WO2014156781A1 - Production method for cis-3-hexene-1-ol - Google Patents

Production method for cis-3-hexene-1-ol Download PDF

Info

Publication number
WO2014156781A1
WO2014156781A1 PCT/JP2014/057180 JP2014057180W WO2014156781A1 WO 2014156781 A1 WO2014156781 A1 WO 2014156781A1 JP 2014057180 W JP2014057180 W JP 2014057180W WO 2014156781 A1 WO2014156781 A1 WO 2014156781A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
cis
hexen
catalyst
palladium
Prior art date
Application number
PCT/JP2014/057180
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 正弘
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015508328A priority Critical patent/JPWO2014156781A1/en
Publication of WO2014156781A1 publication Critical patent/WO2014156781A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds

Definitions

  • the present invention relates to a process for producing cis-3-hexen-1-ol, and more specifically, by partially hydrogenating 3-hexyn-1-ol using a palladium catalyst, high purity cis-3 -Relates to a process for producing hexen-1-ol.
  • Cis-3-hexen-1-ol is called green leaf alcohol, and is a substance present in natural tea leaves, cucumbers, apples and the like as natural products. This substance has a fresh green leaf odor (green note) and has been widely used in recent years as a fragrance and flavor.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a method for producing cis-3-hexen-1-ol by partial hydrogenation in the presence of a palladium catalyst such as a Lindlar catalyst. Yes.
  • a palladium catalyst such as a Lindlar catalyst.
  • the palladium catalyst is also effective for reduction of double bonds, the resulting cis-3-hexen-1-ol is reduced to a single bond, resulting in by-production, and geometrical isomers. The production of some trans-3-hexen-1-ol was inevitable.
  • trans-3-hexen-1-ol has a fat-like odor and irritating odor than cis-3-hexen-1-ol, and n-hexanol has a somewhat unpleasant fusel oil odor. Therefore, a synthesis method for obtaining cis-3-hexen-1-ol with high purity has been desired.
  • Non-Patent Document 3 describes a method of obtaining cis-3-hexen-1-ol in 94% yield using colloidal nickel obtained by reducing nickel acetate and ethylenediamine as a cocatalyst. ing.
  • this method suppresses the formation of trans-3-hexen-1-ol, 2% hexanol is produced as a by-product and recycling of the nickel catalyst is difficult.
  • Patent Document 1 discloses trans-3-hexene by using a Lindlar catalyst and a quinoline as a cocatalyst and performing a reduction reaction in a methanol solvent at normal pressure and 30 ° C.
  • a synthesis method that suppresses the production amount of -1-ol to 0.48% has been proposed.
  • this method since a large amount of quinoline as a co-catalyst is used, even if the reaction product is purified by distillation, a trace amount of quinoline remains and the amine odor is mixed and cannot function as a fragrance.
  • the amine is irreversibly adsorbed on the catalyst, the catalyst cannot be recycled, and the use of a large amount of solvent takes time and effort in adding the solvent and distilling off the solvent after the reaction. There was a problem that it was economically disadvantageous.
  • the present invention has been made in view of the above problems.
  • a palladium catalyst and partially hydrogenating 3-hexyn-1-ol high-purity cis-3-hexen-1-ol is obtained. It aims at providing the method of manufacturing industrially advantageous.
  • the present inventor has intensively studied a method for producing cis-3-hexen-1-ol by partially hydrogenating 3-hexyn-1-ol using a palladium catalyst. .
  • the reaction system is made solvent-free and the pressure in the reaction vessel is set to a moderate level under pressure, which is the target product.
  • the inventors have found that generation of by-products other than cis-3-hexen-1-ol can be suppressed, and have completed the present invention.
  • the following processes (1) to (4) for producing cis-3-hexen-1-ol are provided.
  • a cis-3 partial hydrogenation reaction of 3-hexyn-1-ol is carried out in the presence of a palladium catalyst under the condition of no solvent and a hydrogen gauge pressure in a reaction vessel of 10 to 1000 kPa. -Method for producing hexen-1-ol.
  • the amount of hexanol in the reaction product obtained by the partial hydrogenation reaction is 0.2% by mass or less, and the amount of trans-3-hexen-1-ol is 1.5% by mass or less.
  • the method for producing cis-3-hexen-1-ol according to (3) is 0.2% by mass or less, and the amount of trans-3-hexen-1-ol is 1.5% by mass or less.
  • the reaction system when a partial hydrogenation of 3-hexyn-1-ol is performed using a palladium catalyst, the reaction system is made solvent-free and the pressure in the reaction vessel is set to an appropriate pressure. As a result, the production of by-products other than the target product cis-3-hexen-1-ol is suppressed, and the target cis-3-hexen-1-ol can be efficiently produced with high purity.
  • the method for producing cis-3-hexen-1-ol according to the present invention is a method in which 3-hexyn-1-ol is partially obtained in the presence of a palladium catalyst without solvent and with a hydrogen gauge pressure in the reaction vessel of 10 to 1000 kPa. A hydrogenation reaction is performed.
  • 3-Hexin-1-ol used in the present invention is a known substance and can be synthesized by various methods.
  • a method of hydrolyzing a lithium alcoholate of 3-hexyn-1-ol obtained by reacting lithium butynylide with ethylene oxide with an acid Japanese Patent Laid-Open No. 50-49212
  • butyne-1 or 1,2, -Reacting butadiene with an alkali metal in the presence of a hydrocarbon solvent to obtain an alkali metal butynylide
  • reacting this with ethylene oxide and liquid ammonia to obtain an alkali metal alcoholate of 3-hexyn-1-ol
  • a method of hydrolyzing this product Japanese Patent Laid-Open No.
  • Any palladium catalyst may be used as long as it contains palladium as an active source.
  • palladium-supported activated carbon for example, Lindlar catalyst, palladium-supported activated carbon, palladium-supported calcium carbonate, palladium-supported silica gel, palladium-supported diatomaceous earth, palladium black, palladium-supported barium sulfate, palladium-supported barium carbonate, colloidal palladium, palladium chloride, palladium acetate, Etc.
  • These palladium-based catalysts can be used singly or in combination of two or more.
  • the amount of the palladium-based catalyst used is usually 0.001 to 1.5 parts by mass, preferably 0.005 to 1.0 parts by mass based on the mass of palladium with respect to 100 parts by mass of 3-hexyn-1-ol. Part.
  • the amount of the catalyst is small, the progress of the reaction is slow, and when it is large, the reaction is fast, but a large amount of by-products tends to be generated.
  • the production of by-products other than the target product cis-3-hexen-1-ol can be suppressed, and the target cis-3-hexen-1-ol can be obtained. It can be efficiently produced with high purity.
  • 3-hexyn-1-ol is added to a hydrogen gauge pressure in a reaction vessel in the presence of a palladium-based catalyst at 10 to 1000 kPa, preferably 50 to
  • the partial hydrogenation reaction is performed under conditions of 400 kPa, more preferably 100 to 200 kPa.
  • the hydrogenation reaction is carried out without a solvent.
  • Performing the reaction without a solvent is advantageous in terms of mass production because of the large amount that can be charged into the same volume reactor at a time, and the cost of the product and the solvent is not required.
  • post-processing such as a separation step is simplified.
  • the reaction rate is slower than when a solvent is used, so that the reaction can be controlled more precisely, and the reaction end point (the triple bond is reduced and cis The stage of reduction to a heavy bond) can be more easily determined, and trans-transformation (reaction in which a trans isomer is formed or isomerized) and perhydrogenation (hydrogenation reaction in which a double bond is further hydrogenated) can be performed. Can be suppressed.
  • the reaction temperature is usually 20 to 100 ° C., preferably 30 to 70 ° C., more preferably 40 to 55.
  • the reaction temperature is low, the progress of the reaction is slow.
  • the reaction temperature is high, the reaction is fast, but many by-products tend to be generated.
  • by-products other than the target product, cis-3-hexen-1-ol can be further suppressed even without solvent. Therefore, the target cis-3-hexen-1-ol can be efficiently produced with high purity.
  • the reactor for carrying out the production method of the present invention preferably has a stirrer.
  • the agitator usually has a motor and a transmission.
  • a transmission system an inverter type or a gear type can be mentioned, but an inverter type in which the rotation speed can be easily changed is preferable.
  • the stirring blade include a paddle blade, a marine blade, a turbine blade, and a max blend blade. Max blend blades are preferred because they allow good mixing in the reactor.
  • the reactor can control temperature, a reactor with a jacket is preferable.
  • the hydrogenation rate is 80 to 99 mol%, preferably 90 to 98 mol%. More preferably, the stirring is adjusted when the amount becomes 94 to 97 mol%.
  • the agitation adjustment refers to reducing the number of revolutions of the agitation blade attached to the reaction vessel.
  • the hydrogenation rate is 80 to 99 mol%, preferably 90 to 98 mol%. More preferably, when it becomes 94 to 97 mol%, the rotational speed of the stirring blade is preferably reduced by 50 to 75% with respect to the initial stirring speed.
  • the rotation speed of the stirring blade depends on the type and size of the stirring blade used, but is usually 60 to 120 rpm, preferably 80 to 100 rpm.
  • the reaction speed becomes slower than when the rotation speed is high, so the reaction can be controlled more precisely, and the reaction end point (triple bond is reduced to cis double bond). Stage) can be more easily determined, and translation and overhydrogenation can be suppressed.
  • the hydrogenation rate can be obtained by measuring the reaction solution with an analytical means such as gas chromatography.
  • the timing of the stirring adjustment can be determined, for example, by analyzing the reaction solution by gas chromatography over time after the start of the reaction.
  • the reaction time is usually 3 to 25 hours depending on the reaction scale.
  • the completion of the reaction can be confirmed, for example, by analyzing the reaction solution by gas chromatography. It can also be confirmed by a change in the hydrogen gauge pressure in the reaction vessel.
  • the desired high purity cis-3-hexen-1-ol can be obtained by distilling and purifying the reaction product obtained by removing the catalyst from the reaction mixture, if necessary.
  • the structure of the target product can be identified by measuring a 1 H-NMR spectrum, an IR spectrum, or the like.
  • highly pure cis-3-hexen-1-ol can be obtained.
  • the amount of n-hexanol in the reaction product obtained by removing the catalyst from the reaction mixture of the partial hydrogenation reaction (reaction product obtained by the partial hydrogenation reaction) is preferably 0.2% by mass or less, trans-3-
  • the amount of hexen-1-ol is preferably 1.5% by mass or less, and the content of cis-3-hexen-1-ol is preferably 96.4% by mass or more.
  • the palladium catalyst used in the reaction can be recovered from the reaction solution, stored, and reused.
  • the recovered palladium catalyst can be stored by decanting the reaction solution, storing the catalyst in the remaining reaction solution, filtering the catalyst from the reaction solution, and then storing it in an inert gas atmosphere such as nitrogen gas. And a method of filtering the catalyst from the reaction solution, washing the catalyst with an organic solvent such as a hydrocarbon solvent, and storing the catalyst in an organic solvent such as acetylene alcohol (Japanese Patent Laid-Open No. 57-174144). Publication).
  • the high-purity cis-3-hexen-1-ol obtained by the method of the present invention is a substance useful as an intermediate for producing green leaf alcohol and other fragrance substances.
  • Example 1 To an autoclave with an internal volume of 200 ml equipped with a stirring blade, 98.1 g of 3-hexyn-1-ol and 0.22 g of Lindlar catalyst (containing 5% by weight of palladium) were added. After sealing, hydrogen replacement was performed to obtain a hydrogen gauge pressure of 400 kPa. At 30 ° C., the rotational speed of the stirring blade was 85 r. p. m. As described above, a partial hydrogenation reaction was performed. On the way, when the reaction conversion rate reached 95 mol%, the rotation speed of the stirring blade was adjusted to 65 r. p. m. The end point was the point of time when the theoretical hydrogen amount was absorbed. The reaction product was taken out and the catalyst was separated by filtration. The obtained reaction product was quantified by gas chromatography.
  • Example 1 In Example 1, a partial hydrogenation reaction of 3-hexyn-1-ol was performed in the same manner as in Example 1 except that the amount of catalyst, hydrogen gauge pressure, and reaction temperature were changed as shown in Table 1 below. It was.

Abstract

The present invention provides a production method for cis-3-hexene-1-ol, said production method being characterized in that 3-hexyne-1-ol is subjected to a partial hydrogenation reaction in the presence of a palladium catalyst, in the absence of a solvent, and under conditions in which the hydrogen gauge pressure in a reaction vessel is in the range 10-1000 kPa. According to the present invention, highly pure cis-3-hexene-1-ol can be produced in an industrially advantageous manner by using a palladium catalyst to partially hydrogenate 3-hexyne-1-ol.

Description

シス-3-ヘキセン-1-オールの製造方法Process for producing cis-3-hexen-1-ol
 本発明は、シス-3-ヘキセン-1-オールの製造方法に関し、更に詳しくは、パラジウム触媒を使用して、3-ヘキシン-1-オールを部分水素添加することにより、高純度のシス-3-ヘキセン-1-オールを製造する方法に関する。 The present invention relates to a process for producing cis-3-hexen-1-ol, and more specifically, by partially hydrogenating 3-hexyn-1-ol using a palladium catalyst, high purity cis-3 -Relates to a process for producing hexen-1-ol.
 シス-3-ヘキセン-1-オールは、青葉アルコールと呼ばれ、天然物として、茶生葉、きゅうり、及びりんごなどの中に存在する物質である。この物質は新鮮な青葉の匂い(グリーンノート)を持ち、近年香料やフレーバーとして広く使用されている。 Cis-3-hexen-1-ol is called green leaf alcohol, and is a substance present in natural tea leaves, cucumbers, apples and the like as natural products. This substance has a fresh green leaf odor (green note) and has been widely used in recent years as a fragrance and flavor.
 従来、3-ヘキシン-1-オールからシス-3-ヘキセン-1-オールを得る方法としては、様々な合成方法が知られているが、金属触媒を用いた接触還元法が最も一般的である。例えば、非特許文献1及び非特許文献2には、リンドラー触媒のようなパラジウム触媒の存在下で、部分水素添加することにより、シス-3-ヘキセン-1-オールを製造する方法が開示されている。
 しかしながら、パラジウム触媒は二重結合の還元にも有効であるため、得られたシス-3-ヘキセン-1-オールが一重結合まで還元されたn-ヘキサノールが副生することや、幾何異性体であるトランス-3-ヘキセン-1-オールが生成することが避けられなかった。これらの不純物は、目的とするシス-3-ヘキセン-1-オールと沸点が近いため、簡単に蒸留精製により除去することが困難である。また、トランス-3-ヘキセン-1-オールがシス-3-ヘキセン-1-オールより脂肪様臭と刺激臭を有していることや、n-ヘキサノールがやや不快なフーゼル油臭を有していること等の理由から、高純度でシス-3-ヘキセン-1-オールを得る合成法が望まれていた。
Conventionally, various synthetic methods are known as methods for obtaining cis-3-hexen-1-ol from 3-hexyn-1-ol, but catalytic reduction using a metal catalyst is the most common. . For example, Non-Patent Document 1 and Non-Patent Document 2 disclose a method for producing cis-3-hexen-1-ol by partial hydrogenation in the presence of a palladium catalyst such as a Lindlar catalyst. Yes.
However, since the palladium catalyst is also effective for reduction of double bonds, the resulting cis-3-hexen-1-ol is reduced to a single bond, resulting in by-production, and geometrical isomers. The production of some trans-3-hexen-1-ol was inevitable. Since these impurities have a boiling point close to that of the intended cis-3-hexen-1-ol, it is difficult to easily remove these impurities by distillation purification. In addition, trans-3-hexen-1-ol has a fat-like odor and irritating odor than cis-3-hexen-1-ol, and n-hexanol has a somewhat unpleasant fusel oil odor. Therefore, a synthesis method for obtaining cis-3-hexen-1-ol with high purity has been desired.
 また、ニッケル触媒を用いる合成法も知られている。例えば、非特許文献3には、ニッケルアセテートを還元して得られるコロイド状ニッケルと、助触媒としてエチレンジアミンを使用して、94%収率でシス-3-ヘキセン-1-オール得る方法が記載されている。しかしながら、この方法は、トランス-3-ヘキセン-1-オールの生成は抑えられるものの、2%のヘキサノールが副生してしまうことや、ニッケル触媒のリサイクル使用が困難なことから、高純度なシス-3-ヘキセン-1-オールを大量合成する方法としては問題がある。 Further, a synthesis method using a nickel catalyst is also known. For example, Non-Patent Document 3 describes a method of obtaining cis-3-hexen-1-ol in 94% yield using colloidal nickel obtained by reducing nickel acetate and ethylenediamine as a cocatalyst. ing. However, although this method suppresses the formation of trans-3-hexen-1-ol, 2% hexanol is produced as a by-product and recycling of the nickel catalyst is difficult. There is a problem as a method for mass synthesis of -3-hexen-1-ol.
 これらの問題を解決するために、特許文献1には、リンドラー触媒と、助触媒としてキノリン類を使用し、メタノール溶媒中、常圧、30℃で還元反応を行うことにより、トランス-3-ヘキセン-1-オールの生成量を0.48%まで抑える合成法が提案されている。しかしながら、この方法では、助触媒であるキノリンを大量に使用していることから、反応生成物の蒸留精製を行っても微量のキノリンが残留して、アミン臭が混ざり香料としての機能を果たせない場合があることや、アミンが触媒に不可逆的に吸着するために、触媒をリサイクル使用することができないこと、溶媒を多量に用いるために、溶媒添加や反応後の溶媒留去等において手間がかかり、経済的に不利である、という問題があった。 In order to solve these problems, Patent Document 1 discloses trans-3-hexene by using a Lindlar catalyst and a quinoline as a cocatalyst and performing a reduction reaction in a methanol solvent at normal pressure and 30 ° C. A synthesis method that suppresses the production amount of -1-ol to 0.48% has been proposed. However, in this method, since a large amount of quinoline as a co-catalyst is used, even if the reaction product is purified by distillation, a trace amount of quinoline remains and the amine odor is mixed and cannot function as a fragrance. In some cases, the amine is irreversibly adsorbed on the catalyst, the catalyst cannot be recycled, and the use of a large amount of solvent takes time and effort in adding the solvent and distilling off the solvent after the reaction. There was a problem that it was economically disadvantageous.
特開昭56-12326号JP-A-56-12326
 本発明は、上記問題に鑑みてなされたものであり、パラジウム触媒を使用して、3-ヘキシン-1-オールを部分水素添加することにより、高純度のシス-3-ヘキセン-1-オールを工業的に有利に製造する方法を提供することを目的とする。 The present invention has been made in view of the above problems. By using a palladium catalyst and partially hydrogenating 3-hexyn-1-ol, high-purity cis-3-hexen-1-ol is obtained. It aims at providing the method of manufacturing industrially advantageous.
 本発明者は上記課題を解決すべく、パラジウム触媒を使用して、3-ヘキシン-1-オールを部分水素添加することにより、シス-3-ヘキセン-1-オールを製造する方法について鋭意検討した。その結果、パラジウム触媒を使用して、3-ヘキシン-1-オールを部分水素添加するに際し、反応系を無溶媒とし、反応容器内の圧力を適度な加圧下にすることにより、目的物であるシス-3-ヘキセン-1-オール以外の副生物の生成を抑えられること見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventor has intensively studied a method for producing cis-3-hexen-1-ol by partially hydrogenating 3-hexyn-1-ol using a palladium catalyst. . As a result, when partially hydrogenating 3-hexyn-1-ol using a palladium catalyst, the reaction system is made solvent-free and the pressure in the reaction vessel is set to a moderate level under pressure, which is the target product. The inventors have found that generation of by-products other than cis-3-hexen-1-ol can be suppressed, and have completed the present invention.
 かくして本発明によれば、下記(1)~(4)のシス-3-ヘキセン-1-オールの製造方法が提供される。
(1)パラジウム触媒の存在下、無溶媒及び反応容器内の水素ゲージ圧を10~1000kPaの条件で、3-ヘキシン-1-オールの部分水素添加反応を行うことを特徴とする、シス-3-ヘキセン-1-オールの製造方法。
(2)水素添加率が80~99モル%となったときに撹拌調整を行う、(1)に記載のシス-3-ヘキセン-1-オールの製造方法。
(3)反応温度が20~100℃である、(1)又は(2)に記載のシス-3-ヘキセン-1-オールの製造方法。
(4)前記部分水素添加反応により得られる反応生成物中のヘキサノール量が0.2質量%以下、トランス-3-ヘキセン-1-オールの量が1.5質量%以下である(1)~(3)に記載のシス-3-ヘキセン-1-オールの製造方法。
Thus, according to the present invention, the following processes (1) to (4) for producing cis-3-hexen-1-ol are provided.
(1) A cis-3 partial hydrogenation reaction of 3-hexyn-1-ol is carried out in the presence of a palladium catalyst under the condition of no solvent and a hydrogen gauge pressure in a reaction vessel of 10 to 1000 kPa. -Method for producing hexen-1-ol.
(2) The method for producing cis-3-hexen-1-ol according to (1), wherein the stirring is adjusted when the hydrogenation rate becomes 80 to 99 mol%.
(3) The process for producing cis-3-hexen-1-ol according to (1) or (2), wherein the reaction temperature is 20 to 100 ° C.
(4) The amount of hexanol in the reaction product obtained by the partial hydrogenation reaction is 0.2% by mass or less, and the amount of trans-3-hexen-1-ol is 1.5% by mass or less. The method for producing cis-3-hexen-1-ol according to (3).
 本発明の製造方法によれば、パラジウム触媒を使用して、3-ヘキシン-1-オールを部分水素添加するに際し、反応系を無溶媒とし、反応容器内の圧力を適度な加圧下にすることにより、目的物であるシス-3-ヘキセン-1-オール以外の副生物の生成が抑えられ、目的とするシス-3-ヘキセン-1-オールを高純度で効率よく製造することができる。 According to the production method of the present invention, when a partial hydrogenation of 3-hexyn-1-ol is performed using a palladium catalyst, the reaction system is made solvent-free and the pressure in the reaction vessel is set to an appropriate pressure. As a result, the production of by-products other than the target product cis-3-hexen-1-ol is suppressed, and the target cis-3-hexen-1-ol can be efficiently produced with high purity.
 以下、本発明の製造方法を詳細に説明する。
 本発明のシス-3-ヘキセン-1-オールの製造方法は、3-ヘキシン-1-オールを、パラジウム触媒の存在下、無溶媒及び反応容器内の水素ゲージ圧を10~1000kPaの条件で部分水素添加反応を行うことを特徴とする。
Hereinafter, the production method of the present invention will be described in detail.
The method for producing cis-3-hexen-1-ol according to the present invention is a method in which 3-hexyn-1-ol is partially obtained in the presence of a palladium catalyst without solvent and with a hydrogen gauge pressure in the reaction vessel of 10 to 1000 kPa. A hydrogenation reaction is performed.
 本発明に使用する3-ヘキシン-1-オールは公知物質であり、種々の方法により合成することができる。例えば、リチウムブチニリドとエチレンオキサイドを反応させて得られる3-ヘキシン-1-オールのリチウムアルコラートを酸で加水分解する方法(特開昭50-49212号公報)、ブチン-1又は1,2-ブタジエンとアルカリ金属とを炭化水素溶剤の存在下に反応させてアルカリ金属ブチニリドを得、このものに、エチレンオキサイド及び液体アンモニアを反応させ、3-ヘキシン-1-オールのアルカリ金属アルコラートを得、このものを加水分解する方法(特開昭54-160311号公報)や、ブチニルリチウムとエチレンオキシドとをテトラヒドロフラン中で反応させた後、溶媒などを蒸留分離する方法(特開昭56-53628号公報)が挙げられる。これらの方法により得られた3-ヘキシン-1-オールは、粗生成物のままで、あるいは粗生成物を蒸留精製して用いることができる。 3-Hexin-1-ol used in the present invention is a known substance and can be synthesized by various methods. For example, a method of hydrolyzing a lithium alcoholate of 3-hexyn-1-ol obtained by reacting lithium butynylide with ethylene oxide with an acid (Japanese Patent Laid-Open No. 50-49212), butyne-1 or 1,2, -Reacting butadiene with an alkali metal in the presence of a hydrocarbon solvent to obtain an alkali metal butynylide; reacting this with ethylene oxide and liquid ammonia to obtain an alkali metal alcoholate of 3-hexyn-1-ol; A method of hydrolyzing this product (Japanese Patent Laid-Open No. Sho 54-160311) or a method of reacting butynyllithium and ethylene oxide in tetrahydrofuran and then distilling the solvent away (Japanese Patent Laid-Open No. Sho 56-53628) ). The 3-hexyn-1-ol obtained by these methods can be used as the crude product or after the crude product is purified by distillation.
 本発明に用いるパラジウム系触媒としては、パラジウムを活性源として含むものであればいずれも使用可能である。例えば、リンドラー触媒、パラジウム担持の活性炭、パラジウム担持の炭酸カルシウム、パラジウム担持のシリカゲル、パラジウム担持の珪藻土、パラジウムブラック、パラジウム担持の硫酸バリウム、パラジウム担持の炭酸バリウム、コロイドパラジウム、塩化パラジウム、酢酸パラジウム、等が挙げられる。
 これらのパラジウム系触媒は一種又は二種以上を組合せて用いることができる。
Any palladium catalyst may be used as long as it contains palladium as an active source. For example, Lindlar catalyst, palladium-supported activated carbon, palladium-supported calcium carbonate, palladium-supported silica gel, palladium-supported diatomaceous earth, palladium black, palladium-supported barium sulfate, palladium-supported barium carbonate, colloidal palladium, palladium chloride, palladium acetate, Etc.
These palladium-based catalysts can be used singly or in combination of two or more.
 パラジウム系触媒の使用量は、3-ヘキシン-1-オール100質量部に対して、パラジウムの質量基準で、通常0.001~1.5質量部、好ましくは、0.005~1.0質量部である。
 触媒量が少ないと反応の進行が遅くなり、多いと反応は速くなるが副生物が多く生成する傾向にある。パラジウムをこのような範囲の使用量で用いることにより、目的物であるシス-3-ヘキセン-1-オール以外の副生物の生成が抑えられ、目的とするシス-3-ヘキセン-1-オールを高純度で効率よく製造することができる。
The amount of the palladium-based catalyst used is usually 0.001 to 1.5 parts by mass, preferably 0.005 to 1.0 parts by mass based on the mass of palladium with respect to 100 parts by mass of 3-hexyn-1-ol. Part.
When the amount of the catalyst is small, the progress of the reaction is slow, and when it is large, the reaction is fast, but a large amount of by-products tends to be generated. By using palladium in such a range, the production of by-products other than the target product cis-3-hexen-1-ol can be suppressed, and the target cis-3-hexen-1-ol can be obtained. It can be efficiently produced with high purity.
 本発明のシス-3-ヘキセン-1-オールの製造方法においては、3-ヘキシン-1-オールを、パラジウム系触媒の存在下、反応容器内の水素ゲージ圧を10~1000kPa、好ましくは50~400kPa、更に好ましくは100~200kPaの条件で部分水素添加反応を行う。 In the process for producing cis-3-hexen-1-ol according to the present invention, 3-hexyn-1-ol is added to a hydrogen gauge pressure in a reaction vessel in the presence of a palladium-based catalyst at 10 to 1000 kPa, preferably 50 to The partial hydrogenation reaction is performed under conditions of 400 kPa, more preferably 100 to 200 kPa.
 反応系内の圧力が低いと反応の進行が遅くなり、高いと反応は速くなるが副生成物が多く生成する傾向にある。本発明においては、反応容器内の水素ゲージ圧をこのような範囲として部分水素添加を行うことにより、無溶媒であっても、目的物であるシス-3-ヘキセン-1-オール以外の副生物の生成が抑えられ、目的とするシス-3-ヘキセン-1-オールを高純度で効率よく製造することができる。 When the pressure in the reaction system is low, the progress of the reaction is slow. When the pressure is high, the reaction is fast, but a lot of by-products tend to be generated. In the present invention, by performing partial hydrogenation with the hydrogen gauge pressure in the reaction vessel in such a range, by-products other than the target product cis-3-hexen-1-ol, even without solvent, And the desired cis-3-hexen-1-ol can be efficiently produced with high purity.
 本発明の製造方法において、上記の水素添加反応は、無溶媒で実施する。無溶媒で反応を行うことは、同一体積の反応器に一度に仕込むことができる量が多いために大量製造の点で有利であり、また、溶媒のコストが不要である、生成物と溶媒の分離工程等の後処理が簡易化されるといったメリットがある。
 また、無溶媒で部分水素添加反応を行う場合、溶媒を用いる場合に比して反応速度が遅くなるため、より精密に反応を制御することができ、反応終点(三重結合が還元されてシス二重結合に還元される段階)をより容易に見極めることができ、トランス化(トランス異性体が生成又は異性化する反応)、過水添(二重結合がさらに水素添加される水素化反応)を抑制することができる。
In the production method of the present invention, the hydrogenation reaction is carried out without a solvent. Performing the reaction without a solvent is advantageous in terms of mass production because of the large amount that can be charged into the same volume reactor at a time, and the cost of the product and the solvent is not required. There is an advantage that post-processing such as a separation step is simplified.
In addition, when the partial hydrogenation reaction is performed without a solvent, the reaction rate is slower than when a solvent is used, so that the reaction can be controlled more precisely, and the reaction end point (the triple bond is reduced and cis The stage of reduction to a heavy bond) can be more easily determined, and trans-transformation (reaction in which a trans isomer is formed or isomerized) and perhydrogenation (hydrogenation reaction in which a double bond is further hydrogenated) can be performed. Can be suppressed.
 反応温度は、通常20~100℃、好ましくは30~70℃、より好ましくは40~55である。反応温度が低いと反応の進行が遅くなり、高いと反応は速くなるが副生成物が多く生成する傾向にある。本発明においては、反応温度をこのような範囲として部分水素添加を行うことにより、無溶媒であっても、目的物であるシス-3-ヘキセン-1-オール以外の副生物の生成がより抑えられ、目的とするシス-3-ヘキセン-1-オールを高純度で効率よく製造することができる。 The reaction temperature is usually 20 to 100 ° C., preferably 30 to 70 ° C., more preferably 40 to 55. When the reaction temperature is low, the progress of the reaction is slow. When the reaction temperature is high, the reaction is fast, but many by-products tend to be generated. In the present invention, by carrying out partial hydrogenation with the reaction temperature in such a range, by-products other than the target product, cis-3-hexen-1-ol, can be further suppressed even without solvent. Therefore, the target cis-3-hexen-1-ol can be efficiently produced with high purity.
 本発明の製造方法を実施するための反応器は、攪拌機を有するものが好ましい。攪拌機はモーター及び変速機を通常有する。変速機の方式としては、インバーター式、ギア式のものが挙げられるが、回転数の変更が容易なインバーター式が好ましい。
 攪拌翼としては、パドル翼、マリン翼、タービン翼及びマックスブレンド翼などが挙げられる。反応器内の良好な混合が可能なことから、マックスブレンド翼が好ましい。
 また、反応器は温度制御が可能になることからジャケット付きのものが好ましい。
The reactor for carrying out the production method of the present invention preferably has a stirrer. The agitator usually has a motor and a transmission. As a transmission system, an inverter type or a gear type can be mentioned, but an inverter type in which the rotation speed can be easily changed is preferable.
Examples of the stirring blade include a paddle blade, a marine blade, a turbine blade, and a max blend blade. Max blend blades are preferred because they allow good mixing in the reactor.
Moreover, since the reactor can control temperature, a reactor with a jacket is preferable.
 本発明においては、水素添加率が80~99モル%、好ましくは90~98モル%。更に好ましくは94~97モル%となったときに、撹拌調整を行うことが好ましい。ここで、攪拌調整とは、反応容器に付随する攪拌翼の回転数を低減することをいう。本願発明では、水素添加率が80~99モル%、好ましくは90~98モル%。更に好ましくは94~97モル%となったときに、攪拌翼の回転数を初期の撹拌速度に対して50~75%減少させることが好ましい。 In the present invention, the hydrogenation rate is 80 to 99 mol%, preferably 90 to 98 mol%. More preferably, the stirring is adjusted when the amount becomes 94 to 97 mol%. Here, the agitation adjustment refers to reducing the number of revolutions of the agitation blade attached to the reaction vessel. In the present invention, the hydrogenation rate is 80 to 99 mol%, preferably 90 to 98 mol%. More preferably, when it becomes 94 to 97 mol%, the rotational speed of the stirring blade is preferably reduced by 50 to 75% with respect to the initial stirring speed.
 攪拌翼の回転数は、用いる攪拌翼の種類や大きさ等にも依存するが、通常、60~120rpm、好ましくは80~100rpmである。攪拌翼の回転数が低減されると、回転数が高い場合に比して反応速度が遅くなるため、より精密に反応を制御することができ、反応終点(三重結合がシス二重結合に還元される段階)をより容易に見極めることが出来、トランス化、過水添を抑制できる。 The rotation speed of the stirring blade depends on the type and size of the stirring blade used, but is usually 60 to 120 rpm, preferably 80 to 100 rpm. When the rotation speed of the stirring blade is reduced, the reaction speed becomes slower than when the rotation speed is high, so the reaction can be controlled more precisely, and the reaction end point (triple bond is reduced to cis double bond). Stage) can be more easily determined, and translation and overhydrogenation can be suppressed.
 なお、水素添加率は、反応液をガスクロマトグラフィーなどの分析手段により測定し求めることができる。攪拌調整のタイミングは、例えば、反応開始後、経時的に反応液をガスクロマトグラフィーなどにより分析することにより、定めることができる。 The hydrogenation rate can be obtained by measuring the reaction solution with an analytical means such as gas chromatography. The timing of the stirring adjustment can be determined, for example, by analyzing the reaction solution by gas chromatography over time after the start of the reaction.
 より具体的には、3-ヘキシン-1-オールを原料として、パラジウム触媒の存在下に、反応容器内の水素ゲージ圧を160kPaとして水素添加反応を行い、反応転化率が95%となった時点で、攪拌翼の撹拌速度を当初の3/4に落とすことによって、ヘキサノール量0.11質量%、トランス-3-ヘキセン-1-オールを0.95質量%含む高純度シス-3-ヘキセン-1-オールを製造することができる。 More specifically, when 3-hexyn-1-ol was used as a raw material and a hydrogenation reaction was carried out in the presence of a palladium catalyst at a hydrogen gauge pressure in the reaction vessel of 160 kPa, the reaction conversion rate reached 95%. By reducing the stirring speed of the stirring blade to 3/4 of the initial value, a high-purity cis-3-hexene containing 0.11% by mass of hexanol and 0.95% by mass of trans-3-hexen-1-ol was obtained. 1-ol can be produced.
 反応時間は、反応規模にも依存するが、通常、3時間から25時間である。反応の終了は、例えば、反応液をガスクロマトグラフィーにより分析することにより確認することができる。また、反応容器内の水素ゲージ圧の変化によっても確認することができる。 The reaction time is usually 3 to 25 hours depending on the reaction scale. The completion of the reaction can be confirmed, for example, by analyzing the reaction solution by gas chromatography. It can also be confirmed by a change in the hydrogen gauge pressure in the reaction vessel.
 反応終了後は、反応混合物から触媒を除去して得られる反応生成物を必要に応じて蒸留精製することにより、目的とする高純度シス-3-ヘキセン-1-オールを得ることができる。目的物の構造は、H-NMRスペクトル、IRスペクトル等を測定することにより同定することができる。 After completion of the reaction, the desired high purity cis-3-hexen-1-ol can be obtained by distilling and purifying the reaction product obtained by removing the catalyst from the reaction mixture, if necessary. The structure of the target product can be identified by measuring a 1 H-NMR spectrum, an IR spectrum, or the like.
 本発明の製造方法によれば、高純度なシス-3-ヘキセン-1-オールを得ることができる。部分水素添加反応の反応混合物から触媒を除去して得られる反応生成物(部分水素添加反応により得られる反応生成物)中のn-ヘキサノール量は好ましくは0.2質量%以下、トランス-3-ヘキセン-1-オールの量は好ましくは1.5質量%以下、シス-3-ヘキセン-1-オールの含有量は好ましくは96.4質量%以上である。 According to the production method of the present invention, highly pure cis-3-hexen-1-ol can be obtained. The amount of n-hexanol in the reaction product obtained by removing the catalyst from the reaction mixture of the partial hydrogenation reaction (reaction product obtained by the partial hydrogenation reaction) is preferably 0.2% by mass or less, trans-3- The amount of hexen-1-ol is preferably 1.5% by mass or less, and the content of cis-3-hexen-1-ol is preferably 96.4% by mass or more.
 反応に用いたパラジウム触媒は、反応液から回収し、保管して再利用に供することができる。回収したパラジウム触媒を保管する方法としては、反応液をデカンテーションした後、残存反応液中に触媒保管する方法、反応液から触媒をろ別した後、窒素ガス等の不活性ガス雰囲気中で保存する方法、反応液から触媒をろ別した後、触媒を炭化水素系溶剤などの有機溶剤で洗浄し、アセチレンアルコール等の有機溶剤中で保管する方法等が挙げられる(特開昭57-174144号公報)。 The palladium catalyst used in the reaction can be recovered from the reaction solution, stored, and reused. The recovered palladium catalyst can be stored by decanting the reaction solution, storing the catalyst in the remaining reaction solution, filtering the catalyst from the reaction solution, and then storing it in an inert gas atmosphere such as nitrogen gas. And a method of filtering the catalyst from the reaction solution, washing the catalyst with an organic solvent such as a hydrocarbon solvent, and storing the catalyst in an organic solvent such as acetylene alcohol (Japanese Patent Laid-Open No. 57-174144). Publication).
 本発明の方法により得られる高純度シス-3-ヘキセン-1-オールは、青葉アルコールやその他の香料物質を製造するための中間体として有用な物質である。 The high-purity cis-3-hexen-1-ol obtained by the method of the present invention is a substance useful as an intermediate for producing green leaf alcohol and other fragrance substances.
 以下、実施例により、本発明をさらに詳細に説明する。但し、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
 攪拌翼を備えた内容積200mlのオートクレーブに、3-ヘキシン-1-オール98.1g、リンドラー触媒(パラジウム5重量%含有)0.22gを加え、密閉後水素置換を行い水素ゲージ圧400kPaとし、30℃で、攪拌翼の回転数を85r.p.m.として、部分水素添加反応を行った。
 途中、反応転化率が95モル%に達したときに攪拌翼の回転数を65r.p.m.に落とすスローダウンを実施し、理論水素量を吸収した時点を終点とした。
 反応生成物を取り出し、触媒を濾別分離した。得られた反応生成物をガスクロマトグラフィーで定量した。
(Example 1)
To an autoclave with an internal volume of 200 ml equipped with a stirring blade, 98.1 g of 3-hexyn-1-ol and 0.22 g of Lindlar catalyst (containing 5% by weight of palladium) were added. After sealing, hydrogen replacement was performed to obtain a hydrogen gauge pressure of 400 kPa. At 30 ° C., the rotational speed of the stirring blade was 85 r. p. m. As described above, a partial hydrogenation reaction was performed.
On the way, when the reaction conversion rate reached 95 mol%, the rotation speed of the stirring blade was adjusted to 65 r. p. m. The end point was the point of time when the theoretical hydrogen amount was absorbed.
The reaction product was taken out and the catalyst was separated by filtration. The obtained reaction product was quantified by gas chromatography.
(実施例2~11)
 実施例1において、触媒量、水素ゲージ圧及び反応温度を、下記表1に示すように変更した以外は、実施例1と同様にして、3-ヘキシン-1-オールの部分水素添加反応を行った。
(Examples 2 to 11)
In Example 1, a partial hydrogenation reaction of 3-hexyn-1-ol was performed in the same manner as in Example 1 except that the amount of catalyst, hydrogen gauge pressure, and reaction temperature were changed as shown in Table 1 below. It was.
 実施例1~11で用いた触媒量(g)、反応容器内水素ゲージ圧(kPaG)、反応温度(℃)、反応時間(hr)、及びトランス-3-ヘキセン-1-オール(t-LFA)の生成量(質量%)、シス-3-ヘキセン-1-オール(c-LFA)の生成量(質量%)、位置異性体〔シス-3-ヘキセン-1-オールの位置異性体(二重結合の存在位置が異なる異性体)〕の生成量(質量%)、飽和体(n-ヘキサノール)の生成量(質量%)、トランス異性体とシス異性体との比率(t/c)〔(トランス異性体の生成量)/(シス異性体の生成量)〕×100を表1にまとめて示す。 Catalyst amount (g) used in Examples 1 to 11, hydrogen gauge pressure in reaction vessel (kPaG), reaction temperature (° C.), reaction time (hr), and trans-3-hexen-1-ol (t-LFA) ) Production amount (mass%), cis-3-hexen-1-ol (c-LFA) production amount (mass%), positional isomer [cis cis-3-hexen-1-ol positional isomer (two Isomers with different positions of heavy bonds)]] (mass%), saturate (n-hexanol) production (mass%), ratio of trans isomer to cis isomer (t / c) [ Table 1 summarizes (production amount of trans isomer) / (production amount of cis isomer)] × 100.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、3-ヘキシン-1-オールの部分水素添加反応により(実施例1~11)、目的とするシス-3-ヘキセン-1-オールが高純度で得られることがわかる。 From Table 1, it can be seen that the target cis-3-hexen-1-ol can be obtained with high purity by the partial hydrogenation reaction of 3-hexyn-1-ol (Examples 1 to 11).

Claims (4)

  1.  パラジウム触媒の存在下、無溶媒及び反応容器内の水素ゲージ圧が10~1000kPaの条件で、3-ヘキシン-1-オールの部分水素添加反応を行うことを特徴とする、シス-3-ヘキセン-1-オールの製造方法。 A partial hydrogenation reaction of 3-hexyn-1-ol is carried out in the presence of a palladium catalyst in the absence of a solvent and a hydrogen gauge pressure in the reaction vessel of 10 to 1000 kPa. A method for producing 1-ol.
  2.  水素添加率が80~99モル%となったときに撹拌調整を行う請求項1に記載の製造方法。 The production method according to claim 1, wherein the stirring is adjusted when the hydrogenation rate becomes 80 to 99 mol%.
  3.  反応温度が20~100℃である請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the reaction temperature is 20 to 100 ° C.
  4.  前記部分水素添加反応により得られる反応生成物中のn-ヘキサノール量が0.2質量%以下、トランス-3-ヘキセン-1-オールの量が1.5質量%以下である請求項1~3に記載の製造方法。 The amount of n-hexanol in the reaction product obtained by the partial hydrogenation reaction is 0.2% by mass or less, and the amount of trans-3-hexen-1-ol is 1.5% by mass or less. The manufacturing method as described in.
PCT/JP2014/057180 2013-03-29 2014-03-17 Production method for cis-3-hexene-1-ol WO2014156781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508328A JPWO2014156781A1 (en) 2013-03-29 2014-03-17 Process for producing cis-3-hexen-1-ol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-071878 2013-03-29
JP2013071878 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156781A1 true WO2014156781A1 (en) 2014-10-02

Family

ID=51623762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057180 WO2014156781A1 (en) 2013-03-29 2014-03-17 Production method for cis-3-hexene-1-ol

Country Status (2)

Country Link
JP (1) JPWO2014156781A1 (en)
WO (1) WO2014156781A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564527A (en) * 1978-11-08 1980-05-15 Shin Etsu Chem Co Ltd Selective preparation of cis form compound
JPS5612326A (en) * 1979-07-12 1981-02-06 Chisso Corp Preparation of cis-3-hexen-1-ol
JPS61118328A (en) * 1984-10-24 1986-06-05 バスフ アクチェン ゲゼルシャフト Manufacture of olefinic unsaturated compound
JPS6383031A (en) * 1986-09-26 1988-04-13 Nippon Zeon Co Ltd Production of dehydrogenation reaction product or hydrogenation reaction product
CN1762941A (en) * 2004-10-20 2006-04-26 大连圣迈化学有限公司 Leaf alcohol synthesis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564527A (en) * 1978-11-08 1980-05-15 Shin Etsu Chem Co Ltd Selective preparation of cis form compound
JPS5612326A (en) * 1979-07-12 1981-02-06 Chisso Corp Preparation of cis-3-hexen-1-ol
JPS61118328A (en) * 1984-10-24 1986-06-05 バスフ アクチェン ゲゼルシャフト Manufacture of olefinic unsaturated compound
JPS6383031A (en) * 1986-09-26 1988-04-13 Nippon Zeon Co Ltd Production of dehydrogenation reaction product or hydrogenation reaction product
CN1762941A (en) * 2004-10-20 2006-04-26 大连圣迈化学有限公司 Leaf alcohol synthesis method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALEXANDER SACHSE ET AL.: "Selective hydrogenation over Pd nanoparticles supported on a pore-flow-through silica monolith microreactor with hierarchical porosity", DALTON TRANSACTIONS, vol. 42, no. 5, pages 1378 - 1384 *
CARMEN MORENO MARRODAN ET AL.: "In situ generation of resin-supported Pd nanoparticles under mild catalytic conditions: a green route to highly efficient, reusable hydrogenation catalysts", CATALYSIS SCIENCE & TECHNOLOGY, vol. 2, no. 11, 2012, pages 2279 - 2290 *
H. BONNEMANN: "Surfactant stabilized palladium colloids as precursors for cis-selective alkyne hydrogenation catalysts", APPLIED ORGANOMETALLIC CHEMISTRY, vol. 11, 1997, pages 783 - 796 *

Also Published As

Publication number Publication date
JPWO2014156781A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
DE602004003964T2 (en) PROCESS FOR PRODUCING BRANCHED HYDROCARBONS
WO2013073705A1 (en) Method for producing high-purity 1,5-pentanediol
JP6800206B2 (en) Use of a renium-containing supported heterogeneous catalyst for direct dehydrogenation and dehydrogenation of glycerol to allyl alcohol
JP5689964B2 (en) Isomerization catalyst
RU2530880C2 (en) Method of obtaining alicyclic alcohol
KR101828002B1 (en) Preparation method of 1,3-cyclohexanedimethanol
JP6483861B2 (en) Metal composite catalyst, its production method and utilization in the production of D, L-menthol
WO2014156781A1 (en) Production method for cis-3-hexene-1-ol
JP2008013477A (en) High-purity and low-malodorous squalane and method for producing the same
JPH0639409B2 (en) Method for producing octane derivative
CN111871428B (en) Rhodium catalyst for preparing d, l-menthol and preparation method of d, l-menthol
JP3904854B2 (en) Method for producing fluorine-containing alicyclic dicarboxylic acid compound
JPH0649660B2 (en) Cyclohexane purification method
JP7188543B2 (en) Method for isomerizing allyl compound
JPS6324500B2 (en)
JPS5829766B2 (en) Crocetan production method
US20030109756A1 (en) Process for the preparation of 3,3,5-trimethylcyclohexanol
JPH0749385B2 (en) Method for producing 3,3,5-trimethylcyclohexanone
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP2003160574A (en) Production method of epoxycyclododecane
JPH0987219A (en) Production of 2-cyclohexene-1-ol
JPS6366292B2 (en)
JP2005022982A (en) Method for producing cyclohexanecarbaldehyde
JPH10226659A (en) Production of 7-octen-1-al
JPS58225033A (en) Production of 7-oectene-1-ol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775750

Country of ref document: EP

Kind code of ref document: A1