KR960012899B1 - Method for making the mass of an acceleration sensor and vibration sensor using sereen printing - Google Patents

Method for making the mass of an acceleration sensor and vibration sensor using sereen printing Download PDF

Info

Publication number
KR960012899B1
KR960012899B1 KR1019940025356A KR19940025356A KR960012899B1 KR 960012899 B1 KR960012899 B1 KR 960012899B1 KR 1019940025356 A KR1019940025356 A KR 1019940025356A KR 19940025356 A KR19940025356 A KR 19940025356A KR 960012899 B1 KR960012899 B1 KR 960012899B1
Authority
KR
South Korea
Prior art keywords
mass
metal
sensor
vibration sensor
thin film
Prior art date
Application number
KR1019940025356A
Other languages
Korean (ko)
Other versions
KR960014941A (en
Inventor
김우정
이종현
Original Assignee
만도기계 주식회사
정몽원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 만도기계 주식회사, 정몽원 filed Critical 만도기계 주식회사
Priority to KR1019940025356A priority Critical patent/KR960012899B1/en
Priority to US08/319,498 priority patent/US5905044A/en
Priority to JP6271789A priority patent/JP2828914B2/en
Publication of KR960014941A publication Critical patent/KR960014941A/en
Application granted granted Critical
Publication of KR960012899B1 publication Critical patent/KR960012899B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)

Abstract

producing pressure-resistance body(2) after cleansing the silicon wafer(1); vacuum evaporating the silicon wafer in multi-layer form with metal film; forming a mass pad(9) after patterning and heat treating the metal film; printing the metal paste(6) after positioning the metal mask(10) having patterning hole; and curing the metal paste(6) after removing the metal mask(10) and heat treating in a temperature.

Description

스크린프린팅(Screen Printing) 방법을 이용한 가속도센서 및 진동센서의 질량제조방법Mass Manufacturing Method of Acceleration Sensor and Vibration Sensor Using Screen Printing Method

제1도는 종래의 반도체 가속도 및 진동센서의 구조를 개략적으로 보인 사시도1 is a perspective view schematically showing the structure of a conventional semiconductor acceleration and vibration sensor

제2도는 본 발명에 적용되는 금속마스크의 구조를 보인 평면도2 is a plan view showing the structure of the metal mask to be applied to the present invention

제3도는 (가)(나)(다)(라) 및 (마)는 본 발명의 원리에 따라 반도체 가속도센서 및 진동센서의 질량을 제조하는 단계를 보인 도면.Figure 3 shows the steps of (a) (b) (c) (d) and (e) to manufacture the mass of the semiconductor acceleration sensor and the vibration sensor in accordance with the principles of the present invention.

제4도는 a,b 는 각기 질량패드상에 메틸페이스트를 스크린프린팅하여 열처리하기전과 후의 사진을 보인 도면이다.Figure 4 is a, b is a picture showing before and after the heat treatment by screen printing the methyl paste on the mass pad, respectively.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘기판2 : 압저항체1: silicon substrate 2: piezoresistor

3 : 보5 : 금속박막3: beam 5: metal thin film

6 : 메탈페이스트7 : 에어갭6: metal paste 7: air gap

8 : 질량9 : 질량패드8: Mass 9: Mass Pad

10 : 금소마스크11 : 프레임10: gold mask 11: frame

본 발명은 가속도센서 및 진동센서의 질량을 제조하는 방법에 관한 것으로, 특히, 양신적용에 이상적이면서 정확한 질량은 원하는 부분에 형성하도록 메탈페이스트 스크린프린팅 (MetalPaste ScreenPainting)방법을 이용한 가속도센서 및 진동센서의 질량제조방법에 관한 것이다.The present invention relates to a method for manufacturing the mass of the acceleration sensor and the vibration sensor, in particular, the acceleration sensor and the vibration sensor of the metal paste screen printing (MetalPaste ScreenPainting) method to form an ideal mass accurate to the desired portion It relates to a mass production method.

종래의 반도체 가속도 및 진동센서의 질량은 방법에 관련하여 1993년 10월 9일과 1993년 12월 24일에 각각 제93-20962호 및 제93-29500호로 명칭의 메탈페이스트디스펜싱방법을 이용한 가속도센서 및 진동센서의 질량방법과 선택적인 금속도금법을 이용한 가속도센서 및 진동센서의 질량제조방법이 출원되었다.The mass of the conventional semiconductor acceleration and vibration sensor is related to the method of the acceleration sensor using the metal paste dispensing method named 93-20962 and 93-29500 on October 9, 1993 and December 24, 1993, respectively. And a mass production method of an acceleration sensor and a vibration sensor using the mass method of the vibration sensor and the selective metal plating method.

「즉, 제1도에 도시와 같이 압저항체의 타입의 실리콘 가속도센서나 진동센서는 실리콘기판(1)을 식각하여 가속도를 저항값으로 바꾸어주는 압저항체(2), 가속도에 의하여 휘게되는(응력을 받는) 보(3 :Beam), 가속도를 보(3)에 전달해 주는 질량(mass)(4)들로 구성되어있다.In other words, as shown in FIG. 1, the piezo resistor type silicon acceleration sensor or vibration sensor is swept by the piezo resistor 2 that etches the silicon substrate 1 and changes the acceleration into a resistance value, Beam (3: Beam), and mass (4) that transmits the acceleration to the beam (3).

이 센서는 가속도에 의하여 발생되는 하중이 보(3)에 전달되어 변형을 일으킨다.In this sensor, the load generated by the acceleration is transmitted to the beam 3 to cause deformation.

이때 이 변형력은 보(3)에 확산되고 압저항체(2)에 전달되어 저항변화를 일으키도록 한다.At this time, the deformation force is diffused to the beam (3) and transmitted to the piezoresistor (2) to cause a resistance change.

한편 이러한 센서에는 가속도를 보(3)에 전달하기위한 질량(Mass)이 필요하며, 이 질량은 센서의 감도와 응답특성을 향상시키도록 사이즈믹프루프매스(Seismic Proof-Mass)이어야 한다.On the other hand, such a sensor requires a mass for transmitting the acceleration to the beam 3, and the mass must be a Seismic Proof-Mass to improve the sensitivity and response characteristics of the sensor.

이러한 사이즈믹프루프매스로 제조하기 위하여 종래에는 실리콘기판(1)을 3차원적으로 식각하여 자체질량을 만드는 방법, 금(Au) 및 백금(Pt)등과 같이 무거운 금속으로 진공증착하는 방법과 금속만을 가공하여 융착하는 방법등이 알려져 있었다.In order to manufacture such a size mixed-proof mass, conventionally, the silicon substrate 1 is etched three-dimensionally to make its own mass, and a method of vacuum depositing with a heavy metal such as gold (Au) and platinum (Pt) and only metal Processes and fusion methods have been known.

그러나 이러한 방법들에서, 자체 질량을 만드는 방법은 여러단계의 식각공정을 필요로하여 공정이 복잡할 뿐만 아니라 균일한 측면 식각의 어려움으로 질량의 불균일성이 심각하여 양산시에는 균일성을 보장하기가 어렵다는 결점이 있었다.However, in these methods, the method of making its own mass requires several steps of etching process, which not only makes the process complicated but also makes it difficult to guarantee uniformity in mass production due to the unevenness of mass due to the difficulty of uniform side etching. There was this.

금속을 진공증착하여 질량을 제조하는 방법은 무거운 진동질량을 제조하기 어렵고 두꺼운 금속의 식각에도 문제가 있다. 」The method of producing a mass by vacuum depositing a metal is difficult to produce a heavy vibration mass, and there is also a problem in etching thick metal. 」

또한 금속만을 가공하여 융착하는 질량제조방법도 정밀도와 양산에 문제가 있다.In addition, there is a problem in the precision and mass production of the mass production method for processing and welding only metal.

이러한 문제를 해결하기 위하여 선출원서 제93-20962호에서는 실리콘웨이퍼상에 압전저항을 형성하고 진동증착법으로 Ni박막을 형성하며, 이 박막을 사진식각법과 습식식각으로 패턴을 형성한 후 열처리하는데, 열처리시 산화된 니켈(Ni)의 표면산화층을 제거하고, 이 박막위에 디스펜서(dispence)를 사용하여 메탈페이스트를 정량 올리고 난 후 열처리하여 경화시키는 방법을 개시하고 있다.In order to solve such a problem, the first application No. 93-20962 forms a piezoelectric resistance on a silicon wafer and forms a Ni thin film by vibrating vapor deposition. The thin film is formed by photolithography and wet etching, and then heat treated. The present invention discloses a method of removing a surface oxide layer of nickel oxide (Ni), quantitatively raising metal paste using a dispenser on the thin film, and then curing the same by heat treatment.

그러나 이 방법은 질량의 기계적 배분에 의존하므로 질량편차가 발생되었다.However, this method relies on the mechanical distribution of the mass, resulting in mass deviations.

또한 선출원서 제93-29500호에서는 실리콘기판상에 니켈(Ni)박막을 증착시키고 그위에 포토레지스터를 도포시켜 패턴을 정의하고, 계속하여 2차에 걸린 드라이폴리에틸렌 필림 포토레지스트를 다층으로 형성하고 질량패드영역을 형성하여 이 영역을 선택적으로 금속을 전기도금하므로 소정부위에 형성하는 방법을 개시하고 있다.In addition, in Application No. 93-29500, a nickel (Ni) thin film is deposited on a silicon substrate and a photoresist is applied thereon to define a pattern. Subsequently, a secondary polyethylene film photoresist applied to the secondary layer is formed into a multi-layered mass. Disclosed is a method of forming a pad area so that the area is selectively electroplated with metal so as to be formed on a predetermined portion.

이 방법은 전기도금제어를 하는데 질량패드의 밀도와 두께에 따른 편차 발생의 우려가 있다.This method is electroplating control, there is a possibility of deviation caused by the density and thickness of the mass pad.

이러한 점에 비추어 본 발명은 금속마스크의 패턴 및 두께에 따라 질량을 선택적으로 조정할 수 있는 스크린 프린팅방법을 이용한 반도체 가속도센서 및 진동센서의 질량제조방법을 제공하는 것을 그 목적으로 하고 있다.In view of the above, an object of the present invention is to provide a mass production method of a semiconductor acceleration sensor and a vibration sensor using a screen printing method capable of selectively adjusting mass according to the pattern and thickness of a metal mask.

본 발명의 다른 목적은 반도체 가속도센서 및 진동센서를 제조하는데 있어 집적회로 제조공정 및 미세구조공정과는 별도로 독립적으로 수행될 수 있어 공정을 간소화한 질량제조방법을 제조하는 것에 관한 것이다.It is another object of the present invention to manufacture a semiconductor acceleration sensor and a vibration sensor, which can be performed independently of an integrated circuit fabrication process and a microstructure process, and to manufacture a mass production method that simplifies the process.

본 발명은 실리콘웨이퍼를 세척한 후 압저항체를 실리콘기판상에 형성하는 단계 ; 실리콘기판상에 금속박막을 진공증착하는 단계; 이 금속박막을 사진식각이거나 습식식각으로 패터닝한 후 열처리하는 단계; 이 금속박막위에 스크린프린트용 금속마스크 정렬하여 메탈페이스로 스크린프린팅하는 단계와; 이 메탈페이스트를 열처리하여 경화시키는 단계로 이루어진다.The present invention comprises the steps of forming a piezoresistor on a silicon substrate after washing the silicon wafer; Vacuum depositing a metal thin film on a silicon substrate; Thermally treating the metal thin film by photolithography or wet etching; Screen printing with a metal face by aligning a metal mask for screen printing on the metal thin film; The metal paste is heat treated to harden.

따라서 본 발명은 반도체 가속도 및 진동센서의 제조에 있어 질량제조가 집적회로공정이나 미세구조공정과는 별도로 독립적인공정으로 수행되도록 하므로 정확한 질량은 소정패턴 및 두께에 따라 형성할 수 있는 메탈페이스트 스크린프린팅방법을 제공한다.Therefore, the present invention allows the mass manufacturing in the manufacture of semiconductor acceleration and vibration sensor to be carried out as an independent process apart from the integrated circuit process or microstructure process, so that the exact mass can be formed according to a predetermined pattern and thickness screen printing Provide a method.

이후 본 발명은 첨부도면을 참조하여 상세히 기술된다.The invention is hereinafter described in detail with reference to the accompanying drawings.

제3도에 도시와 같이, 가속도센서나 진동센서는 실리콘기판(1)를 구비한다. 이 실리콘기판(1)은 가속도를 저항값으로 변환하는 압저항체(2), 가속도에 의하여 휘게되는 보(3), 보가 휘도록 중공으로되는 에어갭(7 : Air Gap)과 가속도를 보(3)에 전달해 주는 질량(8)으로 구성된다.As shown in FIG. 3, the acceleration sensor or the vibration sensor includes a silicon substrate 1. The silicon substrate 1 has a piezoresistor 2 that converts acceleration into a resistance value, a beam 3 that is bent by acceleration, an air gap 7 that is hollowed so that the beam is bent, and an acceleration (3). It is composed of a mass (8) delivered to).

이를 더욱 구체적으로 단계별로 설명하면, 제3도 (가)에 도시와 같이 결정면이 (100)이고 저항율이 5Ω-cm 인 실리콘웨이퍼기판(1)을 초기 세척한 후 미세구조가공 및 확산을 통하여 공기갭(7) 및 압저항체(2)를 형성시킨다.More specifically step by step, as shown in Figure 3 (a), after the initial washing of the silicon wafer substrate (1) having a crystal plane of (100) and resistivity of 5Ω-cm as shown in Figure 3 (a) through the air through the microstructure processing and diffusion The gap 7 and the piezoresistor 2 are formed.

제3도(나)에 도시와 같이 실리콘웨이퍼기판(1)전면에 진공증착법으로 질량 패드(Mass Pad)로서 니켈(Ni) 박막(5)을 1800~2200증착한다.As shown in FIG. 3 (b), a nickel (Ni) thin film (5) 1800 to 2200 is used as a mass pad by vacuum deposition on the entire surface of the silicon wafer substrate 1, as shown in FIG. Deposit.

제3도(다)에 도시와 같이 니 니켈 박막(5)은 사진식각법과 습식식각법으로 패터닝되고 열처리되어 니켈실리사이드의 질량패트(9)로써 형성된다.As shown in FIG. 3 (C), the nickel nickel thin film 5 is patterned and thermally treated by photolithography and wet etching to form a mass pat 9 of nickel silicide.

이 질량패드(9)는 열처리시 산화된 니켈표면의 산화층이 암모니아수용액(NH4OH)으로 제거된다.In this mass pad 9, an oxide layer on the surface of oxidized nickel is removed with an aqueous ammonia solution (NH 4 OH) during heat treatment.

여기서 니켈박막의 열처리시 350℃로 열처리되어 니켈실리사이드(NiSi)를 형성하거나 750℃로 열처리되어 니켈실리사이드(NiSi2)를 형성한다.Here, the nickel thin film is heat-treated at 350 ° C. to form nickel silicide (NiSi) or at 750 ° C. to form nickel silicide (NiSi 2 ).

이러한 니켈실리사이드의 형성은 진동질량층과 실리콘기판사이의 기게적접합 및 전기적 접촉을 좋게 해주기 위한 것이다.The formation of nickel silicide is intended to improve mechanical contact and electrical contact between the vibration mass layer and the silicon substrate.

실리콘기판(1)상에는 제2도에 스크린프린트용 금속마스크(10)가 위치된다.On the silicon substrate 1, the screen mask metal mask 10 is located in FIG.

이 금속마스크(10)는 제2도에 도시와 같이 그의 주변부 둘레가 알루미늄프레임(11)에 의해 지지되어 있으며 실리콘기판(1)상에 형성한 각각의 보(3)에 형성한 니켈실리사이드와 일치되는 위치에 질량을 형성하고자하는 패턴(12)이 형성되어 있다. 도면에서 이 패턴(12)는 도트패턴으로 도시된다.As shown in FIG. 2, the metal mask 10 is supported by the aluminum frame 11 around its periphery and coincides with the nickel silicide formed on each beam 3 formed on the silicon substrate 1. The pattern 12 to form a mass is formed in the position to become. In the figure, this pattern 12 is shown as a dot pattern.

그러므로 제3도(라)에 도시와 같이 이 금속마스크(10)는 실리콘기판(1)상에 질량패드(9)와 동일한 그의 패턴 즉 도트패턴이 일치되도록 한 후 메탈페이스트를 프린팅하여 소정형상 및 질량으로 메탈페이스트(6)가 형성되고, 금속마스크(10)는 제거된다.Therefore, as shown in FIG. 3 (D), the metal mask 10 is formed on the silicon substrate 1 by matching the same pattern as that of the mass pad 9, that is, the dot pattern, and then printing the metal paste to form a predetermined shape and The metal paste 6 is formed by mass, and the metal mask 10 is removed.

그 다음 180~ 200℃의 온도로 열처리하여 이 메탈페이스트(6)를 경화시켜 질량(8)을 형성하는데, 이때 질량의 크기는 금속마스크(10)의 두께로 조절된다.Then, the heat treatment at a temperature of 180 ~ 200 ℃ harden this metal paste (6) to form a mass (8), wherein the size of the mass is adjusted to the thickness of the metal mask (10).

따라서 정확한 질량 및 두께로 질량의 제조가 가능함을 알 수 있다.Therefore, it can be seen that the mass can be produced with the correct mass and thickness.

여기서 메탈페이스트로는 Pb/Sn, Ag/Pd, Pt/Au 및 Pb/Sn/Ag등의 합금이 사용된다.As the metal paste, alloys such as Pb / Sn, Ag / Pd, Pt / Au, and Pb / Sn / Ag are used.

한편 지금까지 질량패드는 니켈(Ni)을 사용하는 경우에 대하여 설명하였지만 본 발명은 이에 한정되지 않고 발명의 요지를 이탈하지 않는 범위내에서 질량패드로써, Cr, Au, 또는 Au/Ni이나 Au/Cr/Ti의 합금을 다층박막으로 사용할 수 있다.On the other hand, the mass pad has been described in the case of using nickel (Ni), but the present invention is not limited to this, and as the mass pad within the scope not departing from the gist of the invention, Cr, Au, or Au / Ni or Au / An alloy of Cr / Ti can be used as the multilayer thin film.

제4도(a)는 질량패드위에 메탈페이스트를 스크린프린팅하여 열처리하기전의 SEM사지이며, 제4도(b)는 열처리후의 SEM사진이다.Figure 4 (a) is an SEM limb before heat treatment by screen printing a metal paste on the mass pad, Figure 4 (b) is a SEM photograph after the heat treatment.

이렇게 제작된 센서는 가속도 및 진동에 의하여 보에 힘이 가해지고 압저항체에 변형이 전달되어 저항변화가 일어나게 되므로 가속도를 감지하거나, 진동을 감지하므로 가속도 및 진동센서로 이용될 수 있다.Thus, the sensor is applied to the beam by the acceleration and vibration, and the deformation is transmitted to the piezoresistor so that the resistance change occurs, it can be used as the acceleration and vibration sensor because it detects the acceleration, or detects the vibration.

이와같이 본 발명에 따른 가속도센서 및 진동센서의 질량제조방법은 실리콘 기판상에 형성한 질량패드상에 동일패턴의 금속마스크를 일치시켜서 메탈페이스트를 프린팅하므로 원하는 정확한 양과 두께가 조절된 질량을 한번에 다수개제조할 수 있다.As such, the mass production method of the acceleration sensor and the vibration sensor according to the present invention prints the metal paste by matching the metal mask of the same pattern on the mass pad formed on the silicon substrate, so that a plurality of masses having the desired precise amount and thickness are adjusted at once. It can manufacture.

Claims (1)

반도체 가속도센서 및 진동센서의 질량제조방법에 있어서, 실리콘웨이퍼(1)를 세척한 후 압저항체(2)를 제조하고, 이 실리콘웨이퍼(1)의 전면에 다층박막으로 금속박막(5)을 진공증착하며, 이 금속박막(5)을 사진식각과 습식식각으로 패터닝한 후 열처리하여 질량패드(9)를 형성하고, 이 질량패드와 일치하는 패터닝구멍을 가진 금속 마스크(10)를 위치시켜 메탈페이스트(6)를 프린팅하며, 금속마스크(10)를 제거한 다음 메탈페이스트(6)을 소정온도로 열처리하며 경화시키는 단계로 이루어진 스크린프린팅방법을 이용한 반도체 가속도센서 및 진동센서의 질량제조방법.In the mass production method of the semiconductor acceleration sensor and the vibration sensor, after washing the silicon wafer (1) to manufacture a piezoresistor (2), vacuum the metal thin film (5) with a multilayer thin film on the entire surface of the silicon wafer (1) After depositing, the metal thin film 5 is patterned by photolithography and wet etching, and then heat-treated to form a mass pad 9, and a metal mask 10 having a patterning hole corresponding to the mass pad is placed to place a metal paste. (6) printing, removing the metal mask (10), and then heat-treating the metal paste (6) to a predetermined temperature and curing step of the semiconductor acceleration sensor and vibration sensor using a screen printing method consisting of a step.
KR1019940025356A 1993-10-09 1994-10-04 Method for making the mass of an acceleration sensor and vibration sensor using sereen printing KR960012899B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019940025356A KR960012899B1 (en) 1994-10-04 1994-10-04 Method for making the mass of an acceleration sensor and vibration sensor using sereen printing
US08/319,498 US5905044A (en) 1993-10-09 1994-10-07 Mass manufacturing method of semiconductor acceleration and vibration sensors
JP6271789A JP2828914B2 (en) 1993-10-09 1994-10-11 Method for manufacturing weight of semiconductor acceleration sensor and vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940025356A KR960012899B1 (en) 1994-10-04 1994-10-04 Method for making the mass of an acceleration sensor and vibration sensor using sereen printing

Publications (2)

Publication Number Publication Date
KR960014941A KR960014941A (en) 1996-05-22
KR960012899B1 true KR960012899B1 (en) 1996-09-25

Family

ID=19394392

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940025356A KR960012899B1 (en) 1993-10-09 1994-10-04 Method for making the mass of an acceleration sensor and vibration sensor using sereen printing

Country Status (1)

Country Link
KR (1) KR960012899B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147565A1 (en) * 2017-02-13 2018-08-16 강희곤 Wall-mounted air conditioner stand plate for facilitating horizontal adjustment during installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147565A1 (en) * 2017-02-13 2018-08-16 강희곤 Wall-mounted air conditioner stand plate for facilitating horizontal adjustment during installation

Also Published As

Publication number Publication date
KR960014941A (en) 1996-05-22

Similar Documents

Publication Publication Date Title
JP3678199B2 (en) Method for manufacturing mask for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP2002515178A (en) Manufacturing method of electronic multilayer device
KR960012899B1 (en) Method for making the mass of an acceleration sensor and vibration sensor using sereen printing
JP7112472B2 (en) Method for making timepiece components and components resulting from this method
JP2828914B2 (en) Method for manufacturing weight of semiconductor acceleration sensor and vibration sensor
KR960012898B1 (en) Method for making the mass of an acceleration sensor and vibration sensor using preform
KR100356014B1 (en) Fabrication method for align mark
JP3358751B2 (en) Method for planarizing thick film resist and method for manufacturing semiconductor device
KR100213753B1 (en) Mass manufacturing method in semiconductor accelerating and vibrating sensor
JPS6341238B2 (en)
JPH08186115A (en) Method for metal film forming
JP2684220B2 (en) Manufacturing method for fine parts
JPH01194424A (en) Forming method for self-alignment pattern
KR970008893B1 (en) Method for manufacturing vibration sensor mass
JP2558128B2 (en) Method of forming metal wiring
KR100282434B1 (en) Method for manufacturing of acceleration sensor
JP3967574B2 (en) Probe pin manufacturing method
JPH0671838A (en) Printing plate and manufacture thereof
KR950012077A (en) Mass manufacturing method of acceleration sensor and vibration sensor using metal paste dispensing method
JPH05255862A (en) Production of very small machine
JPH0348498B2 (en)
JPH04359559A (en) Formation of resistance element
JPH05343580A (en) Lead frame
JPS5827655B2 (en) Manufacturing method of aperture diaphragm
JPS6255693B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021226

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee