KR960003003B1 - Vlsi semiconductor device - Google Patents

Vlsi semiconductor device Download PDF

Info

Publication number
KR960003003B1
KR960003003B1 KR1019920017557A KR920017557A KR960003003B1 KR 960003003 B1 KR960003003 B1 KR 960003003B1 KR 1019920017557 A KR1019920017557 A KR 1019920017557A KR 920017557 A KR920017557 A KR 920017557A KR 960003003 B1 KR960003003 B1 KR 960003003B1
Authority
KR
South Korea
Prior art keywords
semiconductor device
pattern
patterns
step difference
active region
Prior art date
Application number
KR1019920017557A
Other languages
Korean (ko)
Other versions
KR940008089A (en
Inventor
이일관
최정달
Original Assignee
삼성전자주식회사
김광호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 김광호 filed Critical 삼성전자주식회사
Priority to KR1019920017557A priority Critical patent/KR960003003B1/en
Publication of KR940008089A publication Critical patent/KR940008089A/en
Application granted granted Critical
Publication of KR960003003B1 publication Critical patent/KR960003003B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices

Abstract

The device is manufactured by a layout method capable of patterning a fine portion using a photolithography process. In the same pitch, a space between patterns in higher step difference portion of a semiconductor is larger than that between patterns in lower step difference portion, and a pattern width in higher step difference portion is smaller than that in lower step difference portion. Pref. the pattern is one of conduction wire and metallic wiring. Also the higher step difference portion is a field region of the semiconductor, and the lower step difference portion is its active region.

Description

초고집적 반도체장치Ultra-Integrated Semiconductor Device

제1도는 종래 마스크롬의 설레이아웃을 나타낸 것이고,1 shows the arrangement of a conventional mask rom,

제2도 및 제3도는 상기 제1도의 부분적인 단면도를 나타낸 것이고,2 and 3 show partial cross-sectional views of FIG.

제4도는 종래 마스크롬셀 레이아웃의 다른 예를 나타낸 것이고,4 shows another example of a conventional mask ROM cell layout.

제5도는 상기 제4도의 부분적인 단면도를 나타낸 것이고,5 is a partial cross-sectional view of FIG. 4,

제6도는 종래 마스크롬셀 레이아웃의 다른 예를 나타낸 것이고,6 shows another example of a conventional mask ROM cell layout.

제7도는 상기 제6도의 부분적인 단면도를 나타낸 것이고,7 shows a partial cross-sectional view of FIG.

제8도는 본 발명의 마스크롬의 설레이아웃을 나타낸 것이고,8 shows the layout of the mask rom of the present invention,

제9도 및 제10도는 상기 제8도의 부분적인 단면도를 나타낸 것이고,9 and 10 show partial cross-sectional views of FIG.

제11도는 본 발명의 일실시예를 나타낸 것이고,Figure 11 shows an embodiment of the present invention,

제12도는 본 발명의 다른 실시예를 나타낸 것이다.12 shows another embodiment of the present invention.

본 발명은 반도체장치에 관한 것으로, 특히 미세부분을 포토리소그래피공정을 사용하여 패터닝할 수 있는 레이아웃방법에 의해 제조되는 초고집적 반도체장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor devices, and more particularly, to an ultra-high density semiconductor device manufactured by a layout method capable of patterning fine portions using a photolithography process.

반도체장치가 고집적화되어 감에 따라 반도체장치의 도전선 및 금속배선의 피치(Pitch)가 줄어들게 되고, 도전선 및 금속배선 피치가 포토리소그래피(Photoloithography)공정의 스텝퍼(stepper) 한계이하로 줄었을 때 스탭퍼의 춧점심도(DOF ; Depth of Focus)는 반도체장치의 액티브영역을 기준으로 하므로 필드영역위에 형성된 도전선 및 금속배선들은 촛점심도의 차이에 의하여 정확하게 패터닝되지 못하고 브릿지(Bridge)등의 결함을 유발하게 된다.As semiconductor devices become more integrated, the pitch of the conductive and metal wiring of the semiconductor device decreases, and the stepper when the conductive and metal wiring pitch decreases below the stepper limit of the photoliithography process. Depth of Focus (DOF) is based on the active area of the semiconductor device, so conductive and metal wires formed on the field area cannot be accurately patterned due to the difference in the depth of focus and cause a defect such as a bridge. Done.

제1도와 제2도 및 제3도에 종래 마스크롬(Mask ROM)셀의 레이아웃 및 수직구조를 나타내었다.1 and 2 and 3 show the layout and vertical structure of a conventional mask ROM cell.

제1도는 종래 마스크롬셀의 레이아웃으로서, 종축으로 신장된 액티브영역(1)과 이를 전기적으로 격리시키기 위한 필드영역(2)이 도시되어 있고, 횡축으로 신장된 다수의 게이트전극(3)과 전기적으로 셀어레이를 연결시키기 위한 콘택영역(4) 및 금속배선(5)이 각각 도시되어 있다.FIG. 1 is a layout of a conventional mask ROM cell, in which an active region 1 extending along a longitudinal axis and a field region 2 for electrically isolating it are shown, and a plurality of gate electrodes 3 extending along the horizontal axis are electrically connected to each other. The contact region 4 and the metallization 5 for connecting the cell arrays are respectively shown.

제2도 및 제3도는 상기 제 1도의 레이아웃의 A-A´ 및 B-B´선에 따라 절단했을 때의 수직구조도로서, 제1도 및 제3도를 보면 액티브영역(24)상에 형성된 게이트전극(23)의 폭(L1)과 게이트전극과 게이트전극 사이의 간격(S1)이 필드영역(21)상에 형성된 게이트전극(23)의 폭(L2) 및 게이트 전극간 간격(S2)과 동일하게 레이아웃되어 있다.2 and 3 are vertical structures when cut along the lines AA ′ and BB ′ of the layout of FIG. 1, and FIGS. 1 and 3 show gate electrodes 23 formed on the active region 24. Width L1 and the distance S1 between the gate electrode and the gate electrode are laid out to be equal to the width L2 of the gate electrode 23 formed on the field region 21 and the distance S2 between the gate electrodes. have.

다음에 제4도 내지 제7도는 상기 종래의 마스크롬 셀레이아웃의 다른 예를 도시한 것으로, 제4도는 종축으로 신장된 액티브영역(31)과 이를 전기적으로 격리시키기 위한 필드영역(32)이 있고, 횡축으로 신장된 다수의 게이트전극(33)이 도시되어 있다.Next, FIGS. 4 to 7 show another example of the conventional mask ROM layout, and FIG. 4 shows an active region 31 extending longitudinally and a field region 32 for electrically isolating it. A plurality of gate electrodes 33 are shown extending along the horizontal axis.

제5도는 상기 제4도의 A-A´선을 따라 잘랐을 때의 수직구조도로서, 액티브영역과 필드영역(32)으로 구분된 반도체기판(30)상에 게이트전극(33)이 형성되어 있다. 참조부호 35는 상기 게이트전극(33)의 패터닝시 사용되는 포토레지스트를 나타낸다. 또한, 참조부호 D1은 포토레지스트(35)에서 액티브영역위의 게이트전극까지의 스텝퍼의 촛점심도를, D2는 포토레지스트(35)에서 필드영역위의 게이트전극까지의 촛점심도를 각각 나타낸다.FIG. 5 is a vertical structure diagram taken along the line A-A 'of FIG. 4, wherein a gate electrode 33 is formed on the semiconductor substrate 30 divided into the active region and the field region 32. FIG. Reference numeral 35 denotes a photoresist used for patterning the gate electrode 33. Reference numeral D1 denotes the depth of focus of the stepper from the photoresist 35 to the gate electrode on the active region, and D2 denotes the depth of focus from the photoresist 35 to the gate electrode on the field region.

제6도는 종축으로 신장된 액티브영역(41)과 이를 전기적으로 격리시키기 위한 필드영역(42)이 있고, 횡축으로 신장된 다수의 금속배선(45)이 되시되어 있다.6 shows an active region 41 extending along the longitudinal axis and a field region 42 for electrically isolating it, and a plurality of metal wires 45 extending along the horizontal axis.

제7도는 상기 제6도의 A-A´선으로 잘랐을때의 수직구조도로서, 액티브영역과 필드영역(42)으로 구분된 반도체기판(40)상에 층간절연막(44) 및 금속배선층(45)이 형성되어 있다. 여기서, 참조부호 46은 상기 게이트전극(43)의 패터닝시 사용되는 포토레지스트를 나타낸다. 또한, 참조부호 D3은 포토레지스트(46)에서 액티브영역까지의 스탭퍼의 촛점심도를, D4는 포토레지스트(46)에서 필드영역까지 촛점심도를 각각 나타낸다.FIG. 7 is a vertical structural view taken along line AA ′ of FIG. 6, wherein an interlayer insulating film 44 and a metal wiring layer 45 are formed on a semiconductor substrate 40 divided into an active region and a field region 42. have. Here, reference numeral 46 denotes a photoresist used for patterning the gate electrode 43. Reference numeral D3 denotes the depth of focus of the stepper from the photoresist 46 to the active region, and D4 denotes the depth of focus from the photoresist 46 to the field region.

상기 제4도 및 제6도에서 횡축으로 신장된 게이트전극(33)들 사이의 간격(S1)과 금속배선(45)들 사이의 간격(S2)이 액티브영역과 필드영역에서 모두 동일하게 레이아웃되어 있다.In FIG. 4 and FIG. 6, the spacing S1 between the gate electrodes 33 extending along the horizontal axis and the spacing S2 between the metal wirings 45 are identically arranged in both the active region and the field region. have.

상기 종래의 레이아웃방법에 있어서, 상술한 바와 같이 액티브영역과 필드영역위에 게이트 전극 및 금속 배선을 형성할때 게이트전극들간 및 금속배선들간의 간격을 동일하게 레이아웃하기 때문에 상기 게이트전극들간 및 금속배선들간의 간격이 포토리소그래피 한계 이하로 줄어들 경우, 포토리소그래피공정에 의한 패터닝시 액티브영역과 필드영역과의 단차로 인한 스탭퍼의 촛점심도차이로 인해 단차가 높은 필드영역에 형성되는 패턴이 정확히 형성되지 않고 브릿지등의 결합이 발생하여 반도체장치의 신뢰성을 저하시키는 문제가 생긴다.In the conventional layout method, when the gate electrode and the metal wiring are formed on the active region and the field region as described above, the spacing between the gate electrodes and the metal wirings is equally laid out, thus, between the gate electrodes and the metal wirings. If the spacing is reduced below the photolithography limit, the pattern formed in the field area with high step height may not be accurately formed due to the difference in the depth of focus of the stepper due to the step difference between the active area and the field area during patterning by the photolithography process. Couplings, etc., cause a problem of lowering the reliability of the semiconductor device.

본 발명은 상술한 문제를 해결하기 위한 것으로, 신뢰성 높으면서 초미세 포토리소스래피가 가능한 초고집적 반도체장치의 패턴 레이아웃방법을 제공하는데 목적이 있다. 상기 목적을 달성하기 위해 본 발명은 초고집적 반도체장치에 있어서, 동일피치내에서 상기 반도체장치의 단차가 높은 부분의 패턴들간의 간격을 단차가 낮은 부분의 패턴들간의 간격보다 크게 레이아웃하고, 상기 반도체장치의 단차가 높은 부분의 패턴의 폭을 단차가 낮은 부분의 패턴의 폭보다 작게 레이아웃하는 것을 특징으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a pattern layout method of an ultra-high density semiconductor device with high reliability and ultra-fine photo resource. In order to achieve the above object, the present invention is a super-high density semiconductor device, in which the interval between the patterns of the high stepped portion of the semiconductor device in the same pitch is larger than the interval between the patterns of the low stepped portion, the semiconductor The device is characterized in that the width of the pattern of the portion having the high step is laid out smaller than the width of the pattern of the portion having the low step.

다음에 제8도를 참조하여 본 발명에 따른 반도체의 패턴 레이아웃방법을 설명한다.Next, a pattern layout method of a semiconductor according to the present invention will be described with reference to FIG.

제8도는 NAND형 마스크롬셀어레이의 레이아웃을 도시한 것으로, 종축으로 신장된 액티브영역(51)과 이를 전기적으로 격리시키기 위한 필드영역(52), 횡축으로 신장된 다수의 게이트전극(53), 전기적으로 셀어레이를 형성하기 위한 콘택영역(54) 및 금속배선(55)으로 구성된다.8 shows a layout of a NAND type mask romsel array, in which an active region 51 extending longitudinally, a field region 52 for electrically isolating it, a plurality of gate electrodes 53 extending horizontally, It is composed of a contact region 54 and a metal wiring 55 for electrically forming a cell array.

상기 제8도의 레이아웃을 도면중의 A-A´선 및 B-B´선으로 잘랐을 때의 수직구조를 제9도 및 제10에 나타내었다. 제9도 및 제10도에서 참조부호 60은 반도체기판, 61은 액티브영역, 62는 필드영역, 63은 게이트절연막, 64는 게이트전극을 각각 나타낸다.9 and 10 show the vertical structures when the layout of FIG. 8 is cut along the lines A-A 'and B-B' in the figure. In FIGS. 9 and 10, reference numeral 60 denotes a semiconductor substrate, 61 an active region, 62 a field region, 63 a gate insulating film, and 64 a gate electrode.

제8도와 제10도에 도시한 바와 같이 필드영역위의 게이트전극(53,64)의 폭(L4)은 액티브영역위의 게이트전극(53,64)의 폭(L3)보다 작게 레이아웃되고, 또한 필드영역위의 게이트전극(53,64)들간의 간격(S4)은 액티브영역위의 게이트전극(53,64)들간의 간격(S3)보다 크게 레이아웃되어 있다.As shown in FIG. 8 and FIG. 10, the width L4 of the gate electrodes 53 and 64 on the field region is laid out smaller than the width L3 of the gate electrodes 53 and 64 on the active region. The spacing S4 between the gate electrodes 53 and 64 on the field region is laid out larger than the spacing S3 between the gate electrodes 53 and 64 on the active region.

상기와 같이 게이트전극패턴을 레이아웃함으로써 액티브영역(51,61)과 필드영역(52,62)과의 단차에 의해 발생하는 포토리소그래피공정시의 스탭퍼의 촛점심도차이로 인해 유발되는 필드영역위의 패턴간의 브릿지의 생성을 방지할 수 있으므로 반도체장치의 신뢰성을 높일 수 있는 장점이 있다.By laying out the gate electrode pattern as described above, the pattern on the field region caused by the difference in the depth of focus of the stepper during the photolithography process caused by the step between the active regions 51 and 61 and the field regions 52 and 62. Since it is possible to prevent the formation of bridges between the liver, there is an advantage that can increase the reliability of the semiconductor device.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention.

제11도 및 제12도는 상기 제8도의 부분적인 평면도를 나타낸 것으로, 제11도는 게이트전극 패턴 레이아웃, 제12도는 금속배선 패턴 레이아웃을 각각 나타낸다.11 and 12 show partial plan views of FIG. 8, FIG. 11 shows a gate electrode pattern layout, and FIG. 12 shows a metal wiring pattern layout.

제11도에서 액티브영역이 참조부호 71, 필드영역이 참조부호 72, 폴리실리콘 또는 폴리사이드(Polycide)로 이루어진 게이트전극이 참조부호 73으로 도시되어 있다.In FIG. 11, an active region 71 is shown, a field region 72, and a gate electrode made of polysilicon or polycide is indicated by 73.

상기 게이트전극패턴의피치가 1㎛의 경우, 430nm∼440nm의 노광파장을 갖는 g-라인 스텝퍼를 사용하여 포토레지스트를 1.17㎛의 두께로 도포하고, 노광시간을 340㎳∼400㎳로 하고 스텝퍼의 램프강도(Lamp intensity)를 49W로 하여 포토리소그래피공정을 행하면, 마스크상에서 게이트전극패턴의 라인간격(line dimension)과 게이트전극패턴들 사이의 스페이스간격(space dimension)이 동일하게 L5=L6=0.5㎛와 S5=S6=0.5㎛로 레이아웃되며 이때 촛점심도 마진은 보통 ±0.3이 된다. 여기에서, 웨이퍼자체의 표면의 거친정도가 크거나 스텝퍼의 렌즈와 웨이퍼사이에 거리의 차가 생기거나 각각 웨이퍼, 또는 웨이퍼내의 각 부분에서의 포토레지스트의 두께에 차이가 존재하거나 스텝퍼의 램프강도가 변할 경우 상기한 촛점심도 마진(±0.3)으로는 브릿지등의 결함이 발생한다.When the pitch of the gate electrode pattern is 1 mu m, the photoresist is applied to a thickness of 1.17 mu m using a g-line stepper having an exposure wavelength of 430 nm to 440 nm, and the exposure time is set to 340 mu m to 400 mu m. When the photolithography process is performed with a lamp intensity of 49 W, the line dimension of the gate electrode pattern and the space dimension between the gate electrode patterns are the same on the mask L5 = L6 = 0.5 µm. And S5 = S6 = 0.5㎛, with the depth of focus margin usually being ± 0.3. Here, the roughness of the surface of the wafer itself may be large, or there may be a difference in distance between the lens of the stepper and the wafer, or there may be a difference in the thickness of the photoresist at the wafer, or at each part of the wafer, or the lamp intensity of the stepper may change. In this case, a defect such as a bridge occurs with the depth of focus margin (± 0.3).

따라서 제11도에 도시한 바와 같이 액티브영역(71)위의 게이트전극패턴의 라인간격 및 게이트전극패턴들 사이의 스페이스간격은 모두 0.5㎛로 동일하게 레이아웃하고, 필드영역(72)위의 게이트전극패턴들 사이의 스페이스간격은 0.55㎛로 하고, 게이트전극패턴의 라인간격은 0.45㎛로 레이아웃하면 촛점심도 마진은 ±0.4가 되어 상기한 포토레지스트공정중의 여러가지 변수들에 대해 마진이 ±0.1 더 생기므로 단차가 높은 필드영역상에 브릿지등의 결함없이 포토레지스트공정이 가능하게 된다.Accordingly, as shown in FIG. 11, the line spacing between the gate electrode patterns on the active region 71 and the space spacing between the gate electrode patterns are all equally 0.5 μm, and the gate electrodes on the field region 72 are equally laid out. If the space spacing between the patterns is 0.55 占 퐉 and the line spacing of the gate electrode pattern is 0.45 占 퐉, the depth of focus margin is ± 0.4, resulting in an additional margin of ± 0.1 for the various variables in the above photoresist process. Therefore, the photoresist process can be performed on the field area with high step height without defects such as bridges.

제12도는 금속배선의 레이아웃으로, 액티브영역은 참조부호 81, 필드영역은 참조부호 82, 알루미늄 또는 배리어메탈(Barrier metal)로 이루어진 금속배선은 참조부호 83으로 도시되어 있다.FIG. 12 shows a layout of the metal wiring, where the active region is indicated by reference numeral 81, the field region by reference numeral 82, and the metal wiring composed of aluminum or barrier metal is indicated by reference numeral 83.

상기 금속배선패턴의 피치가 1.2㎛일 경우, 430nm∼440nm의 노광파장을 갖는 g-라인 스텝퍼를 사용하여 포토레지스트를 1.42㎛두께로 도포하고, 노광시간을 340㎱∼400㎱로 하고 스텝퍼의 램프강도를 492W로 하여 포토리소그래피공정을 진행하면 마스크상에서 금속배선패턴의 라인간격과 금속배선패턴들 사이의 스페이스간격이 동일하게 L7=L8=0.6㎛와 S7=S8=0.6㎛로 레이아웃되며, 이때 촛점심도 마진은 보통 ±0.3이 된다.When the pitch of the metal wiring pattern is 1.2 占 퐉, the photoresist is applied to a thickness of 1.42 占 퐉 using a g-line stepper having an exposure wavelength of 430 nm to 440 nm, and the exposure time is set to 340 ㎱ to 400 ㎱ and the stepper lamp When the photolithography process is performed with the intensity of 492W, the space spacing between the metal wiring patterns and the line spacing between the metal wiring patterns is the same as L7 = L8 = 0.6 μm and S7 = S8 = 0.6 μm on the mask. Depth margin is typically ± 0.3.

여기에서도 웨이퍼자체의 표면의 거친정도가 크거나 스텝퍼의 렌즈와 웨이퍼사이에 거리의 차가 생기거나 각각의 웨이퍼, 또는 웨이퍼내의 각 부분에서의 포토레지스트의 두께에 차이가 존재하거나 스텝퍼의 램프강도가 변할 경우 상기한 촛점심도 마진(±0.3)으로는 브릿지등의 결함이 발생한다.Here too, the roughness of the surface of the wafer itself may be large, or there may be a difference in distance between the lens of the stepper and the wafer, or there may be a difference in the thickness of the photoresist on each wafer or each part of the wafer, or the lamp intensity of the stepper may change. In this case, a defect such as a bridge occurs with the depth of focus margin (± 0.3).

따라서 제12도에 도시한 바와 같이 액티브영역(81)위의 금속배선패턴의 라인간격과 금속배선패턴들 사이의 스페이스간격은 모두 0.6㎛으로 레이아웃하고, 필드영역(82)위의 금속배선패턴의 라인간격은 0.55㎛, 금속배선패턴들 사이의 스페이스간격은 0.65㎛로 레이아웃하면, 촛점심도가 ±0.4가 되어 상기한 포토리소그래피공정중에 발생할 수 있는 변수에 대해 마진이 ±0.1 더 생기므로 단차가 높은 필드영역상에 브릿지 등의 결함이 생기는 일이 없이 포토리소그래피공정이 가능하게 된다.Accordingly, as shown in FIG. 12, the line spacing between the metal wiring pattern on the active region 81 and the space spacing between the metal wiring patterns are all laid out at 0.6 占 퐉, and the metal wiring pattern on the field region 82 is laid out. If the line spacing is 0.55㎛, and the space spacing between the metal wiring patterns is 0.65㎛, the depth of focus becomes ± 0.4, resulting in a margin of ± 0.1 for the variable that may occur during the photolithography process. The photolithography process can be performed without defects such as bridges and the like on the field region.

이상 상술한 바와 같이 본 발명에 의하면, 반도체장치 제조공정중, 포토리소그래피공정에 있어서 스텝퍼의 리소그래피한계를 극복할 수 있으며, 이에 따라 포토리소그래피공정시 마진이 커지게 되므로 칩의 신뢰성이 향상되어 불량율을 줄일 수 있으며, 또한 패턴크기를 포토리소그래피가 가능한 치수로 줄일수 있으므로 전체 칩사이즈를 줄일 수 있는 효과가 있다.As described above, according to the present invention, the lithography limitation of the stepper can be overcome in the photolithography process during the semiconductor device manufacturing process. As a result, the margin is increased during the photolithography process, thereby improving the reliability of the chip and reducing the defective rate. In addition, since the pattern size can be reduced to a dimension capable of photolithography, the overall chip size can be reduced.

Claims (4)

동일피치내에서 상기 반도체장치의 단차가 높은 부분의 패턴들간의 간격을 단차가 낮은 부분의 패턴들간의 간격보다 크게 레이아웃하고, 상기 반도체장치의 단차가 높은 부분의 패턴의 폭을 단차가 낮은 부분의 패턴의 폭보다 작게 레이아웃하는 것을 특징으로 하는 초고집적 반도체장치.Within the same pitch, the gap between the patterns of the high stepped portion of the semiconductor device is laid out larger than the gap between the patterns of the low stepped portion, and the width of the pattern of the high stepped portion of the semiconductor device is An ultra-high density semiconductor device, characterized in that the layout is smaller than the width of the pattern. 제1항에 있어서, 상기 패턴은 반도체장치의 도전선 또는 금속배선중의 어느 하나임을 특징으로 하는 초고집적 반도체장치.The ultra-high density semiconductor device according to claim 1, wherein the pattern is any one of a conductive line and a metal wiring of the semiconductor device. 제1항에 있어서, 상기 단차가 높은 부분은 반도체장치의 필드영역위인 것을 특징으로 하는 초고집적 반도체장치.The ultra-high density semiconductor device according to claim 1, wherein the high step portion is on a field region of the semiconductor device. 제1항에 있어서, 상기 단차가 낮은 부분은 반도체장치의 액티브영역위인 것을 특징으로 하는 초고집적 반도체장치.The ultra-high density semiconductor device according to claim 1, wherein the low step portion is on an active region of the semiconductor device.
KR1019920017557A 1992-09-25 1992-09-25 Vlsi semiconductor device KR960003003B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920017557A KR960003003B1 (en) 1992-09-25 1992-09-25 Vlsi semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920017557A KR960003003B1 (en) 1992-09-25 1992-09-25 Vlsi semiconductor device

Publications (2)

Publication Number Publication Date
KR940008089A KR940008089A (en) 1994-04-28
KR960003003B1 true KR960003003B1 (en) 1996-03-02

Family

ID=19340130

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920017557A KR960003003B1 (en) 1992-09-25 1992-09-25 Vlsi semiconductor device

Country Status (1)

Country Link
KR (1) KR960003003B1 (en)

Also Published As

Publication number Publication date
KR940008089A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US4916514A (en) Integrated circuit employing dummy conductors for planarity
US6448591B1 (en) Metallization line layout
US7365431B2 (en) Semiconductor device having multilayer structure and method for manufacturing thereof
US6072242A (en) Contact structure of semiconductor memory device for reducing contact related defect and contact resistance and method for forming the same
EP0182222B1 (en) Semiconductor integrated circuit device constructed by polycell technique
JP3420089B2 (en) Electronic device, semiconductor device, and electrode forming method
JP3708037B2 (en) Semiconductor device
US7067412B2 (en) Semiconductor device and method of manufacturing the same
JPS62276552A (en) Pattern forming mask and method for fabricating electronic device by using it
KR960003003B1 (en) Vlsi semiconductor device
KR100410812B1 (en) Method for fabricating semiconductor device
JP2950275B2 (en) Partial batch exposure mask and method of forming partial batch exposure pattern
US5190894A (en) Method of forming a wiring layer of a semiconductor device
KR0171919B1 (en) Exposure mask
KR0148617B1 (en) Photoresist check patterns in highly integrated circuits having multi-level interconnect layers
JPS60140720A (en) Semiconductor device and manufacture thereof
KR100268516B1 (en) Eguipment for fabricating of semiconductor device
JPS6148779B2 (en)
KR0122516B1 (en) Method for manufacturing metal wiring contact
JP2762844B2 (en) Semiconductor device
KR100431817B1 (en) Method for fabricating capacitor of semiconductor device to prevent pattern from collapsing
KR100269632B1 (en) A method fabricating multi-interconnenction line
JPH03108359A (en) Wiring structure and formation method therefor
CN113589638A (en) Mask layout and semiconductor structure
JPH07122632A (en) Semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080303

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee