, the reaction product liquid containing the solid catalyst is introduced into a filter, and the catalyst is separated as a filtrate. The filtration machine used is a closed system capable of automatically discharging the filtrate. For example, the filtration dregs are scraped off by a scraping device, and the filter dregs are also scraped off by a suction IJ installed inside the filtration machine.

−コンベアーで濾過構外に排出することが可能なもので
、具体的にはミウラ化学装置■のA型ウルトラフィルタ
ー、凹型ウルトラフィルター、■型ウルトラフィルター
等が使用される。
- A type that can be discharged to the outside of the filtration facility using a conveyor, and specifically, Miura Chemical Equipment Type A ultra filter, concave type ultra filter, type ■ type ultra filter, etc. are used.

か(して触媒を濾過した後、F液を蒸留することにより
反応浴剤が回収される。また不揮発留分中の反応生成物
は蒸留、晶析等の操作を行なうことにより得ることがで
きる。
After filtering the catalyst, the reaction bath agent is recovered by distilling the F solution.Also, the reaction product in the nonvolatile fraction can be obtained by performing operations such as distillation and crystallization. .

濾滓として回収された触媒は反応M剤で洗浄され、触媒
分散液に調整される。この際、反応溶剤として回収した
浴剤を用いると経済性の点で好ましい。か(して調整さ
れた触媒分散液は再び反応系内に導入され、循環使用さ
れる。
The catalyst recovered as a filtrate is washed with a reaction M agent and prepared into a catalyst dispersion. In this case, it is preferable to use a recovered bath agent as a reaction solvent from the viewpoint of economy. The catalyst dispersion prepared in this manner is reintroduced into the reaction system and recycled.

以下に本発明の一具体例を図面により説明する。A specific example of the present invention will be explained below with reference to the drawings.

第1図において、反応器2に設けられた管1より原料及
び管11より触媒分散液がそれぞれ反応器2に供給され
脱水素反応又は水素添加反応が行なわれる。反応生成液
は管3より濾過機4に導入され、触媒が濾滓として分離
される。ヂ液は管5より蒸留器乙に移され、蒸留を行な
うことにより管7から溶剤を回収する。溶剤蒸留後、非
揮発留分は精製工程に供給され、そこで晶析、蒸留等の
手法によって目的生成物が管10より得られる。
In FIG. 1, a raw material is supplied from a tube 1 provided in a reactor 2, and a catalyst dispersion liquid is supplied from a tube 11, respectively, to the reactor 2, where a dehydrogenation reaction or a hydrogenation reaction is carried out. The reaction product liquid is introduced into a filter 4 through a pipe 3, and the catalyst is separated as a filtrate. The liquid is transferred from tube 5 to distiller B, and the solvent is recovered from tube 7 by distillation. After solvent distillation, the non-volatile fraction is fed to a purification process where the desired product is obtained through tube 10 by techniques such as crystallization and distillation.

回収溶剤は管7より濾過機4に投入され、戸滓として残
留している触媒を洗浄することにより触媒分散液が調製
され、管11を経て反応器2に投入される。
The recovered solvent is introduced into the filter 4 through a pipe 7, and the catalyst remaining as slag is washed away to prepare a catalyst dispersion liquid, which is then introduced into the reactor 2 through a pipe 11.

(発明の効果) か(して本発明によれば、従来技術に比較して(1)触
媒のロスが抑えられる、(2)ヘドロ状の濾滓のハンド
リングを回避しうる、(3)触媒の発火の危険性を抑え
られる、(4)触媒の寿命が長(なる、(5)繰り返え
し使用時の反応収率の低下を抑えることができる。
(Effects of the Invention) According to the present invention, compared to the prior art, (1) catalyst loss can be suppressed, (2) handling of sludge-like filter slag can be avoided, and (3) catalyst (4) The life of the catalyst is extended (5) The reduction in reaction yield during repeated use can be suppressed.

(実施例〕 以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、実施例及び比較例中の部及び%はと(に断りの
ないかぎり重量基準である。
(Examples) The present invention will be described in more detail with reference to Examples below. Parts and percentages in Examples and Comparative Examples are based on weight unless otherwise specified.

実施例1 4−オキソインドール60部、10%パラジウム−カー
ボン触媒12部、溶媒としてブチルセロソルブ1000
部を仕込み、170℃で8時間脱水素反応を実施し、4
−ヒドロキシインドールを合成した。次に反応生成液を
加圧葉状濾過機(ミウラ化学装置■製、I(型ウルトラ
フィルターHOR8型〕に導入し濾過した。濾過機内の
ν布面に渥滓として回収された触媒は濾滓掻き取り装置
により掻き落され、濾過器底部のスクリューコンベアー
上に堆積した。p液は蒸留器に移され、蒸留によりブチ
ルセロソルブを回収した後、非揮発留分を別の容器に移
して晶析を行ない、収率8o%で生成物を得た。
Example 1 60 parts of 4-oxoindole, 12 parts of 10% palladium-carbon catalyst, 1000 butyl cellosolve as solvent
A dehydrogenation reaction was carried out at 170°C for 8 hours.
-Hydroxyindole was synthesized. Next, the reaction product liquid was introduced into a pressurized leaf filter (manufactured by Miura Chemical Equipment, Model I (Type Ultra Filter HOR8)) and filtered. It was scraped off by a collecting device and deposited on the screw conveyor at the bottom of the filter.The p liquid was transferred to a distiller, and after recovering butyl cellosolve by distillation, the non-volatile fraction was transferred to another container and crystallized. , the product was obtained with a yield of 8o%.

一方、蒸留により回収したブチルセロソルブを濾過機に
供給し、コンベアー上に堆積した触媒を洗浄して触媒液
を調製し、反応器内に流し込んだ。
On the other hand, butyl cellosolve recovered by distillation was supplied to a filter, and the catalyst deposited on the conveyor was washed to prepare a catalyst liquid, which was poured into the reactor.

この際、スクリューコンベアーを排出方向とは逆方向に
回転させることにより、触媒を溶剤中に分散させ、移送
ラインの閉基を防止した。
At this time, by rotating the screw conveyor in the opposite direction to the discharge direction, the catalyst was dispersed in the solvent and the transfer line was prevented from closing.

次に、回収触媒調製液の入った反応器内に4−オキソイ
ンドールを投入し、上記と同様に脱水素反応を実施した
。得られた4−ヒドロキシインドールの収率は80%で
あった。
Next, 4-oxoindole was introduced into the reactor containing the recovered catalyst preparation liquid, and a dehydrogenation reaction was carried out in the same manner as above. The yield of the 4-hydroxyindole obtained was 80%.

かかる操作を繰り返えし、30バクチの運転を行なった
が、触媒の劣化による反応収率及び反応速度の低下はな
かった。
This operation was repeated for 30 batches, but there was no decrease in reaction yield or reaction rate due to deterioration of the catalyst.

実施例2 3−ベキフン−1−オール100部、リンドラ−触媒(
5%pa/cacO3)  2部、溶媒としてヘキサ7
100部を仕込み、20’Oで常圧、攪拌下、水素ガス
を供給しながら10時間で部分水素添加反応を実施し、
シス−3−ヘキセン−1−オールを合成した。反応終了
後、水素を窒素で置換した後、加圧葉状濾過機(ミウラ
化学装置■裂、H型つルトラフィルターHOR8型)に
導入し濾過した。
Example 2 100 parts of 3-bekifun-1-ol, Lindlar catalyst (
5% pa/cacO3) 2 parts, hexa7 as solvent
100 parts were charged and a partial hydrogenation reaction was carried out for 10 hours at 20'O under normal pressure and stirring while supplying hydrogen gas,
Cis-3-hexen-1-ol was synthesized. After the reaction was completed, the hydrogen was replaced with nitrogen, and the mixture was introduced into a pressurized leaf filter (Miura Chemical Equipment, H-type Ultrafilter HOR8 model) and filtered.

濾過器内の戸布面に濾滓として回収された触媒は濾滓掻
き取り装置により掻き落され、濾過器底部のスクリュー
コンベアー上に堆積したOF液は蒸留器に移され、ヘキ
サン回収蒸留後、非揮発留分を別の蒸留器に移し、シス
−3−ヘキセン−1−オールの蒸留を実施し、収率97
%で生成物を得た。
The catalyst collected as slag on the surface of the filter inside the filter is scraped off by a scum scraping device, and the OF liquid deposited on the screw conveyor at the bottom of the filter is transferred to a distiller, where hexane is recovered and distilled. The non-volatile fraction was transferred to another distiller and distillation of cis-3-hexen-1-ol was carried out with a yield of 97.
% product was obtained.

蒸留により回収したヘキサンで、コンベアー上に堆積し
た触媒を洗浄して触媒液を調製し、反応器内に流し込ん
だ。移送方法は実施例1と同様の方法で行った。
The catalyst deposited on the conveyor was washed with hexane recovered by distillation to prepare a catalyst liquid, which was poured into the reactor. The transfer method was the same as in Example 1.

次に、回収触媒調製液の入った反応器内に3−ヘキシン
−1−オールを投入し、上記と同様に部分水素添加反応
を実施した。得られた3−ヘキシン−1−オールの収率
は97%であった。かかる操作をくり返えし、30バツ
チの運転を行ったが、触媒の劣化による反応収率、及び
反応速度の低下はなかった。
Next, 3-hexyn-1-ol was introduced into the reactor containing the recovered catalyst preparation liquid, and a partial hydrogenation reaction was carried out in the same manner as above. The yield of 3-hexyn-1-ol obtained was 97%. This operation was repeated and 30 batches of operation were performed, but there was no decrease in the reaction yield or reaction rate due to deterioration of the catalyst.

比較例1 濾過後の触媒を反応系外に取り出し、この回収触媒を溶
剤と共に再度反応器内に投入すること以外は実施例1と
同様に操作を行なった。その結果、反応収率は2パッチ
月で75%、3バツチ目で67俤、4パツチ目で50%
と、操作を凍り返えすに従い低下し、触媒の寿命が短か
くなっていた。また、触媒を系外に取り出し反応器内に
投入する工程において触媒がヘドロ状なためハンドリン
グに多大な労力を費やしたうえに、触媒の一部が器内に
付着して回収率が5%程低下した・さらに、回収触媒は
水素により還元されている為、空気中で乾燥すると発火
の危険性があり、直ちに水中に浸す等の処にか必要であ
った。
Comparative Example 1 The same operation as in Example 1 was carried out except that the filtered catalyst was taken out of the reaction system and the recovered catalyst was reintroduced into the reactor together with the solvent. As a result, the reaction yield was 75% in the second patch, 67 in the third patch, and 50% in the fourth patch.
As the operation cooled down, the catalyst's lifespan was shortened. In addition, in the process of taking the catalyst out of the system and putting it into the reactor, the catalyst is in the form of sludge, which requires a lot of effort to handle, and some of the catalyst sticks to the inside of the reactor, resulting in a recovery rate of about 5%. In addition, since the recovered catalyst has been reduced by hydrogen, there is a risk of ignition if it is dried in the air, so it was necessary to immediately immerse it in water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示すフローシートである
。 2・・・・・・反応器   4・・・・・・濾過機6・
・・・・・蒸発器   9・・・・・・精製器特許出願
人  日本ゼオン株式会社 第1図
FIG. 1 is a flow sheet showing one embodiment of the present invention. 2... Reactor 4... Filter machine 6.
...Evaporator 9 ...Purifier patent applicant Nippon Zeon Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、原料化合物の脱水素反応又は水素添加反応をパラジ
ウム系固体触媒の存在下に液相で実施した後、密閉系で
濾滓の自動排出が可能な濾過機に反応液を導入して触媒
を濾滓として分離し、次いで濾滓を反応溶剤で洗浄して
触媒分散液を調整し、それを反応系に循環使用すること
を特徴とする脱水素反応物又は水素添加反応物の製造法
1. After carrying out the dehydrogenation reaction or hydrogenation reaction of the raw material compound in the liquid phase in the presence of a palladium-based solid catalyst, the reaction solution is introduced into a closed system filter that can automatically discharge the filtrate to remove the catalyst. A method for producing a dehydrogenation reactant or a hydrogenation reactant, which comprises separating the filtrate as a filtrate, washing the filtrate with a reaction solvent to prepare a catalyst dispersion, and recycling it to a reaction system.
JP61227839A 1986-09-26 1986-09-26 Production of dehydrogenation reaction product or hydrogenation reaction product Pending JPS6383031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227839A JPS6383031A (en) 1986-09-26 1986-09-26 Production of dehydrogenation reaction product or hydrogenation reaction product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227839A JPS6383031A (en) 1986-09-26 1986-09-26 Production of dehydrogenation reaction product or hydrogenation reaction product

Publications (1)

Publication Number Publication Date
JPS6383031A true JPS6383031A (en) 1988-04-13

Family

ID=16867173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227839A Pending JPS6383031A (en) 1986-09-26 1986-09-26 Production of dehydrogenation reaction product or hydrogenation reaction product

Country Status (1)

Country Link
JP (1) JPS6383031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198202A (en) * 1992-07-31 1994-07-19 Pall Corp Method for removing catalyst
US5628916A (en) * 1994-08-17 1997-05-13 Pall Corporation Method for filtering edible oils
US6815509B2 (en) 2000-06-30 2004-11-09 Asahi Kasei Kabushiki Kaisha Method for hydrogenation of polymer
WO2014156781A1 (en) * 2013-03-29 2014-10-02 日本ゼオン株式会社 Production method for cis-3-hexene-1-ol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198202A (en) * 1992-07-31 1994-07-19 Pall Corp Method for removing catalyst
US5690836A (en) * 1992-07-31 1997-11-25 Pall Corporation Method of removing catalyst
US5628916A (en) * 1994-08-17 1997-05-13 Pall Corporation Method for filtering edible oils
US6815509B2 (en) 2000-06-30 2004-11-09 Asahi Kasei Kabushiki Kaisha Method for hydrogenation of polymer
WO2014156781A1 (en) * 2013-03-29 2014-10-02 日本ゼオン株式会社 Production method for cis-3-hexene-1-ol

Similar Documents

Publication Publication Date Title
EP0764627B1 (en) Process for producing highly pure terephthalic acid
JPH1025266A (en) Production of high-purity isophthalic acid
JPH10175911A (en) Production of (meth)acrylic acid
JPS6383031A (en) Production of dehydrogenation reaction product or hydrogenation reaction product
JPH10306068A (en) Production of isocyanate showing light color
JPH02222731A (en) Recovery method of catalyser
US2393352A (en) Manufacture of fumaric acid
JP2002522519A (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
US2947781A (en) Reduction process for preparing aromatic p-amino compounds
JP2001114717A (en) Production of phenolic compound reduced with metal content
KR100611227B1 (en) Filtering and rinsing process for 2,6-naphthalenedicarboxylic acid purified hydrogenation
JPH01160947A (en) Method for purifying dialkylaminoethanol
CN101186573A (en) Process for producing terephthalic acid
JPS6148408A (en) Recovering or purifying method of selenium
JPS6156158A (en) Production of p-aminophenol
JPH10212258A (en) Production of bisphenol a/phenol crystal adduct excellent in hue
JPS5935907B2 (en) Production method of aromatic polycarboxylic acid
KR100528246B1 (en) Rinsing Drum for Hydrogenation of 2,6-Naphthalenedicarboxylic acid
JP3039600B2 (en) Process for producing dimethyl 2,6-naphthalenedicarboxylate
SU925933A1 (en) Process for producing sodium benzoate
JPS6045864B2 (en) Method for producing 1,4,4a,9a-tetrahydroanthraquinone compound
US2708680A (en) Chemical process
JPH02202592A (en) Separation and recovery of 2-methylnaphthalene
JPH04234337A (en) Separation and recovery of bis(3,5-dibromo-4-dibromopropoxyphenyl)propane
JPS6169736A (en) Production of tetralin derivative