JPH02263920A - Production of nonoriented silicon steel for low temperature use having high magnetic flux density - Google Patents

Production of nonoriented silicon steel for low temperature use having high magnetic flux density

Info

Publication number
JPH02263920A
JPH02263920A JP8163789A JP8163789A JPH02263920A JP H02263920 A JPH02263920 A JP H02263920A JP 8163789 A JP8163789 A JP 8163789A JP 8163789 A JP8163789 A JP 8163789A JP H02263920 A JPH02263920 A JP H02263920A
Authority
JP
Japan
Prior art keywords
less
steel
flux density
magnetic flux
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8163789A
Other languages
Japanese (ja)
Inventor
Koichi Yamamoto
広一 山本
Kentaro Okamoto
健太郎 岡本
Yukio Tomita
冨田 幸男
Yukio Tsuda
幸夫 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8163789A priority Critical patent/JPH02263920A/en
Publication of JPH02263920A publication Critical patent/JPH02263920A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel stock having high magnetic properties and toughness at low temp. by subjecting a steel containing specific weight percentages of C, Cr, Mo, Cu, N, Al, O, and B to casting, solidification, and cooling at specific velocity and then subjecting the resulting cast slab to heating at specific temp., to rolling, and to annealing at specific temp. CONSTITUTION:A molten steel has a composition containing, by weight, <=0.005% C, <=0.5% Si, <=0.015% P, <=0.005% S, <=0.05% Cr, <=0.01% Mo, <=0.01% Cu, <=0.004% N, and <=0.005% Al. This molten steel is cast after the concentration of dissolved oxygen in the molten steel is limited to <=0.0050% and B is incorporated by 0.0005-0.0030% to the molten steel. After solidification, the resulting cast slab is cooled through the temp. region from 1300 to 900 deg.C at 0.05-0.5 deg.C/S cooling rate. Then, the cast slab is heated up to 1150-1300 deg.C, rolled at 900 deg.C finishing temp., and annealed at 750-910 deg.C. By this method, the steel stock utilizing magnetic phenomena due to D.C. magnetization and applicable to large-sized structure can be provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 粒子加速器用巨大磁石放射光(SOR)、医療加速器用
の電磁石または医療機器(MHI)等の磁器シールド用
に磁器特性の優れた鋼材が求められている。
[Detailed Description of the Invention] (Industrial Application Field) Steel materials with excellent magnetic properties are required for magnetic shielding of giant magnet synchrotron radiation (SOR) for particle accelerators, electromagnets for medical accelerators, or medical equipment (MHI), etc. It is being

本発明はこれらの直流磁化条件で使用される電磁石の鉄
心用、あるい磁場を遮蔽するために用いられる高磁束密
度特性に加え、構造用鋼として必要な低温靭性特性の優
れた鋼の製造方法に関するものである。
The present invention provides a method for producing steel that has excellent low-temperature toughness properties necessary for structural steel, in addition to high magnetic flux density properties used for the iron core of electromagnets used under these DC magnetization conditions or for shielding magnetic fields. It is related to.

(従来の技術) 高磁束密度を持つ電磁鋼としては、公知のごとく薄板分
野で珪素鋼板、電磁軟鉄板をはじめとして多(の鋼材が
提供されている。
(Prior Art) As is well known, in the field of thin plates, there are many types of electromagnetic steels with high magnetic flux densities, including silicon steel plates and electromagnetic soft iron plates.

しかし構造部材として使用するには組立加工、強度上に
課題があり、厚鉄板を用いる必要性が生じた。これまで
電磁厚板としては純鉄系成分で製造されている。例えば
、特開昭fiO−96749号公報が公知である。
However, when used as a structural member, there were problems with assembly and strength, necessitating the use of thick steel plates. Until now, electromagnetic plates have been manufactured using pure iron-based components. For example, Japanese Patent Application Laid-open No. ShofiO-96749 is known.

しかしながら、近年の装置の大型化、性能の向上等に伴
い更に磁気特性の優れた、特に低磁場、例えば80A/
mでの磁束密度の高い鋼材開発の要望が強い。前掲の特
許等では、80A/mでの低磁場での高い磁束密度が安
定して得られていない。
However, as devices have become larger and their performance has improved in recent years, devices with even better magnetic properties, especially in low magnetic fields, such as 80A/
There is a strong demand for the development of steel materials with high magnetic flux density at m. In the above-mentioned patents and the like, a high magnetic flux density in a low magnetic field of 80 A/m cannot be stably obtained.

さらに、単なる高純度化では目的の低温靭性が得られな
い。
Furthermore, the desired low-temperature toughness cannot be obtained by simply increasing the purity.

(発明が解決しようとする課題) 本発明の目的は以上の点を鑑みなされたもので、低磁場
において高磁束密度を持ち、さらに低温靭性を合わせ持
つ無方向性電磁鋼を提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention was made in view of the above points, and is to provide a non-oriented electrical steel that has a high magnetic flux density in a low magnetic field and also has low-temperature toughness. .

(課題を解決するための手段) 本発明は重量%でC:0.005%以下、S i:0.
5%以ド、Mn:0.2%以ド、P :0.015%以
下、S:0,005%以下、Cr:0.05%以下、M
 o : 0 、01%以下、Cu:0.01%以下、
N : 0.0040%以下、AIl:0.005%以
下の組成の溶鋼を脱酸し溶鋼の溶存酸素濃度を0 、0
050%以下に制限し、さらにBを0.0005〜0.
0030%含有させ残部はFeおよび不可避不純物から
なる組成の鋼を鋳込み、凝固後の1300〜900℃の
冷却速度を0.05〜0.5℃/sに制御し鋳片を製造
したのち1150〜1300℃に加熱し、仕上げ温度を
900℃以上となる条件下で圧延し、750〜910℃
で焼鈍するか、910〜1000℃で焼串することを特
徴とする低温靭性の優れた無方向性高磁束密度電磁鋼の
製造方法である。
(Means for Solving the Problems) The present invention includes C: 0.005% or less and Si: 0.005% or less by weight.
5% or more, Mn: 0.2% or less, P: 0.015% or less, S: 0,005% or less, Cr: 0.05% or less, M
o: 0, 0.01% or less, Cu: 0.01% or less,
Deoxidizes molten steel with a composition of N: 0.0040% or less and AIl: 0.005% or less to reduce the dissolved oxygen concentration of the molten steel to 0,0.
B is limited to 0.050% or less, and B is further limited to 0.0005 to 0.050%.
0030% and the remainder consists of Fe and unavoidable impurities. After solidification, the cooling rate at 1300 to 900°C is controlled to 0.05 to 0.5°C/s to produce a slab. Heating to 1300℃, rolling under conditions where the finishing temperature is 900℃ or higher, 750 to 910℃
This is a method for producing a non-oriented high magnetic flux density electrical steel with excellent low-temperature toughness, which is characterized by annealing at a temperature of 910 to 1000°C or skewering at a temperature of 910 to 1000°C.

(作  用) 低磁場において、鋼の磁束密度を高めるには磁壁の移動
を妨げるC、 Nは、析出物、介在物をできる限り低減
させる必要がある。しかし、Cの極端な低減は鋼の靭性
を低下させる。本発明者らは高磁束密度と優れた低温靭
性をかね合わせた鋼を開発するために、靭性低下の原因
を詳細に検討した。
(Function) In order to increase the magnetic flux density of steel in a low magnetic field, it is necessary to reduce as much as possible the precipitates and inclusions of C and N, which hinder the movement of domain walls. However, extreme reduction in C reduces the toughness of the steel. In order to develop a steel that combines high magnetic flux density and excellent low-temperature toughness, the present inventors conducted a detailed study on the cause of the decrease in toughness.

その結果、Cの低減によりS、Nの粒界偏析が助長され
、粒界の強度低下をもたらし、粒界割れを生じることに
起因していることが判明した。これらの元素の粒界偏析
を低減させるには元素の含有量を極端に低減すれば良い
が、これらの低減には製鋼コストの著しい上昇を招くた
め実用的ではない。
As a result, it was found that the reduction in C promotes grain boundary segregation of S and N, resulting in a decrease in grain boundary strength and grain boundary cracking. In order to reduce the grain boundary segregation of these elements, it is sufficient to extremely reduce the content of the elements, but this reduction is not practical because it causes a significant increase in steel manufacturing cost.

そこで他の手段により、S、N、P等の粒界脆化を招く
元素の粒界偏析を低減する方法を実施した。すなわち、
粒界偏折瓜は固溶元素量に比例して増減するので固溶元
素を析出物、介在物として固定すれば粒界偏析量を低減
できる。
Therefore, a method was implemented to reduce the grain boundary segregation of elements such as S, N, and P that cause grain boundary embrittlement by other means. That is,
Since the amount of grain boundary segregation increases or decreases in proportion to the amount of solid solution elements, the amount of grain boundary segregation can be reduced by fixing the solid solution elements as precipitates or inclusions.

この目的を達成するため固溶Sの低減にはCa−51合
金などの既知の脱酸材を添加し、カルシューム硫黄酸化
物とし、固溶Nの低減にはBを添加しボロン窒化物とし
た。
To achieve this objective, to reduce solid solution S, a known deoxidizing agent such as Ca-51 alloy was added to form calcium sulfur oxide, and to reduce solid solution N, B was added to form boron nitride. .

さらにこの鋼の特徴は、Al1に代わり、CaSi合金
脱酸により上記の目的に加え含有AJ712の低減を計
った。なぜならば、ApはAgNを形成し結晶粒の微細
化作用を有し磁気特性を低下させるからである。
Furthermore, this steel is characterized by the deoxidation of CaSi alloy instead of Al1, which achieves the above objectives and reduces the AJ712 content. This is because Ap forms AgN, has the effect of making crystal grains finer, and deteriorates magnetic properties.

次に本発明鋼の基本成分範囲の限定理由について述べる
Next, the reason for limiting the basic component range of the steel of the present invention will be described.

まず、Cは鋼中の内部応力を高め、磁気特性、とくに低
磁場での磁束密度を最も低下させる元素であり、極力低
減させる必要がある。また、磁気時効の観点からもその
量が少ないほど磁気特性の経時劣化を防止でき、恒久的
に良好な磁気特性の維持が可能になる。かかる観点から
、0.005%以下とした。
First, C is an element that increases the internal stress in steel and reduces the magnetic properties, particularly the magnetic flux density in a low magnetic field, the most, and therefore needs to be reduced as much as possible. Furthermore, from the viewpoint of magnetic aging, the smaller the amount, the more it is possible to prevent deterioration of the magnetic properties over time, and the better the magnetic properties can be permanently maintained. From this point of view, the content was set to 0.005% or less.

Si、Mnは酸化物、硫化物系介在物を形成し低磁場で
の磁束密度を低下させるため低減する必要があり、Sl
は0.5%以下、Mnは0.2%以下とした。
Si and Mn form oxide and sulfide inclusions that lower the magnetic flux density in low magnetic fields, so they must be reduced.
was 0.5% or less, and Mn was 0.2% or less.

Pは粒界偏析し粒界脆化を生じ靭性を低下させ、さらに
固溶強化によ・り内部応力を高め、磁気特性を低下させ
るため0.015%以下とした。
P is set to 0.015% or less because it segregates at grain boundaries, causes grain boundary embrittlement, lowers toughness, and further increases internal stress through solid solution strengthening, which lowers magnetic properties.

Sは粒界偏析し粒界脆化を生じ靭性を低下させ、さらに
硫化物を形成し、磁壁の移動を妨げ磁束密度を低下させ
るので0.005%以下とした。
S segregates at grain boundaries, causes grain boundary embrittlement, lowers toughness, and further forms sulfides, which impedes movement of domain walls and lowers magnetic flux density, so S is set to 0.005% or less.

Cr 、Mo 、Cuは偏析などにより、磁気特性の不
拘−制を増大し低磁場での磁束密度を低下させるので、
極力低減する必要があり、Crは0.05%以下、Mo
は0.01%以下、Cuは0 、0196以下とした。
Cr, Mo, and Cu increase the unrestricted magnetic properties and reduce the magnetic flux density in low magnetic fields due to segregation, etc.
It is necessary to reduce as much as possible, Cr is 0.05% or less, Mo
was 0.01% or less, and Cu was 0.0196 or less.

Nは内部応力を高め低磁場での磁束密度を低下させ、か
つ、粒界偏析し低温靭性を低下させるので、上限を0.
.0040%とした。
N increases internal stress and reduces magnetic flux density in low magnetic fields, and also causes grain boundary segregation and reduces low-temperature toughness, so the upper limit should be set to 0.
.. 0040%.

0は鋼中で非金属介在物を形成し磁気特性の低ドと、靭
性の低下をもたらすのでCa−51合金などの既知の脱
酸材により脱酸し0.005%以下とした。
Since 0 forms non-metallic inclusions in the steel, resulting in poor magnetic properties and toughness, it is deoxidized to 0.005% or less using a known deoxidizing agent such as Ca-51 alloy.

AIは強力な脱酸元素であり、0.005%以上の添加
により介在物の増加と、AflNの析出を促進し磁気特
性の低下を招くため、0.005%以下とした。
Al is a strong deoxidizing element, and addition of 0.005% or more increases inclusions and promotes precipitation of AflN, leading to deterioration of magnetic properties, so the content was set to 0.005% or less.

Bは固溶NをBNとし固定するために添加した。B was added to convert solid solution N into BN and fix it.

Bは0.0005%以下では十分にBNを形成できず靭
性改善効果を持たず、0.0030%超では過剰な固溶
Bにより磁気特性の低下をきたすため0.0005〜0
.00(0%に制限した。
If B is less than 0.0005%, BN cannot be sufficiently formed and it does not have the effect of improving toughness, and if it exceeds 0.0030%, excessive solid solution B causes deterioration of magnetic properties, so 0.0005 to 0.
.. 00 (limited to 0%).

次に製造法について述べる。Next, the manufacturing method will be described.

鋳片の凝固後の1300〜900℃の冷却速度を0.0
5〜0.5℃/sに制御したのは、ボロン窒化物の析出
温度領域を徐冷し十分に析出させ且、粗大化し疎に分散
析出させることを目的としたもので、固溶Nuの低減と
、ボロン窒化物の微細析出による磁気特性の低下を防止
するためである。すなわち冷却速度が0.5℃/s以上
の急冷では微細なボロン窒化物が析出し磁気特性を低下
させ、0.05’C/s以上の徐冷は効果を持つが実用
的ではないのでこの範囲に制限した。
Cooling rate of 1300-900℃ after solidification of slab is 0.0
The purpose of controlling the temperature at 5 to 0.5°C/s was to slowly cool the precipitation temperature range of boron nitride to cause sufficient precipitation, and to make it coarse and loosely dispersed. This is to prevent deterioration of magnetic properties due to fine precipitation of boron nitride. In other words, rapid cooling at a cooling rate of 0.5°C/s or more precipitates fine boron nitrides and deteriorates magnetic properties, while slow cooling at a cooling rate of 0.05'C/s or more is effective but impractical. limited to a range.

圧延条件については、圧延前加熱温度を1150℃以上
としたのは加熱オーステナイト粒を粗大化し、磁気特性
を向上させるためである。1300℃を超える加熱はス
ケールロスの防止、省エネルギーの観点から上限を13
00℃とした。
Regarding the rolling conditions, the heating temperature before rolling was set to 1150° C. or higher in order to coarsen heated austenite grains and improve magnetic properties. For heating above 1300℃, the upper limit has been set to 13 to prevent scale loss and to save energy.
The temperature was 00°C.

圧延仕上げ温度を900℃以上としたのは、これ以下の
低温仕上げ温度では結晶粒の微細化を生じ、磁気特性が
低下するためである。
The reason why the rolling finishing temperature is set at 900° C. or higher is that a lower finishing temperature lower than this temperature causes grain refinement and deteriorates the magnetic properties.

焼鈍は結晶粒の粗大化と内部歪の除去のために行い、7
50℃未満では十分な結晶粒の粗大化が生ぜず、910
℃以上では厚板方向の結晶粒の均質性が保てないため、
焼鈍温度として750〜910℃に限定した。
Annealing is performed to coarsen crystal grains and remove internal strain.
If the temperature is lower than 50°C, sufficient coarsening of crystal grains will not occur, and 910°C.
At temperatures above ℃, the homogeneity of the grains in the thick plate direction cannot be maintained.
The annealing temperature was limited to 750 to 910°C.

規準は厚板方向の結晶粒の調整および内部歪除去のため
に行うが、910℃以下でかっ1000”c以上では厚
板方向の結晶粒の均質性が保てないため、規準温度を9
10℃〜1000℃した。
The standard temperature is set to adjust the crystal grains in the direction of the thick plate and remove internal strain, but if the temperature is below 910℃ and above 1000"C, the homogeneity of the crystal grains in the direction of the thick plate cannot be maintained, so the standard temperature is set to 9
The temperature was 10°C to 1000°C.

(実 施 例) 第1表は、試作鋼の化学成分、凝固後の鋳片の冷却速度
、靭性と低磁場での磁束密度の関係を示す。
(Example) Table 1 shows the relationship between the chemical composition of the prototype steel, the cooling rate of the slab after solidification, the toughness, and the magnetic flux density in a low magnetic field.

供試鋼は250mm厚スラブを1250℃に2時間加熱
、圧延し50mm厚とし、さらに、700. 750℃
で2時間焼鈍し製造した。なお靭性は供試鋼から2 m
m Vノツチ・シャルピーに加工し、衝撃破面遷移温度
(以下vTrsと称す)を求め評価した。なお鋼9を除
きCa−51合金脱酸により製造した。
The test steel was a 250mm thick slab heated to 1250°C for 2 hours and rolled to a thickness of 50mm. 750℃
The product was annealed for 2 hours. The toughness is measured at 2 m from the test steel.
It was processed into a V-notch Charpy shape, and the impact fracture transition temperature (hereinafter referred to as vTrs) was determined and evaluated. Note that all steels except Steel 9 were manufactured by deoxidizing Ca-51 alloy.

鋼1〜6は本発明鋼でありAgを低減、Ca5t合金で
脱酸し、鋳片の凝固後の1300〜900℃間を0.0
5〜0.5℃/sで冷却し製造したものである。本発明
鋼はBHの析出処理により固溶Nが十分に低減され、圧
延仕上げ温度は950’C以上、焼鈍温度750℃で請
求範囲の条件を満たしているので低磁場での磁束密度は
1.0テスラ以上と高磁気特性を示す。さらに、Ca−
51合金脱酸による固溶Sの低減により低温靭性も優れ
vTrsで一30℃以下の高靭性を示す。
Steels 1 to 6 are steels of the present invention with reduced Ag, deoxidized with Ca5t alloy, and 0.0
It was produced by cooling at a rate of 5 to 0.5°C/s. In the steel of the present invention, the solid solution N is sufficiently reduced by the BH precipitation treatment, and the rolling finishing temperature is 950'C or higher and the annealing temperature is 750°C, satisfying the claimed conditions, so the magnetic flux density in a low magnetic field is 1. It exhibits high magnetic properties of over 0 tesla. Furthermore, Ca-
51 alloy has excellent low-temperature toughness due to the reduction of solid solution S by deoxidation, and exhibits high toughness at vTrs of -30°C or less.

鋼7〜12は比較鋼であり、鋼7は凝固後の冷却速度が
上限を超え、鋼11は焼鈍温度が700℃で、また鋼1
2は圧延仕上げ温度が850℃と、いずれも請求範囲を
外れ低温であるため、磁束密度は1.0テスラ以下に低
下する。鋼8はBEi)、鋼9はAg量、鋼lOはO量
がいずれも上限を超えるため、vTrsは上昇し、磁束
密度も1.0テスラ以下に低下する。
Steels 7 to 12 are comparative steels, in which steel 7 has a cooling rate exceeding the upper limit after solidification, steel 11 has an annealing temperature of 700 °C, and steel 1
In No. 2, the rolling finishing temperature is 850° C., which is a low temperature outside the claimed range, so the magnetic flux density decreases to 1.0 Tesla or less. Since steel 8 (BEi), steel 9 has an Ag content, and steel IO has an O content that exceeds the upper limit, vTrs increases and the magnetic flux density also decreases to 1.0 Tesla or less.

(発明の効果) 本発明による適切な成分限定と製造法により、高磁気特
性と低温靭性を具備した鋼材の製造に成功し、直流磁化
による磁気現象を利用する大型構造物への適用をnJ能
にしたものである。
(Effects of the invention) Through the appropriate ingredient limitation and manufacturing method of the present invention, we have succeeded in manufacturing steel materials with high magnetic properties and low-temperature toughness, and we have succeeded in manufacturing steel materials with high magnetic properties and low-temperature toughness. This is what I did.

特に低温靭性の向上により(II Qu靭性を霊水され
る寒冷地における、この種の(R進物への適応か可能に
なり、その経済効果等の産業上の効果は極めて顕著なも
のがある。
In particular, improved low-temperature toughness makes it possible to adapt this type of material in cold regions where the toughness is improved, and its economic and other industrial effects are extremely remarkable.

Claims (1)

【特許請求の範囲】 1、重量%で C:0.005%以下、 Si:0.5%以下 Mn:0.2%以下、 P:0.015%以下、 S:0.005%以下、 Cr:0.05%以下、 Mo:0.01%以下、 Cu:0.01%以下、 N:0.0040%以下、 Al:0.005%以下 の組成の溶鋼を脱酸し溶鋼の溶存酸素濃度を0.005
0%以下に制限し、さらにBを0.0005〜0.00
30%含有させ、残部はFcおよび不可避不純物からな
る組成の鋼を鋳込み、凝固後の1300〜900℃の冷
却速度を0.05〜0.5℃/sに制御し鋳片を製造し
た後1150〜1300℃に加熱し、仕上げ温度を90
0℃以上となる条件下で圧延し、750〜910℃で焼
鈍することを特徴とする低温靭性の優れた無方向性高磁
束密度電磁鋼の製造方法。 2、圧延後、910〜1000℃で焼準することを特徴
とする請求項1記載の低温靭性の優れた無方向性高磁束
密度電磁鋼の製造方法。
[Claims] 1. In weight%, C: 0.005% or less, Si: 0.5% or less, Mn: 0.2% or less, P: 0.015% or less, S: 0.005% or less, Deoxidizes molten steel with a composition of Cr: 0.05% or less, Mo: 0.01% or less, Cu: 0.01% or less, N: 0.0040% or less, Al: 0.005% or less to dissolve the molten steel. Oxygen concentration 0.005
Limit B to 0% or less, and further reduce B to 0.0005 to 0.00.
After casting steel with a composition containing 30% and the remainder consisting of Fc and unavoidable impurities, and controlling the cooling rate at 1300 to 900 °C after solidification to 0.05 to 0.5 °C / s to produce a slab, 1150 °C Heat to ~1300℃ and finish temperature at 90℃
A method for producing a non-oriented high magnetic flux density electrical steel having excellent low-temperature toughness, which comprises rolling under conditions of 0°C or higher and annealing at 750 to 910°C. 2. The method for producing a non-oriented high magnetic flux density electrical steel with excellent low-temperature toughness according to claim 1, which comprises normalizing at 910 to 1000°C after rolling.
JP8163789A 1989-04-03 1989-04-03 Production of nonoriented silicon steel for low temperature use having high magnetic flux density Pending JPH02263920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8163789A JPH02263920A (en) 1989-04-03 1989-04-03 Production of nonoriented silicon steel for low temperature use having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8163789A JPH02263920A (en) 1989-04-03 1989-04-03 Production of nonoriented silicon steel for low temperature use having high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH02263920A true JPH02263920A (en) 1990-10-26

Family

ID=13751852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8163789A Pending JPH02263920A (en) 1989-04-03 1989-04-03 Production of nonoriented silicon steel for low temperature use having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH02263920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073524A1 (en) * 1999-05-27 2000-12-07 Japan Science And Technology Corporation Hot rolled electrical steel sheet excellent in magnetic characteristics and corrosion resistance and method for production thereof
WO2022210890A1 (en) * 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
WO2022210870A1 (en) * 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073524A1 (en) * 1999-05-27 2000-12-07 Japan Science And Technology Corporation Hot rolled electrical steel sheet excellent in magnetic characteristics and corrosion resistance and method for production thereof
US6500278B1 (en) 1999-05-27 2002-12-31 Japan Science And Technology Corporation Hot rolled electrical steel sheet excellent in magnetic characteristics and corrosion resistance and method for production thereof
WO2022210890A1 (en) * 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
WO2022210870A1 (en) * 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
JP7222444B1 (en) * 2021-03-31 2023-02-15 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2004104253A1 (en) Wear resistant cast iron
CN108374119B (en) Non-magnetic stainless steel hot rolled plate with tensile strength of 1100MPa and manufacturing method thereof
US5019191A (en) Magnetic steel plate for use as a magnetic shielding member and a method for the manufacture thereof
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
CN115261737B (en) Air-cooled high-strength and high-toughness light austenitic steel and preparation method thereof
JPH02263920A (en) Production of nonoriented silicon steel for low temperature use having high magnetic flux density
Kawahara et al. A possibility for developing high strength soft magnetic materials in FeCo-X alloys
JP2748843B2 (en) High manganese non-magnetic casting
JP2021507988A (en) Magnetic field shielding steel sheet and its manufacturing method
EP0431167B1 (en) Production method of soft magnetic steel material
US4985201A (en) Generator rotor steels
CN109576593A (en) A kind of hot rolling magnetic yoke steel and its manufacturing method
CN109097679B (en) Marine low-magnetic steel and preparation method thereof
JPH0579727B2 (en)
JP2803331B2 (en) Manufacturing method of high toughness cast steel
JPS6345442B2 (en)
KR20210008732A (en) Non-magnetic austenitic stainless steel
JPH0230743A (en) Manufacture of ni-fe alloy plate having excellent magnetic characteristics
JPH02145723A (en) Manufacture of thick steel material having excellent direct current magnetization characteristics
CN109988976B (en) Al toughened high-hardness alloy and casting and heat treatment method thereof
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH10140236A (en) Production of high damping alloy
CN115786804B (en) Low-Cr soft magnetic stainless steel and control method of structure thereof
JPH03271325A (en) Manufacture of high strength silicon steel plate excellent in magnetic property
CN109576592B (en) Hot-rolled magnetic yoke steel and manufacturing method thereof