KR960006025B1 - Process for production of oriented electrical steel sheet having excellent magnetic properties - Google Patents

Process for production of oriented electrical steel sheet having excellent magnetic properties Download PDF

Info

Publication number
KR960006025B1
KR960006025B1 KR1019930023740A KR930023740A KR960006025B1 KR 960006025 B1 KR960006025 B1 KR 960006025B1 KR 1019930023740 A KR1019930023740 A KR 1019930023740A KR 930023740 A KR930023740 A KR 930023740A KR 960006025 B1 KR960006025 B1 KR 960006025B1
Authority
KR
South Korea
Prior art keywords
annealing
steel sheet
temperature
electrical steel
oriented electrical
Prior art date
Application number
KR1019930023740A
Other languages
Korean (ko)
Other versions
KR950014331A (en
Inventor
김재관
한찬희
Original Assignee
포항종합제철 주식회사
조말수
재단법인 산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 조말수, 재단법인 산업과학기술연구소, 백덕현 filed Critical 포항종합제철 주식회사
Priority to KR1019930023740A priority Critical patent/KR960006025B1/en
Publication of KR950014331A publication Critical patent/KR950014331A/en
Application granted granted Critical
Publication of KR960006025B1 publication Critical patent/KR960006025B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

The iron based steel slab comprises 2 to 4wt.% silicon, 0.03 to 0.10wt.% carbon, 0.02 to 0.04wt.% soluble aluminum, 0.030 to 0.100wt.% manganeses, 0.015 to 0.040wt.% sulphur, 0.0050 to 0.0150wt.% nitrogen, and the balance of iron and inevitable impurities. The magnetic steel sheet is produced by the processes of hot rolling the steel slab having the same composition as mentioned above as a starting material, pre-annealing, cold rolling, decarburizing annealing, and high temperature annealing. The conditions of pre-annealing process are the following: (a) the heating temperature of the hot rolled sheet is 1,000 to 1,200deg.C for under 2 min., (b) cooling rate is 5 to 30deg.C/sec, (c) the temperature range for cooling is 1,150-3,333[wt.% C to 1,210-3,333[wt.% C deg.C for 30sec to 2min holding time, and (d) quenching to room temperature with the cooling rate of over 15deg.C/sec. The produced sheet by the properly controlled pre-annealing is used for the iron core material of a current transformer requiring good magnetic properties.

Description

자성이 우수한 고자속밀도 방향성 전기강판의 제조방법Manufacturing method of high magnetic flux density oriented electrical steel with excellent magnetic properties

본 발명은 변압기등의 철심소재로 사용되는 방향성 전기강판의 제조방법에 관한 것으로써, 보다 상세하게는, 예비소둔조건을 적절히 제어하므로써 자성이 우수한 고자속밀도 방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used in iron core materials such as transformers, and more particularly, to a method for manufacturing a high magnetic flux density grain-oriented electrical steel sheet having excellent magnetic properties by appropriately controlling preanneal conditions. .

방향성 전기강판은 주로 변압기의 철심소재로 사용되는데, 변압기의 에너지손실을 줄이기 위해서는 소재로 사용되는 전기강판의 철손이 낮아야 된다. 방향성 전기강판의 철손은 강판에 함유된 규소의 함량, 강판의 결정립의 크기, 결정립의 방향성, 불순물의 양, 내부 스트레인, 강판의 두께등 여러 인자에 의하여 영향을 받는다. 전기강판에서 철손을 낮추는 일은 전기강판 제조에 관계하는 연구자 및 기술자들의 최대 목표로 되어 있어 상기한 인자들을 최적으로 하기 위하여 노력하고 있다.Oriented electrical steel is mainly used as the core material of transformers. In order to reduce the energy loss of transformers, the iron loss of electrical steel sheets used as materials should be low. Iron loss of a grain-oriented electrical steel sheet is affected by various factors such as the amount of silicon contained in the steel sheet, the grain size of the steel sheet, the grain orientation, the amount of impurities, the internal strain, and the thickness of the steel sheet. Lowering the iron loss in electrical steel sheet is the maximum goal of researchers and technicians involved in the production of electrical steel sheet and strives to optimize the above factors.

자성을 개선시키기 위한 연구들은 크게 성분계, 강판의 두께 및 제조공정등에 관한 분야로 나눌 수 있는 데, 제조공정에 관한 기술중 예비소둔 공정을 개선시키므로써, 자성을 향상시키는 방법중의 대표적인 것으로는 미국특허 제3,636,579호 등을 들 수 있다.Researches to improve the magnetism can be divided into fields related to component system, steel plate thickness and manufacturing process, and the representative method of improving the magnetization by improving the pre-annealing process in the manufacturing process technology is US Patent 3,636,579, etc. are mentioned.

상기 미국특허에서는 Si 및 C의 함량에 따라 예비소둔처리방식을 3종으로 구분하고, 최고가열온도를 조절함으로써, 자성을 향상시키고 있다.In the US patent, the pre-annealing treatment is divided into three types according to the content of Si and C, and the maximum heating temperature is adjusted to improve magnetic properties.

그러나, 상기 미국특허는 MnS 및 AlN의 석출물 제어만을 고려하므로써, 자성향상에 한계가 있다는 문제점이 있다.However, the US patent has a problem in that the magnetic enhancement is limited only by considering only precipitate control of MnS and AlN.

이에, 본 발명자들은 고자속밀도 방향성 전기강판의 자성향상을 위하여 제조공정의 최적화를 추구하던중 새로운 방법으로 예비소둔을 실시함으로써 자성이 대단히 향상된 고자속밀도 방향성 전기강판이 제조가능함을 도출하고, 이에 근거로 하여 본 발명을 제안하게 된 것으로서, 본 발명은 제강, 열간압연, 예비소둔, 냉간압연, 탈탄소둔, 고온소둔을 실시하는 고자속밀도 방향성 전기강판 제조공정에 있어서, 탄소함량에 따라 유지온도를 제어하는 독특한 예비소둔을 실시함으로써 자성이 매우 우수한 고자속밀도 방향성 전기강판을 제조할 수 있는 방법을 제공하는데 그 목적이 있다.Accordingly, the present inventors have derived a high magnetic flux density oriented electrical steel sheet can be manufactured by improving the magnetic properties by performing pre-annealing in a new method while pursuing the optimization of the manufacturing process for improving the magnetic properties of the high magnetic flux density oriented electrical steel sheet, The present invention has been proposed on the basis of the present invention. In the manufacturing process of a high magnetic flux density oriented electrical steel sheet which performs steelmaking, hot rolling, preannealing, cold rolling, decarbonization annealing, and high temperature annealing, the holding temperature depends on the carbon content. It is an object of the present invention to provide a method for manufacturing a high magnetic flux density oriented electrical steel sheet having excellent magnetic properties by performing a preliminary annealing to control the temperature.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은, 중량%로, Si : 2∼4%, C : 0.03∼0.10%, Sol-Al : 0.02∼0.04%, Mn : 0.030∼0.100%, S : 0.015∼0.040%, N :0.0050∼0.0150%, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강 슬라브를 열간압연, 예비소둔, 냉간압연, 탈탄소둔, 및 고온소둔을 차례로 실시하여 고자속밀도 방향성 전기강판을 제조하는 방법에 있어서, 상기 예비소둔에서, 열간압연강판(열연판)을 1000∼1200℃에서 2분 이하로 유지한 후 5∼30℃/sec의 냉각속도로 1150-3333[wt% C] ℃∼1210-3333[wt% C]℃의 온도구간까지 냉각시켜 그 온도에서 30초-2분간 유지시킨 다음, 상온까지 15℃/sec 이상의 냉각속도로 급냉시키는 자성이 우수한 고자속밀도 방향성 전기강판의 제조방법에 관한 것이다.In the present invention, Si: 2 to 4%, C: 0.03 to 0.10%, Sol-Al: 0.02 to 0.04%, Mn: 0.030 to 0.100%, S: 0.015 to 0.040%, N: 0.0050 to 0.0150 A method for producing a high magnetic flux density oriented electrical steel sheet by hot rolling, preannealing, cold rolling, decarbonization annealing, and hot annealing of steel slab containing%, balance Fe and other unavoidable impurities in this order, wherein The hot rolled steel sheet (hot rolled sheet) was kept at 1000 to 1200 ° C for 2 minutes or less, and then cooled at 5 to 30 ° C / sec at 1150-3333 [wt% C] ° C to 1210-3333 [wt% C] ° C. The present invention relates to a method of manufacturing a high magnetic flux density oriented electrical steel sheet having excellent magnetic properties, which is cooled to a temperature section of and maintained at that temperature for 30 seconds to 2 minutes, and then rapidly cooled to a room temperature at a cooling rate of 15 ° C./sec or more.

이하, 본 발명에 대해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 적용될 수 있는 강종은 통상의 방향성 전기강판 제조용 강종이면 어느 것이나 가능하며, 바람직한 강종으로는 중량%로, Si : 2-4%, C : 0.03-0.10%, Sol-Al : 0.02-0.04%, Mn :0.030-0.100%, S : 0.015-0.040%, N : 0.0050-0.0150%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강종을 들 수 있다.Steel grades applicable to the present invention may be any steel grade for producing a grain-oriented electrical steel sheet, and the preferred steel grades are by weight%, Si: 2-4%, C: 0.03-0.10%, Sol-Al: 0.02-0.04 %, Mn: 0.030-0.100%, S: 0.015-0.040%, N: 0.0050-0.0150%, balance Fe and other inevitable impurities.

상기와 같이 조성되는 강 슬라브의 열간압연은 통상의 방법으로 행하는 것으로써, 열연판의 두께는 0.76-2.3㎜로 제한하는 것이 바람직하다.The hot rolling of the steel slab formed as described above is performed by a conventional method, and the thickness of the hot rolled sheet is preferably limited to 0.76-2.3 mm.

특히, 보다 바람직한 열연판 두께 제어는 최종 냉간압연율이 87% 부근이 되도록 하는 것이며, 후공정인 예비소둔공정에 앞서서 예압연하여 두께 조정하여도 무방하다.In particular, the more preferable hot-rolled sheet thickness control is such that the final cold rolling rate is about 87%, and the thickness may be adjusted by pre-rolling before the pre-annealing step, which is a later step.

상기와 같이 열간압연된 열연판을 예비소둔하게 되는데, 본 발명에서는 열연판을 예비소둔 공정에 그 특징이 있는 것으로써 이에 대하여 설명하면 다음과 같다.As described above, the hot rolled hot rolled sheet is preannealed. In the present invention, the hot rolled sheet is characterized by the preannealing process.

방향성 전기강판 제조시 열간압연 공정에서는 그 공정 특성상 강판의 길이방향으로 미세조직, 석출물등 여러가지 측면에서 차이가 나게 된다. 예비소둔은 본래 이와같이 열연공정에서 발생한 길이 방향으로의 차이를 균질화하고, 다음 공정인 냉간압연공정에서의 작업성을 향상시키는데에 그 일차적 목적이 있다. 또한, 예비소둔 공정은 2차 재결정을 발달시키는데 있어 중요한 결정립 성장 억제제(Inhibitor)의 미세석출 및 균일분산, 석출물량의 확보, 표면 등축정의 형성등 중요한 역할을 하는 공정이다.In the production of grain-oriented electrical steel sheet, the hot rolling process differs in various aspects such as microstructure and precipitates in the longitudinal direction of the steel sheet due to its process characteristics. Preliminary annealing is primarily intended to homogenize the difference in the longitudinal direction generated in the hot rolling process, and to improve the workability in the cold rolling process, which is the next process. In addition, the pre-annealing process is a process that plays an important role in the microprecipitation and uniform dispersion of the grain growth inhibitor (Inhibitor), securing the amount of precipitate, formation of the surface equiaxed crystal in the development of secondary recrystallization.

본 발명에 따라 예비소둔시 가열온도(소둔온도)가 너무 낮으면 AlN의 석출되는 양이 불충분하여 자성이 악화되고 너무 높으면 석출된 AlN, MnS등이 조대하게 성장하여 역시 자성이 악화되므로, 소둔온도는 1000-1200℃로 제한하는 것이 바람직하다.According to the present invention, if the heating temperature (annealing temperature) during the pre-annealing is too low, the amount of precipitated AlN is insufficient to deteriorate the magnetism, if too high, the precipitated AlN, MnS, etc. grows coarse and also deteriorates the magnetism, annealing temperature Is preferably limited to 1000-1200 ° C.

상기 소둔온도에서 2분 이상 유지하는 경우에는 석출물이 성장하는 등의 악영향을 미치므로, 상기 소둔온도에서의 유지시간은 2분 이내로 제한하는 것이 바람직하다.If it is maintained at the annealing temperature for 2 minutes or more, since the precipitates adversely affect the growth, the holding time at the annealing temperature is preferably limited to within 2 minutes.

상기와 같이 유지한 후 1150-3333[wt% C]∼1210-3333[wt% C]℃의 온도까지 5∼30℃/sec의 냉각속도로 냉각시키고 이 온도에서 30초-2초간 유지시킨 후 상온까지 급냉, 바람직하게는, 15℃/sec 이상으로 냉각시킨다.After maintaining as above, it is cooled at a cooling rate of 5-30 ° C./sec to a temperature of 1150-3333 [wt% C] ∼1210-3333 [wt% C] ° C. and maintained at this temperature for 30 seconds-2 seconds. Rapid cooling to room temperature, preferably at 15 ° C / sec or more.

이때, 냉각속도가 5℃/sec 이하이면 변태가 서서히 진행되어 요구되는 베이나이트(Bainite)상이 얻어지지 않으므로 5℃/sec-30℃/sec로 제한하는 것이 바람직하다.At this time, if the cooling rate is 5 ° C / sec or less, transformation is gradually progressed, so that the required bainite phase is not obtained, it is preferable to limit to 5 ° C / sec-30 ° C / sec.

냉각도중에 적절한 온도에서 적당한 시간동안 유지함에 따라 자성이 크게 항상되는 것은 예비소둔에서의 냉각시 상변태(δ→α+γ→α)와 관련한 것으로서, 적정온도에서 유지시켜 줌에 따라 δ→α+γ 변태시 평형에 도달하게 되고, 그 이후의 급냉에 의하여 α+γ→α 변태시 베이나이트상이 형성되어 냉간압연시 축적에너지를 크게 하기 때문으로 생각된다. 그리고, 이와같은 사상에 의하면 γ상이 가장 많이 형성되는 온도 영역에서 적당한 시간 유지할 필요가 있다. C함량에 따라서 적정 유지온도가 변화되는 것은 γ상의 양이 최대가 되는 온도가 C함량에 따라 변화되기 때문이다. 따라서, 유지온도는 1150-3333[wt% C]℃∼1210-3333[wt% C]℃로 제한하는 것이 바람직하다. 한편, 이 유지온도에서의 유지시간이 너무 짧으면 δ→α+γ 변태에서 γ상이 충분히 확보되지 않고, 유지시간이 너무 길면 경제적이지 못할 뿐만 아니라 이미 석출되어 있는 AlN, MnS등의 석출물들이 성장함으로써 석출물의 입성장 억제력이 약화되어 오히려 불리해지기 때문에 유지시간은 30초∼2분으로 제한하는 것이 바람직하다.Maintaining a large amount of magnetism by maintaining it at an appropriate temperature for a proper time during cooling is related to the phase transformation (δ → α + γ → α) during cooling in pre-annealing, and is maintained at an appropriate temperature by δ → α + γ It is considered that the equilibrium is reached at the time of transformation, and the bainite phase at the time of α + γ → α transformation is formed by the rapid quenching thereafter to increase the stored energy during cold rolling. And according to such a thought, it is necessary to hold | maintain for a suitable time in the temperature range in which (gamma) phase is formed most. The reason why the proper holding temperature changes in accordance with the C content is that the temperature at which the amount of the γ phase is maximum changes in accordance with the C content. Therefore, the holding temperature is preferably limited to 1150-3333 [wt% C] ° C to 1210-3333 [wt% C] ° C. On the other hand, if the holding time at this holding temperature is too short, the γ phase is not sufficiently secured in the δ → α + γ transformation, and if the holding time is too long, it is not economical, and precipitates are formed by the growth of precipitates such as AlN and MnS that are already precipitated It is preferable to limit the holding time to 30 seconds to 2 minutes because the ability to suppress grain growth is weakened and rather disadvantageous.

상기와 같이 예비소둔된 열연판을 통상의 방법으로 냉간압연, 탈탄소둔 및 고온소둔하므로써, 과자속밀도 방향성 전기강판이 제조된다.The cold-rolled, decarbonized and hot-annealed hot-rolled sheet pre-annealed as mentioned above is manufactured by the conventional method, and the condensed bundle density oriented electrical steel sheet is manufactured.

이때, 냉간압연시 압연율은 60-95%가 바람직한데, 바람직하게는 80-95%의 냉간압연율로 최종두께 0.30-0.10㎜로 냉간압연하는 것이다.At this time, the cold rolling rate is preferably 60-95%, preferably cold rolling at a final thickness of 0.30-0.10 mm with a cold rolling rate of 80-95%.

그리고, 상기 탈탄소둔온도는 800-870℃의 온도 범위로 제한하는 것이 바람직하다.And, the decarbonization annealing temperature is preferably limited to a temperature range of 800-870 ℃.

또한, 탈탄소둔후 소둔분리제를 도포한 다음, 고온소둔을 행하게 되는데, 고온소둔은 1200℃ 정도에서 20시간 정도 행하는 것이 바람직하다.In addition, after the decarbonization annealing is applied to the annealing separator, and then subjected to a high temperature annealing, the high temperature annealing is preferably performed at about 1200 ℃ for about 20 hours.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로 3.1% Si, 0.07% C, 0.025% Sol-Al, 0.052% Mn, 0.027% S, 0.081% N 잔부 Fe 및 기타 불가피한 불순물을 함유하는 열연판을 제조한 후 1150℃까지 가열하여 하기표 1과 같이 냉각조건을 변화시켜 예비소둔한 후, 87%의 냉연율로 냉간압연하여 0.20㎜ 두께로 하였다. 이후 830℃에서 탈탄소둔하고, 탈탄소둔판에 소둔분리제를 도포하여 1200℃에서 고온소둔하였다. 이와같이 하여 제조된 시편의 자기특성을 측정하고, 그 결과를 하기표 1에 나타내었다.The hot rolled sheet containing 3.1% Si, 0.07% C, 0.025% Sol-Al, 0.052% Mn, 0.027% S, 0.081% N remainder Fe and other unavoidable impurities by weight was prepared and then heated to 1150 ° C. After preliminary annealing by changing the cooling conditions as in 1, it was cold rolled at a cold rolling rate of 87% to a thickness of 0.20 mm. Then, decarbonized annealing at 830 ℃, annealing separator was applied to the decarbonized annealing plate to annealing at 1200 ℃ high temperature. The magnetic properties of the specimens thus prepared were measured, and the results are shown in Table 1 below.

[표 1]TABLE 1

상기 표 1에 나타난 바와같이, 본 발명재(1-5)의 경우가 비교재(1-5)에 비하여 철손을 낮고 자속밀도는 우수하게 나타남을 알 수 있다.As shown in Table 1, in the case of the present invention (1-5) it can be seen that the iron loss is lower than the comparative material (1-5) and the magnetic flux density is excellent.

[실시예 2]Example 2

중량%로 3.1% Si, 0.05% C, 0.027% Sol-Al, 0.052% Mn, 0.027% S, 0.083% N 잔부 Fe 및 기타 불가피한 불순물을 함유하는 열연판을 제조한 후 1135℃까지 가열하여 하기표 2와 같이 냉각조건을 변화시켜 예비소둔한 후, 87%의 냉연율로 냉간압연하여 0.18㎜ 두께로 하였다. 이후 830℃에서 탈탄소둔하고, 탈탄소둔판에 소둔분리제를 도포하여 1200℃에서 고온소둔하였다. 이와같이 하여 제조된 시편의 자성을 측정하고, 그 결과를 하기표 2에 나타내었다.A hot rolled sheet containing 3.1% Si, 0.05% C, 0.027% Sol-Al, 0.052% Mn, 0.027% S, 0.083% N balance Fe and other unavoidable impurities by weight was prepared and then heated to 1135 ° C. After pre-annealing by changing the cooling conditions as shown in 2, it was cold rolled at a cold rolling rate of 87% to a thickness of 0.18 mm. Then, decarbonized annealing at 830 ℃, annealing separator was applied to the decarbonized annealing plate to annealing at 1200 ℃ high temperature. The magnetic properties of the specimens thus prepared were measured, and the results are shown in Table 2 below.

[표 2]TABLE 2

상기 표 2에 나타난 바와같이, 본 발명재(6-10)의 경우가 비교재(6-10)에 비하여 철손은 낮고 저속밀도는 우수하게 나타남을 알 수 있다.As shown in Table 2, it can be seen that the case of the present invention (6-10) is lower in iron loss and excellent low-speed density than the comparative material (6-10).

[실시예 3]Example 3

중량%로 3.15% Si, 0.09% C, 0.026% Sol-Al, 0.054% Mn, 0.026% S, 0.080% N 잔부 Fe 및 기타 불가피한 불순물을 함유하는 열연판을 제조한 후 1150℃까지 가열하여 하기표 3과 같이 냉각조건을 변화시켜 예비소둔한 후, 87%의 냉연율로 냉간압연하여 0.15㎜ 두께로 하였다. 이후 830℃에서 탈탄소둔하고, 탈탄소둔판에 소둔분리제를 도포하여 1200℃에서 고온소둔하였다. 이와같이 하여 제조된 시편의 자기특성을 측정하고, 그 결과를 하기표 3에 나타내었다.A hot rolled sheet containing 3.15% Si, 0.09% C, 0.026% Sol-Al, 0.054% Mn, 0.026% S, 0.080% N balance Fe and other unavoidable impurities by weight was prepared and then heated to 1150 ° C. After pre-annealed by changing the cooling conditions as shown in 3, it was cold rolled at a cold rolling rate of 87% to a thickness of 0.15 mm. Then, decarbonized annealing at 830 ℃, annealing separator was applied to the decarbonized annealing plate to annealing at 1200 ℃ high temperature. The magnetic properties of the specimens thus prepared were measured, and the results are shown in Table 3 below.

[표 3]TABLE 3

상기 표 3에 나타난 바와같이, 본 발명재(11-15)의 경우가 비교재(11-15)에 비하여 철손은 낮고 자속밀도는 우수하게 나타남을 알 수 있다.As shown in Table 3, the case of the present invention (11-15) can be seen that the iron loss is low and the magnetic flux density is superior to the comparative material (11-15).

상술한 바와같이 본 발명은 예비소둔조건을 적절히 제어하므로서 얇은 두께까지도 자성이 우수하 고자속밀도 방향성 전기강판을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention has an effect of providing magnetic flux density oriented electrical steel sheet having excellent magnetic properties even at a thin thickness while properly controlling the pre-annealing conditions.

Claims (1)

중량%로 Si : 2∼4%, C : 0.03∼0.10%, Sol-Al : 0.02∼0.04%, Mn : 0.030∼0.100%, S : 0.015-0.040%, N : 0.0050∼0.0150%, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강 슬라브를 열간압연, 예비소둔, 냉간압연하고, 탈탄소둔, 및 고온소둔을 실시하여 고자속밀도 방향성 전기강판을 제조하는 방법에 있어서, 상기 예비소둔공정에서 열간압연강판을 1000∼1200℃까지 가열하여 이 온도에서 2분 이하로 유지한 후, 5-30℃/sec의 냉각속도로 1150-3333[wt% C]℃∼1210-3333[wt% C]℃의 온도구간까지 냉각시켜 그 온도에서 30초-2분간 유지시킨 다음, 상온까지 15℃/sec 이상의 냉각속도로 급냉시키는 것을 특징으로 하는 자성이 우수한 고자속밀도 방향성 전기강판의 제조방법.By weight% Si: 2-4%, C: 0.03-0.10%, Sol-Al: 0.02-0.04%, Mn: 0.030-0.100%, S: 0.015-0.040%, N: 0.0050-0.0150%, balance Fe and In the method for producing a high magnetic flux density oriented electrical steel sheet by hot rolling, pre-annealing, cold-rolling, de-carbon annealing, and hot annealing the steel slab containing other unavoidable impurities, the hot rolled steel sheet in the pre-annealing step It is heated to 1000 ~ 1200 ℃ and kept at this temperature for 2 minutes or less, and then the temperature range of 1150-3333 [wt% C] ℃ ~ 1210-3333 [wt% C] ℃ at a cooling rate of 5-30 ℃ / sec Method of producing a high magnetic flux density oriented electrical steel sheet having excellent magnetic properties, characterized in that cooled to and maintained at that temperature for 30 seconds-2 minutes, and then quenched at a cooling rate of 15 ℃ / sec or more to room temperature.
KR1019930023740A 1993-11-09 1993-11-09 Process for production of oriented electrical steel sheet having excellent magnetic properties KR960006025B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930023740A KR960006025B1 (en) 1993-11-09 1993-11-09 Process for production of oriented electrical steel sheet having excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930023740A KR960006025B1 (en) 1993-11-09 1993-11-09 Process for production of oriented electrical steel sheet having excellent magnetic properties

Publications (2)

Publication Number Publication Date
KR950014331A KR950014331A (en) 1995-06-15
KR960006025B1 true KR960006025B1 (en) 1996-05-08

Family

ID=19367670

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930023740A KR960006025B1 (en) 1993-11-09 1993-11-09 Process for production of oriented electrical steel sheet having excellent magnetic properties

Country Status (1)

Country Link
KR (1) KR960006025B1 (en)

Also Published As

Publication number Publication date
KR950014331A (en) 1995-06-15

Similar Documents

Publication Publication Date Title
US5643370A (en) Grain oriented electrical steel having high volume resistivity and method for producing same
US4439251A (en) Non-oriented electric iron sheet and method for producing the same
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
KR950013287B1 (en) Method of making non-viented magnetic steel strip
JPS6250529B2 (en)
US5108521A (en) Method of making non-oriented magnetic steel strips
EP0349853B1 (en) Method of producing non-oriented magnetic steel heavy plate having high magnetic flux density
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR960006025B1 (en) Process for production of oriented electrical steel sheet having excellent magnetic properties
JPH09104923A (en) Production of grain-oriented silicon steel sheet
KR100347597B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
KR100399221B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
KR100650554B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
KR20110075373A (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, method for manufacturing the same, and a slab using therefor
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
KR100701195B1 (en) A grain-oriented electrical steel sheet manufacturing method without hot band annealing
KR100345697B1 (en) A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures
KR100276294B1 (en) The manufacturing method for oriented electric steel sheet by non decarburized
KR100431608B1 (en) Manufacturing of high magnetic density grain oriented silicon steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110509

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee