KR970004566B1 - Soft magnetic steel material - Google Patents

Soft magnetic steel material Download PDF

Info

Publication number
KR970004566B1
KR970004566B1 KR1019910700178A KR910700178A KR970004566B1 KR 970004566 B1 KR970004566 B1 KR 970004566B1 KR 1019910700178 A KR1019910700178 A KR 1019910700178A KR 910700178 A KR910700178 A KR 910700178A KR 970004566 B1 KR970004566 B1 KR 970004566B1
Authority
KR
South Korea
Prior art keywords
less
magnetic
amount
addition
flux density
Prior art date
Application number
KR1019910700178A
Other languages
Korean (ko)
Other versions
KR920700458A (en
Inventor
도시미찌 오오모리
하루오 스즈끼
데쓰야 산뻬이
야스노부 구니사다
도오시오 다까노
Original Assignee
닛뽄 고오깐 가부시끼가이샤
야마시로 아끼나리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛뽄 고오깐 가부시끼가이샤, 야마시로 아끼나리 filed Critical 닛뽄 고오깐 가부시끼가이샤
Publication of KR920700458A publication Critical patent/KR920700458A/en
Application granted granted Critical
Publication of KR970004566B1 publication Critical patent/KR970004566B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

없음none

Description

철기연자성강재Ferromagnetic Magnetic Steels

직류전자석철심재료, 또는 근년에 특히 진보ㆍ보급이 눈부신 의료기기나 각종 물리기기, 전자부품 및 기기등의 자기차폐재료로서 비교적 염가로 얻을 수 있는 연철이나 순철 및 대단히 고가인 퍼어말로이와 슈퍼말리이가 사용되고 있다. 그런데, 연철이나 순철의 10e에 있어서의 자속밀도(이하 B1치)는 대개 3000~11000G 정도이고, 이들은 MRI(핵자가 공명에 의한 단층상 촬영진단장치)의 자기차폐등, 수 가우스정도까지의 자기차폐재료로서 또는 전자석철심용재료로서 사용되고 있다.DC electromagnet core materials, or magnetic shielding materials such as medical devices, various physical devices, electronic parts, and devices, which are particularly prominent in recent years and are widely used, are made of wrought iron, pure iron, and extremely expensive Fermaloy and supermalley. have. By the way, a magnetic flux density (hereinafter referred to as B 1 value) is typically about 3000 ~ 11000G of the 10e of the soft iron or pure iron, these MRI can, such as a magnetic shielding (nucleons have a single-layer phase-up diagnostic apparatus according to the resonance) to the Gaussian degree It is used as a magnetic shielding material or as an electromagnet core material.

직류자화 특성이 중요하게 되는 용도중, 자기차폐를 예로서 종래기술의 문제점을 표시한다. 즉, 현대 MRI의 자기차폐에는 비교적 염가이고 또한 포화자화가 높은 순철이 사용되고 있으나 연철, 순철을 대상으로하는 전자(electromagnetic) 연철을 규정하는 JIS 규격중 가장 엄격한 특성을 요구하는 0종(구체적으로는 JIS 2504 SUYPO) 조차도 B1치의 하한치를 8000G로 규정하고 있고, 이 특성에서는 지자기정도의 자기차폐는 곤란하고, 게다가 수 가우스정도 이하의 자기차폐를 행하기 위한 차폐시스템의 중후화를 초래하고 있다. 보다 좋은 차폐를 행하기 위한 차폐재료로서 퍼어말로이 또는 슈퍼말로이 등의 Fe-Ni 합금을 사용하는 경우도 있으나, 이들의 재료는 지자기정도 이하의 차폐가 가능한 반면, 대단히 고가이고 또, 포화자화가 순철과 비하여 1/3~2/3으로 낮고, 따라서 고자계를 차폐하는데 있어서는 두께를 극단으로 증가시키지 않으면 안되는 등의 결점도 있으므로, 어느것으로 하여도 대량으로 사용하는 것은 경제적으로 곤란하다.Among the applications in which the direct current magnetization characteristic becomes important, the problem of the prior art is indicated by using magnetic shield as an example. In other words, pure MRI is used for the magnetic shielding of Hyundai MRI, which is relatively inexpensive and has high saturation magnetization. Even JIS 2504 SUYPO) defines the lower limit of the B 1 value as 8000 G. In this characteristic, magnetic shielding about the geomagnetism is difficult, and in addition, the shielding system for magnetic shielding of about several Gauss or less is caused. In some cases, Fe-Ni alloys such as Fermaloy or Supermaloy may be used as a shielding material for better shielding. However, these materials can be shielded to a level below geomagnetism, but are extremely expensive and have saturation magnetization. Compared with this, it is lower than 1/3 to 2/3, and therefore, there is a drawback that the thickness must be increased to the extreme in shielding the high magnetic field. Therefore, it is economically difficult to use a large amount in any case.

상술한 상황을 고려하여, 순철계재료가 가지고 있는 고포화자화를 손상시키지 않고 투자율을 높이는 검토가 이미 몇건 이루어지고 있다. 예컨대, 특공소 63-45443호, 특개소 62-77420호 또는 일본 금속학회 제23권 제5호(1984년 발행) "극후 전자강판의 개발'에 개시되어 있는 방법은 어느 것도 페라이트 결정립의 조대화에 따르는 투자율 향상을 도모하는 것이지만, 이들 기술은 대항이 비교적 판두께가 얇은 열연판에 한정되는 기술이든지 또는 Al2O3과 같이 보다 엄격한 직류자화 특성을 평가하는 경우 0.5 Oe에 있어서 자속밀도(이하 B0.5치)로 11000G 이상을 달성할 수 없는 기술이므로, 어느것이라하더라도 직류자화 특성을 얻기위한 기술로서 충분한 것은 아니다.In view of the above situation, several studies have already been made to increase the permeability without damaging the high saturation of pure iron-based materials. For example, none of the methods disclosed in Japanese Patent Application No. 63-45443, Japanese Patent Application No. 62-77420, or Japanese Metal Society No. 23, No. 5 (published in 1984) "Development of Extreme Electromagnetic Steel Sheets" Although this technique is intended to improve the magnetic permeability, these techniques are limited to hot-rolled sheets having a relatively thin plate thickness or magnetic flux density at 0.5 Oe when stricter DC magnetization characteristics such as Al 2 O 3 are evaluated. B0.5 value) is not a technology that can achieve more than 11000G, any of which is not sufficient as a technique for obtaining the DC magnetization characteristics.

이와같은 현상에서는 포화자화가 높고, 또한 지자기정도에 상당하는 낮은 자장으로 낮은 자속밀도를 표시하는, 요컨대 투자율이 높은 재료는 제공되어 있지 않다. 본 발명의 목적은 이와같은 재료를 제공하는데 있다.In such a phenomenon, there is no material having a high permeability, that is, high saturation magnetization and low magnetic flux density with a low magnetic field corresponding to the degree of geomagnetism. It is an object of the present invention to provide such a material.

발명의 개시Disclosure of the Invention

상술한 문제점을 해결하기 위해 본발명자들은 우선 직류자장용 연자성재료의 기본인 공업용 순철에 대해 검토를 행하여 그 결점을 명백하게 하고, 또한 특성 개선을 도모해야할 검토를 행하여 이하의 지견을 얻었다.In order to solve the above-mentioned problems, the present inventors first examined industrial pure iron, which is the basis of soft magnetic materials for direct current magnetic fields, clarified its shortcomings, and conducted studies to improve the characteristics, and obtained the following findings.

즉, 고투자율을 얻는다는 관점에서, Al을 첨가함으로써 (1)효과적인 탈산이 가능하게 되어서 산소량 및 산화물계 개재물의 저감에 따르는 투자율 향상으로 연결된 뿐만 아니라 투자율에 악영향을 미치는 고용 N을 AIN 입자의 형성에 의해 저감할 수 있는 것, (2) 또 어느 필요량 첨가하는데 의해, 미세하게 분산되어 있는 AIN 입자의 응집화를 도모하는 것이 가능하게 되고, AIN 입자 그것의 악영향을 극력 낮게 억제할 수 있음과 동시에, 격자변형(strain)을 제거하는 수단인 소둔에 의해 페라이트 결정립의 조립화를 현저하게 촉진하는 효과도 얻어지고, 어느것도 투자율 향상에 유효하다는 것, (3) 특히 0.5wt%를 초과하여 첨가함으로써 변태온도를 현저하게 높이거나, 또는 페라이트 단상으로 하는 것이 가능하게 되고, 따라서 변태에 의한 변형이 도입되는 일없이 900℃를 초과하는 온도로 소둔을 행하는 것도 가능하게 되는 것, 그리고 이 소둔은 효과적인 격자변형의 제거와 페라이트 결정립의 조대화를 초래하고, 고용 Al 그것의 투자율 향상효과도 생각되지만, 이들의 상승효과에 의해 극히 뛰어난 투자율을 얻는것에 연계되는 것 (4) 또, 필요에 따라서 Ti를 적량 첨가함으로써 이들이 고용 N를 우선적으로 고정하여 특성 향상에 기여하고, 특히 억지로 N 함유량을 감하는 노력을 필요로하지 않는 것, 또 재료의 포화자화를 높게 유지한다고하는 관점에서, (5) 2.5%를 초과하는 Al의 첨가는 피해야할 것이고, 또한, (6) C와 N함유량이 많으면 변태온도의 저하 또는 필요한 Al 첨가량의 증대에 더하여, 고용 C와 N의 증가에 의한 격자 변형의 증대 또는 탄화물, 질화물의 생성등에 의해 특성을 열화시키는 일이 있기 때문에, 이들을 피하기 위한, C와 N량의 상한이 존재한다는 것을 발견하여, 본 발명을 완성시킨 것이다.That is, from the viewpoint of obtaining a high permeability, the addition of Al (1) enables effective deoxidation, leading to improvement in permeability resulting from the reduction of oxygen content and oxide inclusions, as well as the formation of solid-solution N having a negative effect on permeability. Can be reduced, and (2) addition of any necessary amount enables the agglomeration of finely dispersed AIN particles to be achieved, and the adverse effects of the AIN particles can be suppressed to an extremely low level. By annealing, which is a means of removing lattice strain, the effect of remarkably promoting the granulation of ferrite grains is also obtained, and all of them are effective for improving the permeability. (3) By adding more than 0.5 wt%, It is possible to remarkably increase the transformation temperature or to make the ferrite single phase, so that deformation due to transformation is not introduced. It is also possible to perform annealing at a temperature exceeding 900 ° C, and this annealing brings about effective removal of lattice deformation and coarsening of ferrite grains, and it is thought that the effect of improving Al permeability of solid solution Al is also considered. (4) In addition, by appropriately adding Ti as necessary, they fix the solid solution N first, contributing to the improvement of properties, and in particular, the effort to reduce the N content is not necessary. In addition, in view of maintaining a high saturation magnetization of the material, (5) addition of Al exceeding 2.5% should be avoided, and (6) lowering transformation temperature or necessary Al when the C and N content is large. In addition to the increase in the amount added, the properties may be deteriorated due to the increase in lattice strain due to the increase of the solid solution C and N, or the formation of carbides and nitrides. In order to avoid these problems, the present inventors have discovered that an upper limit of the amount of C and N exists, thereby completing the present invention.

즉 본원 제1의 발명은 중량%로, Al : 0.5~2.5%, Si : 1.0% 이하, C+N : 0.007%이하, Mn : 0.5%이하, 산소 : 0.005%이하, 잔부 Fe 및 불가피한 불순물의 조성으로 이루어지고, 또한 페라이트 결정립경이 0.5mm 이상이고, 격자변형을 충분히 제거한 상태에서 0.5 Oe에 있어서의 자속밀도치 11000G이상, 25 Oe에 있어서의 자속밀도치 15500G이상, 보자력 0.4 Oe 이하를 나타내는 것을 특징으로 하는 철기연자성강재를 제공하는 것이다.In other words, the first invention of the present application is by weight, Al: 0.5-2.5%, Si: 1.0% or less, C + N: 0.007% or less, Mn: 0.5% or less, oxygen: 0.005% or less, balance of Fe and unavoidable impurities It is composed of a composition, and has a ferrite grain size of 0.5 mm or more and exhibits a magnetic flux density value of 11000 G or more at 0.5 Oe, a magnetic flux density value of 15500 G or more at 25 Oe, and a coercive force of 0.4 Oe or less in a state where the lattice strain is sufficiently removed. To provide ferromagnetic magnetic steels.

또, 본원 제2의 발명은 중량%로, Al : 0.5~2.5%, Si : 1.0% 이하, C+N : 0.014%이하, Mn : 0.5% 이하, 산소 : 0.005%이하, Ti : 0.005~1.0%, 잔부 Fe 및 불가피한 불순물의 조성으로 이루어지고, 또한 페라이트 결정립경이 0.5mm 이상이고, 격자 변형을 충분히 제거한 상태에서 0.5 Oe에 있어서의 자속밀도치 11000G이상, 25 Oe에 있어서의 자속밀도치 15500G이상, 보자력 0.4 Oe 이하를 나타내는 것을 특징으로 하는 철기연자성강재를 제공하는 것이다.In addition, in the second invention of the present application, by weight%, Al: 0.5 to 2.5%, Si: 1.0% or less, C + N: 0.014% or less, Mn: 0.5% or less, oxygen: 0.005% or less, Ti: 0.005 to 1.0 %, Remainder Fe and unavoidable impurities, the ferrite grain size is 0.5 mm or more, and the magnetic flux density value at 0.5 Oe is 11000 G or more, the magnetic flux density value at 25 Oe is 15500 G or more, the coercive force in a state where the lattice strain is sufficiently removed. It is to provide a ferromagnetic magnetic steel material characterized in that the 0.4 Oe or less.

이하, 본 발명에 있어서의 조성의 한정이유에 대하여 설명한다.Hereinafter, the reason for limitation of the composition in this invention is demonstrated.

C 및 N는 뛰어난 직류자화특성을 확보하기 위하여도 가능한한 저감하는 것이 바람직하지만, 공업적으로 제조한 경우에 극한적인 저감은 곤란하므로, 결과적으로 극단적인 원가 상승을 초래한다. 또, Al첨가에 의해 변태온도를 높이기 위하여도, C 와 N의 첨가량을 낮게 억제하지 않으면 Al의 필요첨가량이 많아져 버릴 염려가 있고, 이것은 결과적으로 포화자화를 저하하는데 연결되고, 본 발명의 의도에 반한다. 제2도는 1000~1100℃의 통상의 조건으로 소둔함으로써 격자변형을 제거한 후, 직류자화특성의 변화를 B0.5치의 변화로서 포착하여, C+N량의 영향을 검토한 것이다. 이것에 의하면, 양호한 특성을 얻기 위해서는 C+N 량을 0.007 중량% 이하로 할 필요가 있다는 것을 알 수 있다는 것을 알 수 있다. 이 때문에 본 발명에서는 C+N : 0.007 중량% 이햐로 한다.It is preferable to reduce C and N as much as possible in order to secure excellent DC magnetization characteristics, but in the case of industrial production, the extreme reduction is difficult, resulting in extreme cost increase. In addition, in order to increase the transformation temperature by addition of Al, if the addition amount of C and N is not kept low, there is a possibility that the required amount of Al will increase, which in turn leads to lowering the saturation magnetization, and thus the intention of the present invention. Against In FIG. 2, after the lattice strain is removed by annealing under normal conditions of 1000 to 1100 ° C, the change in the DC magnetization characteristics is captured as a change in B 0.5 value, and the influence of the amount of C + N is examined. According to this, it turns out that it is necessary to make C + N amount 0.007 weight% or less in order to acquire a favorable characteristic. For this reason, in this invention, it is set as C + N: 0.007 weight% or less.

본 발명에서는, 후술한 바와같이 강력한 질화물 생성원소인 Ti를 필요에 따라서 첨가한다. Ti는 원가 상승으로 연결되는 N량의 상한을 엄격하게 규정하는 일이 없이 상술한 N의 폐해를 검하는 것을 목적으로하여 첨가하는 것이고, 따라서 이 경우에는 C+N량의 상한을 0.014 중량%로 한다.In the present invention, Ti, which is a strong nitride generating element, is added as necessary as described later. Ti is added for the purpose of detecting the above-mentioned adverse effects of N without strictly defining the upper limit of the amount of N which leads to the increase in cost. Therefore, in this case, the upper limit of the amount of C + N is 0.014% by weight. do.

Si는 투자율 향상에 기여하지만, 본 발명에서는 Al첨가에 의해 적단한 소둔후 0.5mm 이상의 조대한 페라이트 결정립을 얻을 수가 있기 때문에 오히려 다량으로 첨가하는 것에 의한 포화자화의 저하, 원가 상승을 피하기 위하여 그 상한을 1.0 중량%로 하였다.Although Si contributes to the improvement of permeability, in the present invention, coarse ferrite grains of 0.5 mm or more can be obtained after annealing by Al addition, in order to avoid lowering of saturation magnetization and cost increase by adding a large amount, the upper limit thereof is used. Was 1.0 wt%.

Mn은 직류자화 특성을 열화시키는 원소이기 때문에 저감하는 것이 바람직하지만, 극단적인 저감은 원가상승 및 N 함유량의 증가를 초래한다. 또 S를 고정함으로써 열간취성을 방지하는 효과도 있기 때문에, Mn/S가 10을 하회하지 않는 범위에서 0.5 중량%를 상한으로 함유하여도 좋다.It is preferable to reduce Mn because it is an element that deteriorates the DC magnetization characteristic, but an extreme reduction causes a cost increase and an increase in N content. Moreover, since there is also an effect of preventing hot brittleness by fixing S, 0.5 wt% may be contained as an upper limit in the range which Mn / S does not fall below 10.

Al은 상술한 바와같이 본 발명의 주요로 되는 첨가원소이고, 고용 N의 고정 및 AIN 입자의 응집화, 변태온도의 상승을 초래하고, 페라이트영역을 확대시킴으로써 소둔에 의한 페라이트 결정립의 조대화 및 격자변형의 저감을 단성하고, 더욱이 고용 Al 자신의 직류자화특성 향상효과도 생각되므로, 본 발명에 있어서는 뛰어난 직류자화특성을 얻기위해 첨가하지 않으면 안되는 원소이다. 제1도에 도시한 바와같이, 이 Al의 효과는 Sol. Al의 상태로 0.5 중량% 이상 첨가함으로써 얻어지지만 한편, 2.5중량%를 초과하여 첨가함으로써 포화자화의 저하에 의해 초래되는 B25치의 저하를 초래하여 바람직하지 못하므로 Al의 첨가량 범위는 Sol. Al의 상태로 0.5~2.5중량%로 하였다.Al, as described above, is an important element of the present invention, which causes the fixation of solid-solution N, the coagulation of AIN particles, and the increase in transformation temperature, and coarsening and lattice of ferrite grains by annealing by enlarging the ferrite region. In order to reduce deformation and to further improve the direct magnetization characteristics of the solid solution Al itself, it is an element that must be added in order to obtain excellent direct magnetization characteristics. As shown in FIG. 1, the effect of Al is Sol. In a state of Al it is obtained by adding at least 0.5% by weight of the other hand, since undesirable and results in a reduced value B 25 caused by the reduction in the saturation magnetization by the addition in excess of 2.5% by weight addition amount is the range of the Al Sol. It was 0.5 to 2.5 weight% in the state of Al.

Ti는 상술한 바와같이 강력한 직화물 생성원소이고, 0.005~1.0중량%의 범위로 첨가함으로써 N함유량이 충분히 저감되어 있지않은 즉, 염가인 소재에 있어서도 고용 N의 고정효과에 의해 직류자화특성이 현저하게 손상되는 것을 회피할 수가 있다. 또, N함유량이 비교적 낮은 경우는 질화물 입자의 생성량도 적으므로 직류자화특성의 약간의 향상도 기대할 수가 있다. 한편, 상기 상한치를 초과하여 첨가하면 직류자화특성의 열화를 초래한다.As described above, Ti is a strong nitrate generating element, and the content of N is not sufficiently reduced by adding it in the range of 0.005 to 1.0% by weight, so that direct current magnetization characteristics are remarkable due to the fixing effect of solid solution N even in inexpensive materials. Damage can be avoided. In addition, when the N content is relatively low, since the amount of nitride particles is also small, a slight improvement in the DC magnetization characteristics can be expected. On the other hand, when it exceeds the said upper limit, the DC magnetization characteristic will be deteriorated.

이상과 같이 본 발명에 의해 화학성분을 한정함으로써 B0.5치 및 B25치가 높은 즉, 직류자계에서의 연자기특성이 뛰어난 강재를 얻을 수가 있다.As described above, by restricting the chemical component of the present invention, steel having a high B 0.5 value and a B 25 value, that is, excellent soft magnetic characteristics in a DC magnetic field can be obtained.

이상과 같은 본 발명의 대상으로하는 강재는 열간가공강재, 냉간 또는 온간 가공강재를 포함하고, 또 강재의 종류로서 후판, 박판, 와이어재(형강등), 단조재 등도 포함하는 것이다.The steels of the present invention as described above include hot-worked steels, cold or warm-worked steels, and also include steel plates, thin plates, wire materials (shaped steels, etc.), forgings, and the like as steel.

이상과 같은 본 발명의 강재는 주편을 열간가공하는 방법, 주편을 그대로 온간 또는 냉간가공하는 방법, 열간가공후 냉간 또는 온간가공하는 방법, 직압열연하는 방법, 이들의 방법의 가공 사이에서 소둔(통상 450℃이상)을 행하는 방법 등, 여러가지의 방법에 의해 제조할 수가 있으나, 어느경우라도 최종소둔이 시행된다. 이 최종소둔은 통상 900℃이상 바람직하기는 1000~1300℃의 온도에서 실시된다.The steel materials of the present invention as described above are annealed between the method of hot working the cast steel, the method of hot or cold working as it is, the cold or hot working after hot working, the method of hot rolling directly, the processing of these methods (usually Although it can manufacture by various methods, such as the method of 450 degreeC or more), in either case, final annealing is performed. This final annealing is usually carried out at 900 ° C or higher, preferably at a temperature of 1000 to 1300 ° C.

제1표는 본 발명 및 비교예를 사용한 강의 화학성분을 표시한 것이다.The 1st table shows the chemical composition of the steel which used this invention and the comparative example.

강 B~G, J, L, N~T, V~X, Z가 본 발명의 조성에 적합한 것이고, 강 A, H, I, K, M, U, Y, a는 비교강종이다.Steels B to G, J, L, N to T, V to X, and Z are suitable for the composition of the present invention, and steels A, H, I, K, M, U, Y, and a are comparative steel grades.

제2표는 제1표에 표시한 강을 용제후, 두께 110mm의 강괴로 만들어서, 이것을 1200℃ 가열에 의한 열간압연에 의해 판두께 15mm로 성형하여, 소둔한 후, 직류자화특성 및 페라이트 결정립경을 측정한 결과를 통합한 것이다. 또 소둔은 가열 유지시간이 1~3시간, 냉각속도가 약 100℃/hr~500℃/hr 이라는 통상의 조건으로 행하였다.The second table makes the steel shown in the first table into a steel ingot with a thickness of 110mm after the solvent, and after forming it into a sheet thickness of 15mm by hot rolling by heating at 1200 ° C, after annealing, the direct magnetization characteristics and the ferrite grain size The result of the measurement is integrated. The annealing was carried out under the usual conditions of 1 to 3 hours of heating holding time and about 100 ° C / hr to 500 ° C / hr of cooling rate.

제2표에 있어서, No. 1~9, No. 21은 Sol. Al량의 영향을 조사한 것이다. 또 No. 21은 소둔의 비교예이다.제1도는 이들의 결과를 통합한 것이다.In Table 2, No. 1 ~ 9, No. 21 is Sol. The influence of Al amount is investigated. No. 21 is a comparative example of annealing. FIG. 1 summarizes these results.

No. 10~13, No. 25는 C+N 량의 영향을 조사한 것이고, 제2도는 이들의 결과에 No. 4의 결과를 더하여 정리한 것이다. 이것에 의하면, Ti 무첨가에서는 C+N 량이 0.007%를 초과하면 B0.5치의 열화가 인정된다.No. 10-13, No. 25 shows the effect of the amount of C + N, and FIG. 2 shows No. Summed up by adding the result of 4. According to this, deterioration of B 0.5 value is recognized when C + N amount exceeds 0.007% in Ti addition.

No. 14~16은 Mn량의 영향을 조사한 것이고, Mn량의 증가에 따라 직류자화 특성의 열화경향이 인정되지만, 0.5중량%를 초과하지 않는 범위이면, 양호한 특성을 확보할 수 있는 것으로 추정된다.No. In 14-16, the influence of the amount of Mn was investigated, and deterioration tendency of the DC magnetization characteristic is recognized with increase of Mn amount, but if it is a range which does not exceed 0.5 weight%, it is estimated that a favorable characteristic can be ensured.

No. 17~20은 Si량의 영향을 조사한 것이고, Si 량의 증가에 따라 포화 자화의 저하에 의한 자속밀도(B0.5cl, B1cl, B25치)의 저하가 인정되지만 여전히 양호한 특성이 확보되어 있다. 또, Si의 첨가는 Al과 같이 강재의 고유저항을 증가시키는 것은 주지되어 있기 때문에, 냉간 압연등에 의해 박판으로하고, 교류자장에서 사용하는 연자성강재에 적용시키는 경우, 철손을 감소시키는 효과를 기대할 수 있다.No. 17 to 20 are the effects of the amount of Si, and as the amount of Si increases, the decrease of the magnetic flux density (B 0.5 cl, B 1 cl, B 25 value) due to the decrease in saturation magnetization is recognized, but still good characteristics are secured. have. In addition, it is well known that addition of Si increases the specific resistance of steels such as Al. Therefore, when applied to soft magnetic steels used in alternating magnetic fields, it is expected to have an effect of reducing iron loss. Can be.

No. 22~24, No. 26, No. 27은 Ti첨가의 영향을 조사한 것이고, Ti첨가에 의해 N의 고정이 도모되므로, 양호한 특성이 인정된다. 특히, No. 23은 No. 11(비교예)에 상당하는 강에 Ti를 첨가한 본 발명예, 또 No. 26은 No. 25(비교예)에 상당하는 강에 Ti를 첨가한 본 발명예이고, 어느것도 C+N>0.007%인데도 불구하고, Ti에 이해 충분한 N의 고정이 이루어지고, No. 11, No. 25의 비교예에 비하여 대폭적인 특성개선이 인정된다.No. 22-24, No. 26, No. 27 examines the effect of Ti addition, and since Ti is fixed by Ti addition, favorable characteristic is recognized. In particular, No. 23 is No. Example of this invention which added Ti to the steel corresponded to 11 (comparative example), and No. 26 is No. Although Ti is added to the steel corresponded to 25 (comparative example), although both are C + N> 0.007%, the fixation of N enough to Ti is made and No. 11, No. Significant improvement in characteristics is recognized as compared with Comparative Example 25.

또, 제3표는 제1표중 몇개의 강에 대하여, 열간압연후 냉간압연에 의해 박판으로 만들어서, 통상의 소둔후 제2표의 실시예와 같이 직류자화 특성을 조사한 결과를 표시한 것이다. 또, 이들의 본 발명예 및 비교예에 표시된 냉간압연재의 냉간 압하량은 50~80% 이다.In addition, the third table shows the result of having investigated the direct-current magnetization characteristics of some steels in the first table by hot rolling after cold rolling, and in the same manner as in the example of the second table after ordinary annealing. Moreover, the cold rolling reduction amount of the cold rolled material shown by these invention examples and comparative examples is 50 to 80%.

제3표중, No. 1, No. 2는 강 U에 의한 비교예이다. 한편, No. 3~6은 본 발명의 실시예이다. 이들의 본 발명예는 No. 1, No. 2의 비교예에 비하여 양호한 직류자화특성을 표시하고 있다.In Table 3, No. 1, No. 2 is a comparative example by steel U. Meanwhile, No. 3-6 is an Example of this invention. These examples of the present invention are No. 1, No. Compared with the comparative example of 2, better DC magnetization characteristics are shown.

또, 제2표, 제3표의 어느것에 있어서도, 양호한 직류자화특성을 가지는 본 발명예는 모두 페라이트 결정립경이 0.5mm 이상으로 되어 있다.In either of the second and third tables, the ferrite grain size of the present invention having good direct magnetization characteristics is 0.5 mm or more.

제 1 표Table 1

제 2 표2nd table

제 3 표3rd table

이상과 같이, 본 발명에 의한 연자성강재는 뛰어난 직류자화특성을 가지고 있고, 이 때문에 극히 약한 자계에서도 용이하게 자화될 수 있고, 고기능 철심재료 또는 고기능 자기차폐재료 등으로서 극히 유용한 것이다.As described above, the soft magnetic steel according to the present invention has excellent DC magnetization characteristics, and thus can be easily magnetized even in extremely weak magnetic fields, and is extremely useful as a high-performance iron core material or a high-performance magnetic shielding material.

산업상의 이용분야Industrial use

본 발명은 전자석자심재료, 자기차폐재료등 높은 직류자화특성이 요구되는 철기연자성 강재에 적용할 수 있다.The present invention can be applied to ferromagnetic magnetic steels requiring high DC magnetization characteristics such as electromagnet core material and magnetic shielding material.

본 발명은 전자석자심재료, 자기차폐재료 등 높은 직류자화 특성이 요구되는 철기연자성강재에 관한 것이다.The present invention relates to a ferromagnetic magnetic steel material requiring high DC magnetization characteristics such as electromagnet core material, magnetic shielding material.

제1도는 Sol. Al 첨가량과 직류자화특성(B0.5치, B25치)과의 관계를 도시한 도면,1 is Sol. A diagram showing the relationship between the amount of Al added and the direct magnetization characteristics (B 0.5 value, B 25 value),

제2도는 C+N 함유량과 직류자화특성(B0.5치)와의 관계를 도시한 도면이다.2 is a diagram showing the relationship between the C + N content and the direct current magnetization characteristic (B 0.5 value).

Claims (2)

중량%로, Al : 0.5~2.5%, Si : 1.0% 이하, C+N : 0.007% 이하, Mn : 0.5% 이하, 산소 : 0.005%이하, 잔부 Fe 및 불가피한 불순물의 조성으로 이루어지고, 또한 페라이트 결정립경이 0.5mm 이상이고, 격자변형을 충분히 제거한 상태에서 0.5 Oe에 있어서의 자속밀도치 11000G 이상, 25 Oe에 있어서의 자속밀도치 15500G 이상, 보자력 0.4 Oe이하를 나타내는 것을 특징으로하는 철기연자성강재.By weight%, Al: 0.5-2.5%, Si: 1.0% or less, C + N: 0.007% or less, Mn: 0.5% or less, oxygen: 0.005% or less, balance Fe and inevitable impurities, and also ferrite A ferromagnetic magnetic steel material having a grain size of 0.5 mm or more and exhibiting a magnetic flux density value of 11000 G or more at 0.5 Oe, a magnetic flux density value of 15500 G or more at 25 Oe, and a coercive force of 0.4 Oe or less in a state where the lattice strain is sufficiently removed. 중량%로, Al : 0.5~.5%, Si : 1.0% 이하, C+N : 0.014% 이하, Mn : 0.5% 이하, 산소 : 0.005%이하, Ti : 0.005~1.0%, 잔부 Fe 및 불가피한 불순물의 조성으로 이루어지고, 또한 페라이트 결정립경이 0.5mm 이상이고, 격자변형을 충분히 제거한 상태에서 0.5 Oe에 있어서의 자속밀도치 11000G 이상, 25 Oe에 있어서의 자속밀도치 15500G 이상, 보자력 0.4 Oe이하를 나타내는 것을 특징으로하는 철기연자성강재.By weight%, Al: 0.5 to 0.5%, Si: 1.0% or less, C + N: 0.014% or less, Mn: 0.5% or less, Oxygen: 0.005% or less, Ti: 0.005 to 1.0%, balance Fe and unavoidable impurities And a ferrite grain size of 0.5 mm or more and exhibit a magnetic flux density of 11000 G or more at 0.5 Oe, a magnetic flux density of 15500 G or more at 25 Oe, and a coercive force of 0.4 Oe or less in a state where the lattice strain is sufficiently removed. Ferromagnetic magnetic steels.
KR1019910700178A 1989-06-17 1989-12-08 Soft magnetic steel material KR970004566B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-155026 1989-06-17
JP1155026A JP2679258B2 (en) 1989-06-17 1989-06-17 Iron-based soft magnetic steel
PCT/JP1989/001232 WO1990016076A1 (en) 1989-06-17 1989-12-08 Iron base, soft magnetic steel material

Publications (2)

Publication Number Publication Date
KR920700458A KR920700458A (en) 1992-02-19
KR970004566B1 true KR970004566B1 (en) 1997-03-29

Family

ID=15597047

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910700178A KR970004566B1 (en) 1989-06-17 1989-12-08 Soft magnetic steel material

Country Status (7)

Country Link
EP (1) EP0429651B1 (en)
JP (1) JP2679258B2 (en)
KR (1) KR970004566B1 (en)
CN (1) CN1026597C (en)
CA (1) CA2020464A1 (en)
DE (1) DE68913544T2 (en)
WO (1) WO1990016076A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265580A (en) * 1991-02-20 1992-09-21 Fujitsu Ltd Magnetic disk device
JP2503125B2 (en) * 1991-05-09 1996-06-05 新日本製鐵株式会社 Manufacturing method of good electromagnetic plate
JP2503124B2 (en) * 1991-05-09 1996-06-05 新日本製鐵株式会社 Manufacturing method of good electromagnetic thick plate
JP2564994B2 (en) * 1991-10-14 1996-12-18 日本鋼管株式会社 Soft magnetic steel material excellent in direct current magnetization characteristics and corrosion resistance and method for producing the same
JPH0770715A (en) * 1993-09-01 1995-03-14 Nkk Corp Soft magnetic steel excellent in strain resistance and production thereof
JPH0790505A (en) * 1993-09-27 1995-04-04 Nkk Corp Soft magnetic steel material and its production
CN100334246C (en) * 2004-05-28 2007-08-29 宝山钢铁股份有限公司 False-proof coinage steel and producing method thereof
CN103789609A (en) * 2014-02-13 2014-05-14 山西太钢不锈钢股份有限公司 Method for manufacturing electromagnetic pure iron
CN104294150B (en) * 2014-10-30 2016-05-18 武汉钢铁(集团)公司 Steel and production method thereof for shielding line
KR101977507B1 (en) * 2017-12-22 2019-05-10 주식회사 포스코 Steel sheet for magnetic field shielding and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207418A (en) * 1984-03-30 1985-10-19 株式会社東芝 Device for protecting main circuit
JPS60208417A (en) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd Production of hot-rolled high magnetic permeability iron sheet
JPS60208418A (en) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd Production of thick steel plate having high magnetic permeability for structural member

Also Published As

Publication number Publication date
WO1990016076A1 (en) 1990-12-27
CN1048237A (en) 1991-01-02
JPH0320447A (en) 1991-01-29
EP0429651B1 (en) 1994-03-02
EP0429651A4 (en) 1991-12-04
CA2020464A1 (en) 1990-12-18
KR920700458A (en) 1992-02-19
CN1026597C (en) 1994-11-16
EP0429651A1 (en) 1991-06-05
JP2679258B2 (en) 1997-11-19
DE68913544T2 (en) 1994-07-21
DE68913544D1 (en) 1994-04-07

Similar Documents

Publication Publication Date Title
KR970004566B1 (en) Soft magnetic steel material
CN113897558B (en) High-saturation-magnetic-induction high-permeability iron-based soft magnetic material and preparation method thereof
KR960014944B1 (en) Producing method of soft magnetic steel material
CN111492725B (en) Steel sheet for shielding magnetic field and method for manufacturing same
KR930002533B1 (en) Magnetic steel plate for use as a magnetic shielding member
EP3889284A1 (en) Non-oriented electrical steel sheet having superior magnetic properties and method of manufacturing same
JP3162782B2 (en) Soft magnetic iron plate with excellent magnetic properties and method for producing the same
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH0699766B2 (en) Ni-Fe system high permeability magnetic alloy
JP3883029B2 (en) Soft magnetic steel sheet
JP2000064000A (en) Soft magnetic stainless steel sheet and its production
JPH0699767B2 (en) Ni-Fe system high permeability magnetic alloy
JP4192403B2 (en) Electrical steel sheet used under DC bias
JPH0499819A (en) Production of mild magnetic steel products
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
KR920004950B1 (en) Making process for the electric steel plate
JP2503113B2 (en) Manufacturing method of non-oriented electromagnetic thick plate
JPH02263920A (en) Production of nonoriented silicon steel for low temperature use having high magnetic flux density
JPH0753887B2 (en) Method for manufacturing cold rolled steel sheet with excellent magnetic properties and formability
JPH09263909A (en) Nonoriented silicon steel sheet excellent in core loss characteristic
JPH11172384A (en) Nonoriented silicon steel sheet with low iron loss
JP2619571B2 (en) Unidirectional electrical steel sheet excellent in both magnetic permeability and coercive force and method of manufacturing the same
JPH04154940A (en) Fe-ni series high permeability magnet alloy and its manufacture
KR19990050933A (en) Cold rolled steel sheet manufacturing method with excellent formability and magnetic properties
JPH01127649A (en) High magnetic flux density alloy and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010321

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee