KR960007928B1 - Process for producing a epoxy-resins - Google Patents

Process for producing a epoxy-resins Download PDF

Info

Publication number
KR960007928B1
KR960007928B1 KR1019960010524A KR19960010524A KR960007928B1 KR 960007928 B1 KR960007928 B1 KR 960007928B1 KR 1019960010524 A KR1019960010524 A KR 1019960010524A KR 19960010524 A KR19960010524 A KR 19960010524A KR 960007928 B1 KR960007928 B1 KR 960007928B1
Authority
KR
South Korea
Prior art keywords
epoxy resin
epoxy
resin
structural formula
added
Prior art date
Application number
KR1019960010524A
Other languages
Korean (ko)
Inventor
김환건
이병원
이지윤
Original Assignee
제일모직 주식회사
채오병
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사, 채오병 filed Critical 제일모직 주식회사
Priority to KR1019960010524A priority Critical patent/KR960007928B1/en
Application granted granted Critical
Publication of KR960007928B1 publication Critical patent/KR960007928B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/329Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/681Metal alcoholates, phenolates or carboxylates
    • C08G59/683Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The high functional epoxy resin is made by; (a) dissolving epoxy resin(II) in nonpolar solvent; (b) mixing with a little benzoylperoxide catalyst added;(c) obtaining epoxy resin containing brome(III) from adding 1-bromo-2,5- C4H4Br-NO2; (d) dissolving epoxy resin containing brome(III) in diethylether or tetrahydrofuran with magnesium;(e) mixing with O-methylhydroxylamine added;(f) obtaining epoxy resin(IV); (g) dissolving epoxy resin(IV) in DMF with maleicimide and reacting for several hrs. The epoxy resin has high stress relaxation, heat and moisture resistance.

Description

반도체소자 밀봉용 고기능 에폭시수지의 제조방법Manufacturing Method of High Performance Epoxy Resin for Semiconductor Device Sealing

본 발명은 반도체의 대용량화 및 패키지의 소형, 박형화에 따라 반도체소자 밀봉용 수지조성물에 요구되는 저응력화, 고내열화, 고내습성화를 실현한 반도체소자 밀봉용 에폭시수지의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an epoxy resin for semiconductor element sealing that realizes low stress, high heat resistance, and high moisture resistance required for a resin composition for semiconductor element encapsulation due to a large capacity of a semiconductor and a small size and a thin package.

IC와 LSI 패키지는 전기, 전자부품 및 세트가 소형, 박형화됨에 따라 매우 급속하게 다양화되고 있다.IC and LSI packages are rapidly diversifying as electrical, electronic components and sets become smaller and thinner.

특히 칩의 크기는 점점 커짐에도 불구하고 패키지는 점점 박형화, 소형화되고 높은 핀수를 가지는 패키지로 변화하고 있다. 실장방식도 표면실장 방식으로 변화되고 있으며, 최근에는 두께 1mm 정도의 TSOJ(Thin Small Out-line J-Bend Package)가 등장 실현되고 있다. 이것은 SOJ(Small Out-line J-Bend Package) QFP(Quad Flat Package)와 TAB(Tape Automated Bonding)방식 사이의 중간단계 형태로서 향후 기억소자 분야의 주된 형태로 사용될 전망이다. 이러한 패키지의 변화에 대응하는 반도체소자 밀봉용 수지조성물도 또한 종래의 기술보다 더 엄격한 저응력화, 고내열화 및 고내습성화를 동시에 요구하고 있다.In particular, despite the increasing chip size, packages are becoming thinner, smaller, and higher pin count packages. The mounting method is also being changed to the surface mounting method, and recently, a TSOJ (Thin Small Out-line J-Bend Package) having a thickness of about 1 mm has been introduced and realized. This is an intermediate step between Small Out-line J-Bend Package (Quad Flat Package) and Tape Automated Bonding (TAB). The resin composition for semiconductor element sealing corresponding to such a package change also demands more strict lower stress, higher heat resistance and higher moisture resistance than the prior art.

종래의 저응력화 기술로서는 내부응력을 감소시키기 위해 변성 실리콘 오일이나 CTBN과 같은 가소성부여레를 첨가하는 방법과(일본공개특허 소 63-230725, 62-7723, 62-132961, 62-260817) 충진제의 양을 증가시켜 열팽창계수를 낮추는 방법(일본공개특허 소 62-106920)등의 알려져 있으나 상기의 방법들은 각각 내열성의 저하와 성형성 및 제조시의 설비의 마모등 제조상의 심각한 문제를 야기시키고 있다. 한편, 내열성을 형성시키기 위해서는 다기능 에폭시수지의 사용(일본공개특허 소 62-477, 소 62-7723, 소 62-7913)과 내열성이 우수한 비스말레이미드의 사용(일본공개특허 소 54-142298, 소 56-215452)등이 알려져 있으나 이 기술 역시 유리전이온도 상승에 따른 내습성의 저하가 큰 문제로 대두되고 있다.Conventional low-stressing techniques include the addition of a modified silicone oil or a plastic impregnation mop, such as CTBN, to reduce internal stress and the fillers (JP-A-63-230725, 62-7723, 62-132961, 62-260817). Although the method of lowering the coefficient of thermal expansion by increasing the amount thereof is known (Japanese Patent Laid-Open No. 62-106920), the above methods cause serious manufacturing problems such as deterioration of heat resistance, moldability, and wear of equipment during manufacturing. . On the other hand, in order to form heat resistance, the use of a multifunctional epoxy resin (Japanese Patent Publication No. 62-477, 62-2723, 62-2913) and the use of bismaleimide excellent in heat resistance (Japanese Patent Publication No. 54-142298, 56-215452) and the like, but this technique is also a problem that the degradation of moisture resistance due to the glass transition temperature rise.

따라서 본 발명은 초박형 고집적 IC 밀봉에 적합한 내습성, 내열성 및 저응력화 부여가 가능한 고기능 에폭시수지의 제조방법을 제고하는데 그 목적이 있다.Accordingly, an object of the present invention is to improve a manufacturing method of a high-performance epoxy resin capable of imparting moisture resistance, heat resistance, and low stress suitable for ultra-thin high-integration IC sealing.

즉, 본 발명은 하기 구조식(Ⅱ)의 에폭시수지를 비극성 유기용매에 녹이고 소량의 벤조일퍼옥사이드 촉매를 가하고 교반하면서 1-보로모-2,5-피롤리딘디완(C4H4Br NO2)을 적하하여 하기 구조식(Ⅲ)의 브롬이 치환된 에폭시수지를 수득하고, 이것을 디에틸에테르 또는 테트라하이드로푸란에 마그네슘과 함께 녹이고 O-메틸하이드록실아민을 넣고 교반하여 아민그룹이 치환된 하기 구조식(Ⅳ)의 에폭시수지를 수득한 후, 하기 구조식(Ⅴ)의 말레이미드와 함게 DMF에 녹여 수시간 반응시켜 수득하는 것을 특징으로 한 일반식(Ⅰ)의 고기능 에폭시수지의 제조방법을 제공하는 것이다.That is, the present invention dissolves the epoxy resin of the following structural formula (II) in a non-polar organic solvent and adds a small amount of benzoyl peroxide catalyst and stirs 1-boromo-2,5-pyrrolidinediwan (C 4 H 4 Br NO 2). ) Was added dropwise to obtain an epoxy resin substituted with bromine of Structural Formula (III), which was dissolved with magnesium in diethyl ether or tetrahydrofuran, added with O-methylhydroxyamine and stirred to substitute the amine group. After the epoxy resin of (IV) is obtained, it is dissolved in DMF together with the maleimide of the following structural formula (V) to give a method for producing a high-performance epoxy resin of the general formula (I), characterized in that obtained by the reaction. .

(여기에서, R1, R2는 H 또는 (CH2)nCH3이고, n은 0 또는 1이상의 정수이다)Wherein R 1 , R 2 is H or (CH 2 ) n CH 3 , and n is 0 or an integer of 1 or greater)

이하에서 본 발명의 제조방법을 더욱 상세히 설명하면 다음과 같다. 즉, 드롭핑퍼낼(dropping funnel)과 리플럭스 콘덴사(reflux condenser)를 장치한 라운드보템플라스크에 하기 구조식(Ⅱ)의 에폭시수지(일본화학 제품)와 비극성 유기용매(CCl4C2H4Cl2)를 넣고 교반하여 녹이고 에폭시수지에 대해 0.1∼1중량%의 벤조일퍼옥사이드(Aldrich사 제품)를 촉매로 넣고 충분히 교반하면서 NBS(1-bromo-2, 5-Pyrrolidinedione : Aldrich사 제품)를 한방울씩 적하하여 넣은 후 2∼6시간 리플럭스한다.Hereinafter, the manufacturing method of the present invention will be described in more detail. That is, a round botem flask equipped with a dropping funnel and a reflux condenser is an epoxy resin (Japanese Chemical) and a nonpolar organic solvent (CCl 4 C 2 H 4 Cl) of formula (II). 2 ) Add and dissolve by stirring, add 0.1-1% by weight of benzoyl peroxide (manufactured by Aldrich) to the epoxy resin as a catalyst, and drop a drop of NBS (1-bromo-2, 5-Pyrrolidinedione: manufactured by Aldrich) with sufficient stirring. After dropwise addition, the solution is refluxed for 2 to 6 hours.

여기에서 수득된 하기 구조식(Ⅲ)의 Br 치환 에폭시수지를 잘 건조된 디에틸에테르 또는 THF(tetrahydrofuran)에 녹이고 마그네슘을 넣어 다 녹은 것을 확인한 후 O-메틸하이드록실아민(CH3ONH2: Aldrich사 제품)을 넣고 따뜻한 상태에서 4∼8사간 교반반응시킨다.Br-substituted epoxy resin of the following structural formula (III) obtained in this was dissolved in well-dried diethyl ether or THF (tetrahydrofuran), and after checking that magnesium was dissolved, O-methylhydroxylamine (CH 3 ONH 2 : Aldrich) Product) and the reaction was stirred for 4-8 years in a warm state.

이렇게 하여 얻은 아민 그룹이 치환된 하기 구조식(Ⅳ)의 에폭시수지를 하기 구조식(Ⅴ)의 말레이미드(미스비시유화 제품)와 함께 DMF에 녹여 리플럭스시키며 수시간 반응시켜 최종적으로 일반식(Ⅰ)의 고기능성 에폭시수지를 수득하게 된다.The epoxy resin of the following structural formula (IV) substituted with the amine group obtained in this way was dissolved in DMF with the maleimide (product of the following formula (V)), refluxed and reacted for several hours. A high functional epoxy resin of is obtained.

본 발명에 의해 제조되는 반도체소자 밀봉용 에폭시 수지조성물을 보다 상세히 언급하면, 올소-크레졸노볼락형 에폭시수지와 상기 일반식(Ⅰ)의 고기능 에폭시수지를 혼합한 에폭시수지성분을 기본으로 하고, 페놀노볼락형 경화제, 그리고 유기 포스핀계 화합물인 트라이페닐포스핀을 경화촉진제로 첨가하였으며, 또한 충진제로서는 고순도 용융실리카를, 개질제로는 에폭시변성실리콘오일을 첨가하며, 기타 이형제, 착색제, 그리고 유기 및 무기난연제등을 첨가하여 조성된다.Referring to the epoxy resin composition for sealing a semiconductor device produced by the present invention in more detail, based on the epoxy resin component mixed with an olso-cresol novolak-type epoxy resin and the high-performance epoxy resin of the general formula (I), phenol A novolak-type curing agent and triphenylphosphine, an organic phosphine-based compound, were added as a curing accelerator, a high-purity molten silica was added as a filler, and an epoxy-modified silicone oil was added as a modifier, other release agents, colorants, and organic and inorganic It is formed by adding a flame retardant or the like.

이와 같은 본 발명의 수지 조성물의 바람직한 조성예를 정리하면 다음과 같다.The preferable composition example of such a resin composition of this invention is as follows.

크레졸노볼락형 에폭시수지 0.1-20중량%Cresol novolac epoxy resin 0.1-20 wt%

고기능 에폭시수지 0.1-20중량%High performance epoxy resin 0.1-20 wt%

경화제 1.0-10.0중량%Hardener 1.0-10.0% by weight

경화촉진제 0.1-1.0중량%Curing accelerator 0.1-1.0 wt%

커플링제 0.5-2.0중량%Coupling agent 0.5-2.0 wt%

착색제 0.1-0.5중량%0.1-0.5% by weight of colorant

충진제 65.0-85.0중량%Filler 65.0-85.0 wt%

이형제 0.1-1.0중량%0.1-1.0% by weight of release agent

유기난연제 1.0-5.0중량%Organic flame retardant 1.0-5.0 wt%

무기난형제 0.5-3.0중량%Inorganic egg yolk 0.5-3.0 wt%

가소성부여제 0.5-5.0중량%Plasticizer 0.5-5.0 wt%

본 발명의 수지조성물은 상기와 같은 조성으로 하는 것이 가장 바람직한데, 본 발명에서 사용하는 에폭시수지로서는 내열성이 우수한 올소크레졸노볼락형 수지를 사용하며, 특히 에폭시 당량이 190-220이고, 불순물의 함량이 10ppm 이하인 고순도 에폭시수지이어야 한다. 또한 경화제로서는 페놀노볼락형 수지를 사용하는데, 연화점이 80-100℃이어야 하고, 하이드록실 당량이 100-120이며, 역시 불순물의 함량이 10ppm이하인 수지를 사용해야 한다.The resin composition of the present invention is most preferably in the composition as described above, as the epoxy resin used in the present invention is used an allocresol novolak-type resin having excellent heat resistance, in particular epoxy equivalent of 190-220, content of impurities It should be a high purity epoxy resin less than 10ppm. In addition, a phenol novolak-type resin is used as the curing agent, and a softening point of 80-100 ° C., a hydroxyl equivalent weight of 100-120, and a resin having an impurity content of 10 ppm or less should be used.

한편, 본 발명에서 특징적으로 사용되는 일반식(Ⅰ)의 고기능성 에폭시로는 이미드-에폭시로서 전체 수지조성물에 대해 0.1-20.0중량%, 좋기로는 1.0-10.0중량%로 사용하는 것이 좋다.On the other hand, as the highly functional epoxy of the general formula (I) used in the present invention as the imide-epoxy, it is preferable to use 0.1-20.0% by weight, preferably 1.0-10.0% by weight based on the total resin composition.

만일 그 사용량이 0.1중량% 미만이면 내열효과 및 내습효과가 없으며, 20중량%를 초과하면 레진블리드 및 금형오염등의 현상이 나타나 성형성이 저하되고 겔화시간 및 후경화시의 조건에 많은 문제를 야기시킨다.If the amount is less than 0.1% by weight, there is no heat and moisture resistance. If the amount is more than 20% by weight, resin bleed and mold contamination may occur, resulting in poor moldability and many problems in gelation time and post-curing conditions. Cause.

그리고, 본 발명에서 사용하는 충진제로서는 고순도 용융실리카를 사용하며, 입자 크기가 10㎛-30㎛범위의 것을 사용하는 것이 좋다. 또한, 경화촉진제로는 통상 아민류, 이미다졸 유도체 및 유기포스핀계 화합물이 사용되고 있는데, 본 발명에서는 유기포스핀계 화합물로서 트리페닐포스핀이, 이미다졸 유도체로서는 2-메틸이미다졸, 2-메틸-4-에틸이미다졸등을 사용하는 것이 바람직하다.As the filler used in the present invention, high purity molten silica is used, and a particle size of 10 μm to 30 μm is preferably used. In addition, amines, imidazole derivatives and organophosphine compounds are generally used as curing accelerators. In the present invention, triphenylphosphine is used as the organic phosphine compound, and 2-methylimidazole and 2-methyl- are used as imidazole derivatives. Preference is given to using 4-ethylimidazole or the like.

본 발명에서 무기충진제의 표면처리에 사용하는 커플링제로서는 실란계 커플링제가 사용되는데, 특히 감마-글리시독시프로필트리메톡시실란을 사용하는 것이 가장 좋다. 또한 가소성부여제로서는 통상적으로 실리콘고무나 에폭시변성실리콘오일을 사용하는데, 반도체의 고집적화에 따라 상용성을 증가시키기 위해서 본 발명에 사용된 가소성부여제는 페놀노볼락수지와 에폭시변성실리콘오일의 어덕트를 사용하였다.In the present invention, as the coupling agent used for the surface treatment of the inorganic filler, a silane coupling agent is used, and in particular, gamma-glycidoxypropyltrimethoxysilane is most preferably used. In addition, as a plasticizer, silicone rubber or epoxy modified silicone oil is generally used, and the plasticizer used in the present invention in order to increase compatibility with high integration of semiconductors is an adduct of phenol novolac resin and epoxy modified silicone oil. Was used.

그외의 이형제로서는 카르나우바왁스나 몬탄왁스를 0.1-1.0중량%로, 착색제로는 카본블랙을 0.1-0.5중량%를 각각 사용하며, 유기난연제로는 브롬화에폭시수지를, 무기난연제로는 삼산화안티몬을 사용하였다.Other release agents use carnauba wax or montan wax at 0.1-1.0% by weight, and carbon black at 0.1-0.5% by weight as a colorant, and epoxy bromide as an organic flame retardant, and antimony trioxide as an inorganic flame retardant. Was used.

상기와 같은 본 발명의 조성물을 만들기 위하여 먼저 무기충전제를 커플링제로서 표면처리한 후 나머지약제를 헨셀믹서나 기타 예비믹서기에서 균일하게 혼합시키고, 니이더 또는 롤밀을 이용하여 90-110℃에서 약 5-20분간 용융혼합시킨 다음 냉각시켜서 분쇄기를 이용하여 분말로 만든다.In order to make the composition of the present invention as described above, the inorganic filler is first surface-treated as a coupling agent, and then the remaining medicine is uniformly mixed in a Henschel mixer or other premixer, using a kneader or roll mill at about 5 to about 90-110 ° C Melt-mix for 20 minutes and then cool to powder using a grinder.

이러한 분말조성물을 이용하여 반도체소자를 밀봉작업할 시에는 분말상태를 타정기에 넣어 타정한다. 이렇게 하여 제조된 타블렛 형태의 수지조성물을 고주파 예열기를 이용하여 예열시킨 후 170-180℃에서 90-120초간 트랜스퍼 몰딩 프레스로 성형시키면 반도체소자를 밀봉시킬 수 있게 된다. 상술한 바와 같이 본 발명에 의해 제조되는 수지조성물은 반도체소자 밀봉용 에폭시 수지족성물을 제조하기 위하여 에폭시수지로서 기존의 크레졸노볼락형 에폭시수지에 내열성 및 보습성을 향상시키기 위하여 고기능 에폭시수지를 첨가기켜줌으로써, 종래에 비하여 높은 유리전이온도를 가지면서 내습성이 형성되어 초박형 고집적반도체 밀봉에 적합한 수지조성물을 제공할 수가 있는 것이다.When sealing the semiconductor device using the powder composition, the powder is put into a tableting machine and compressed into tablets. The resin composition in the tablet form thus prepared is preheated using a high frequency preheater and then molded in a transfer molding press at 170-180 ° C. for 90-120 seconds to seal the semiconductor device. As described above, the resin composition prepared according to the present invention is a high-performance epoxy resin in order to improve heat resistance and moisture retention to an existing cresol novolac-type epoxy resin as an epoxy resin in order to manufacture an epoxy resin-like compound for sealing a semiconductor device. By increasing, the moisture resistance is formed while having a higher glass transition temperature as compared with the prior art, it is possible to provide a resin composition suitable for ultra-thin highly integrated semiconductor sealing.

이하 본 발명을 실시예에 의거 더욱 상세히 설명하면 다음과 같은 바, 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the Examples.

실시예 1-4Example 1-4

다음 표-1에 나타낸 조성대로 조성성분들을 헨셀믹서에서 균일하게 혼합하여 분말상태의 1차 조성물을 만든다. 그 다음에는 니이더를 이용하여 100℃에서 10분간 혼련시킨 후 냉각 과정을 거친 다음 분쇄하여 에폭시수지 성형재료를 제조하였다. 이렇게 하여 얻어진 에폭시 수지조성물에 대해서 다음과 같은 방법으로 물성을 측정하고 그 결과를 다음 표-2에 나타내었다.Next, the composition is uniformly mixed in a Henschel mixer according to the composition shown in Table-1 to form a powdery primary composition. Then, the mixture was kneaded at 100 ° C. for 10 minutes using a kneader, and then cooled and pulverized to prepare an epoxy resin molding material. The physical properties of the epoxy resin composition thus obtained were measured in the following manner, and the results are shown in Table 2 below.

1) 스피랄플로우(Spiral Flow) : EMMI 규격에 준해 금형을 제작하여 성형온도 175℃, 성형압력 70kgf/cm2에서 측정1) Spiral Flow: According to EMMI standard, mold is produced and measured at molding temperature of 175 ℃ and molding pressure of 70kgf / cm 2

2) 유리전이온도(Tg) : TMA 측정설비를 이용하여 측정.2) Glass Transition Temperature (Tg): Measured using TMA measuring equipment.

3) 탄성율 E(kgf/mm2: UTM을 사용하여 ASTM D190에 의해 측정.3) Modulus of elasticity E (kgf / mm 2 : measured by ASTM D190 using UTM).

4) 열팽창계수 α(℃) : ASTM D696에 의해 측정.4) Thermal expansion coefficient α (° C): measured by ASTM D696.

5) 흡습율(%) : 성형품을 121℃ 2기압 수증기 중에 48시간 동안 방치한 후 포화흡습율을 측정.5) Moisture absorption rate (%): After leaving the molded product in 121 ℃ 2 atmosphere steam for 48 hours, the saturated moisture absorption is measured.

6) 내크랙성 : 성형시킨 칩을 -55℃에서 30분, 150℃에서 30분을 1주기로 한 시험 조건에서 열충격시험을 2,000회 실시하였다. 그리고 그때의 크랙발생수를 구하여 측정하였다.6) Crack resistance: The thermal shock test was performed 2,000 times under the test conditions in which the molded chip was subjected to 30 minutes at -55 ° C and 30 minutes at 150 ° C for one cycle. And the crack generation number at that time was calculated | required and measured.

비교예Comparative example

다음 표-1의 조성에 따라 상기 실시예 1-4와 동일한 방법으로 실시하고 물성을 측정하여 그 결과를 다음 표-2에 나타내었다.According to the composition of Table-1 and carried out in the same manner as in Example 1-4 and measured the physical properties and the results are shown in the following Table-2.

상기 표-2에서 나타난 결과에서 보듯이 본 발명에 의해 제조되는 수지조성물은 비교예에 비해 뒤지지 않는 성형성을 가질 뿐아니라 비교예보다 우수한 내열특성 및 내습성을 가지고 있어, 그 결과 니크랙성이 현저히 향상된 우수한 반도체소자 밀봉용 수지조성물임을 확인할 수 있다.As shown in the results shown in Table 2, the resin composition prepared by the present invention not only has a moldability that is inferior to that of the comparative example, but also has excellent heat resistance and moisture resistance than the comparative example. It can be seen that the resin composition for sealing the semiconductor element is significantly improved.

Claims (1)

하기 구조식(Ⅱ)의 에폭시수지를 비극성 유기용매에 녹이고 소량의 벤조일피록사이드 촉매를 가하고 교반하면서 1-보로모-2,5-피롤리딘디완(C4H4Br NO2)을 적하하여 하기 구조식(Ⅲ)의 브롬이 치환된 에폭시수지를 수득하고, 이것을 디에틸에테르 또는 테트라하이드로푸란에 마그네슘과 함께 녹이고 O-메틸하이드록실아민을 넣고 교반하여 아민그룹이 치환된 하기 구조식(Ⅳ)의 에폭시수지를 수득한 후, 하기 구조식(Ⅴ)의 말레이미드와 함께 DMF에 녹여 수시간 반응시켜 수득하는 것을 특징으로 한 일반식(Ⅰ)의 고기능에폭시수지의 제조방법.Epoxy resin of the following structural formula (II) was dissolved in a nonpolar organic solvent, a small amount of benzoylpyoxide catalyst was added thereto, and 1-boromo-2,5-pyrrolidinediwan (C 4 H 4 Br NO 2 ) was added dropwise while stirring. Obtain an epoxy resin substituted with bromine of Structural Formula (III), dissolve it with magnesium in diethyl ether or tetrahydrofuran, add O-methylhydroxyamine, and stir to replace the amine group with epoxy of Structural Formula (IV) After obtaining a resin, it melt | dissolves in DMF with the maleimide of following formula (V), and is made to react for several hours, The manufacturing method of the high functional epoxy resin of general formula (I) characterized by the above-mentioned.
KR1019960010524A 1991-11-30 1996-04-08 Process for producing a epoxy-resins KR960007928B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960010524A KR960007928B1 (en) 1991-11-30 1996-04-08 Process for producing a epoxy-resins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910021870A KR960010305B1 (en) 1991-11-30 1991-11-30 Epoxy resin composition for encapsulating semiconductor element
KR1019960010524A KR960007928B1 (en) 1991-11-30 1996-04-08 Process for producing a epoxy-resins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019910021870A Division KR960010305B1 (en) 1991-11-30 1991-11-30 Epoxy resin composition for encapsulating semiconductor element

Publications (1)

Publication Number Publication Date
KR960007928B1 true KR960007928B1 (en) 1996-06-17

Family

ID=19323944

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019910021870A KR960010305B1 (en) 1991-11-30 1991-11-30 Epoxy resin composition for encapsulating semiconductor element
KR1019960010524A KR960007928B1 (en) 1991-11-30 1996-04-08 Process for producing a epoxy-resins

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1019910021870A KR960010305B1 (en) 1991-11-30 1991-11-30 Epoxy resin composition for encapsulating semiconductor element

Country Status (1)

Country Link
KR (2) KR960010305B1 (en)

Also Published As

Publication number Publication date
KR960010305B1 (en) 1996-07-30
KR930010115A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
KR960010845B1 (en) Epoxy resin composition for encapsulating semiconductor element
KR100243708B1 (en) Semiconductor encapsulating epoxy resin compositions suitable for semiconductor encapsulation, their manufacture
KR100581988B1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JPH06102714B2 (en) Epoxy resin composition and semiconductor device
JPH0653364A (en) Epoxy resin composition for hermetical sealing of semiconductor element
KR960005064B1 (en) Imid-epoxy resin and method for preparation thereof
US5416138A (en) Epoxy resin composition
KR960007928B1 (en) Process for producing a epoxy-resins
KR960010307B1 (en) Epoxy resin composition for encapsulating semiconductor element
KR960010306B1 (en) Epoxy resin composition for encapsulating semiconductor elements
EP0589143B1 (en) Epoxy resin composition based on diglycidylether of biphenyldiol
KR960010304B1 (en) Resin composition for encapsulating semiconductor element
KR960008127B1 (en) Resin composition for encapsulating semiconductor elements having a improved heat resistance
KR940011411B1 (en) Epoxy resin composion for encapsulating semiconductor parts
KR960010843B1 (en) Resin composition for encapsulating semiconductor element having a good heat resistance
JP2017082052A (en) Epoxy resin composition and semiconductor device using the same
JPH03195725A (en) Resin composition
JPH0581607B2 (en)
JPH06128357A (en) Semiconductor device
JPH0625384A (en) Epoxy resin composition and semiconductor device
JPH03197526A (en) Resin composition
JPH02127417A (en) Epoxy resin composition
KR960011550B1 (en) Epoxy resin composition for encapsulating semiconductor element
JPH05175373A (en) Epoxy resin composition
JP2986900B2 (en) Resin composition

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080416

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee