KR960002260B1 - Treatment method for waste water including fluorine - Google Patents

Treatment method for waste water including fluorine Download PDF

Info

Publication number
KR960002260B1
KR960002260B1 KR1019930012855A KR930012855A KR960002260B1 KR 960002260 B1 KR960002260 B1 KR 960002260B1 KR 1019930012855 A KR1019930012855 A KR 1019930012855A KR 930012855 A KR930012855 A KR 930012855A KR 960002260 B1 KR960002260 B1 KR 960002260B1
Authority
KR
South Korea
Prior art keywords
rare earth
fluorine
added
wastewater
fluoride
Prior art date
Application number
KR1019930012855A
Other languages
Korean (ko)
Other versions
KR950003179A (en
Inventor
홍영호
노재호
우상모
박상호
Original Assignee
주식회사엘지금속
박수환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사엘지금속, 박수환 filed Critical 주식회사엘지금속
Priority to KR1019930012855A priority Critical patent/KR960002260B1/en
Publication of KR950003179A publication Critical patent/KR950003179A/en
Application granted granted Critical
Publication of KR960002260B1 publication Critical patent/KR960002260B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The waste water treatment is performed by (A) adding to waste water a soluble rare earth compound in an amount 2-10 times the chemical equivalent which is needed to combine with fluorine and adjusting the pH at 5-10 ; (B) separating solid and liquid portions, while discharging fluorine-free water and obtaining the sludge of rare earth fluoride and rare earth hydroxide ; (C) adding inorganic acid to the sludge to adjust the pH at 2.5-5.5 and dissolving rare earth hydroxide selectively ; and (D) recovering rare earth-containing liquid, which is recycled to the process, and rare earth fluoride in a solid form after solid-liquid separation.

Description

불소가 함유된 폐수의 처리방법Treatment method of waste water containing fluorine

제1도는 불소기 함유된 폐수의 처리 공정도.1 is a process chart of wastewater containing fluorine groups.

제2도는 선택적 용해 공정인 PH 조정 공정을 거치기전과 후의 X 선회절 분석 결과의 피크(Peak)로서, (a)는 선택적 용해 공정전의 상태도 (b)는 선택적 용해 공정후의 상태도.2 is a peak of the X-ray diffraction analysis results before and after the PH adjustment process, which is a selective dissolution process, wherein (a) is a state diagram before the selective dissolution process, and (b) is a state diagram after the selective dissolution process.

본 발명은 불소가 함유된 폐수의 처리에 관한 것으로, 보다 상세하게는 용존불소이온을 함유한 폐수에 가용성 희토류화합물을 첨가하여 불소이온을 고효율로서 저농도까지 제거함과 함께 이때 사용한 희토류를 회수하여 재사용함으로서 경제성을 갖는 폐수의 처리방법에 관한 것이다.The present invention relates to the treatment of wastewater containing fluorine, and more particularly, by adding soluble rare earth compounds to wastewater containing dissolved fluorine ions to remove fluorine ions to low concentrations with high efficiency and to recover and reuse rare earths used at this time. The present invention relates to a method for treating wastewater having economic feasibility.

F(불소)를 함유하고 있는 폐수의 반도체 제조공장, 금속표면 처리공장, 세라믹스 제조공장 등 불소화합물을 사용하는 모든 공장에서 배출되는데 환경규제가 점진적으로 강화될 것으로 볼때 불소를 효과적으로 저농도까지 제거할 수 있는 방법의 개발이 요구되고 있다.It is emitted from all factories that use fluorine compounds such as semiconductor manufacturing plant, metal surface treatment plant, ceramics manufacturing plant, etc. of wastewater containing F (fluorine), which can effectively remove fluorine at low concentrations as environmental regulations are gradually strengthened. Development of a method is required.

이와 관련하여 가장 일반적인 불소제거방법으로서는 Ca 화합물, Al 화합물을 폐수중에 가하여 불소이온을 불용화하여 고액분리하는 방법이 일본공개특허 소60-117호 및 일본공개특허 소62-125894호에 제안되고 있는데 이 방법은 약품사용량 및 잔사(Sludge) 발생량이 많으며 또한 Ca 화합물로서 불소를 제거시 이론적으로 최대 8㎎/ℓ정도의 불소이온이 용액중에 잔류하므로 불소를 저농도로 제거시는 부적합하다.In this regard, the most common method for removing fluorine has been proposed in Japanese Patent Laid-Open No. 60-117 and Japanese Patent Laid-Open No. 62-125894 by adding a Ca compound or an Al compound to waste water to insolubilize fluorine ions. This method is not suitable for removing fluorine at low concentration because the amount of chemicals used and the amount of sludge generated are high, and fluorine ions of up to 8mg / l are theoretically retained in the solution when fluoride is removed as a Ca compound.

최근에는 희토류를 이용하여 용존불소를 제거하는 방법으로서는 일본공개특허 평3-186393이 있는데 이는 희토류화합물과 알칼리토금속화합물 및 알칼리금속화합물 등의 수용성 조성물을 불소가 함유된 폐수에 가해서 불소이온을 불용화한 후 고액분리하는 것을 특징으로 하고 있다.Recently, as a method of removing dissolved fluorine using rare earth, Japanese Patent Application Laid-Open No. 3-186393 discloses a method of insoluble fluorine ion by adding a water-soluble composition such as rare earth compound, alkaline earth metal compound, and alkali metal compound to waste water containing fluorine. After the solid-liquid separation is characterized in that.

그러나 이 방법 또한 여러가지 문제점을 가지고 있는데 알칼리토금속과 알칼리금속이 첨가되어짐으로 해서 처리 후 잔사의 발생량이 많아지며 불소와 결합하여 생성될 수 있는 BaF2, LiF, MgF2, NaF 화합물의 용해도가 커서 폐기물 처리공장, 폐기물 매립 처리지 등에서 불소가 함유된 폐수가 유출될 가능성이 있으며 첨가되는 량 만큼 경제적으로도 불리하며 또한 이 방법으로는 불소를 저농도로 제거할 수가 없다.However, this method also has various problems. The addition of alkaline earth metals and alkali metals increases the amount of residues after treatment, and the high solubility of BaF2, LiF, MgF2, NaF compounds that can be formed by combining with fluorine causes waste treatment plants. For example, wastewater containing fluorine may leak from waste landfills, and it may be economically disadvantageous as the amount of fluorine is added. Also, this method cannot remove fluorine at low concentrations.

따라서 알카리금속화합물이나 알카리토금속화합물의 인위적 첨가 없이 불소를 보다 효율적으로 제거할 수 있는 방안이 필요하다.Therefore, there is a need for a method for more efficiently removing fluorine without artificially adding alkali metal compounds or alkaline earth metal compounds.

또한 상기와 같은 침전법이 아닌 흡착법으로 불소를 제거하는 방법이 한국특허 89-3882에 제안되었으나, 이 흡착식 제거법은 사용하는 흡착제가 불용성희토류화합물이므로 원료로부터 희토류수산화물의 제조비용이 고가이고, 투입되는 량이 과량이며, 이온교환작용이 산성의 용액에서만 이루어진다는 단점이 있으며 또한 탈착시 이온교환 반응에 의존해야 하기 때문에 반응속도가 느리다.In addition, the method of removing fluorine by adsorption method other than the above precipitation method has been proposed in Korean Patent 89-3882. However, this adsorption removal method is expensive because the adsorbent used is an insoluble rare earth compound. The amount is excessive, and the ion exchange action is performed only in an acidic solution, and the reaction rate is slow because it has to rely on the ion exchange reaction when desorbed.

뿐만 아니라 이 방법을 적용시 기존설비를 사용하지 못하며 대용량의 흡착제가 담긴 다수의 용기에서 단속적인 작업을 해야하는 번거로움이 발생되며, 생성된 알카리불화물을 Ca(OH)2로 처리시 상당히 많은 량의 CaF2 잔사가 발생하며 Ca(OH)2로 처리시 용액속에 잔류하는 F가 항상 8㎎/ℓ정도의 농도 이상으로 존재하게 된다는 단점이 있다.In addition, this method does not use the existing equipment, it is cumbersome to intermittently work in a number of vessels containing a large amount of adsorbent, and when treating the generated alkali fluoride with Ca (OH) 2 CaF2 residue occurs, and when treated with Ca (OH) 2 , there is a disadvantage that F remaining in the solution is always present at a concentration of about 8 mg / l or more.

이에 본 발명은 종래의 문제점을 해결하기 위해 인출한 것으로, 용존불소의 폐수에 가용성 희토류염의 용액을 첨가하여 고효율로 불소이온을 제거함과 함께 이때 사용했던 희토류 원소를 재사용함으로서 경제적으로도 유리한 폐수의 처리방법을 제공하고자 하는 데 그 목적이 있다.Therefore, the present invention is drawn to solve the conventional problems, and by adding a solution of soluble rare earth salt to the dissolved fluorine waste water to remove fluorine ions with high efficiency, and to treat wastewater economically advantageous by reusing the rare earth elements used at this time. The purpose is to provide a method.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 불소가 함유된 폐수에 가용성 희토류염의 용액을 불소와 결합하는 화학양론적인 반응당량의 2-10배 첨가하고, PH 조절제를 가하여 PH가 5-10이 되게하는 제1공정과, 제1공정이 끝난 용액을 고액분리하여 저농도 불소를 함유한 액체는 방류하고 희토불화물과 희토수산화물은 슬러지(Sludge)로 하는 제2공정과, 상기한 희토불화물과 희토수산화물로 분리된 슬러지에 무기산을 첨가하여 PH를 조절하여 희토수산화물을 선택적으로 용해한 후 고액분리하여 희토류를 포함한 액체는 회수하여 재사용하고, 희토불화물은 고체로 회수하는 공정으로 이루어진다.The present invention relates to a first step of adding 2-10 times the stoichiometric reaction equivalent of soluble rare earth salt solution to fluorine-containing wastewater and adding a PH regulator so that the pH is 5-10. The second step is to discharge the liquid after the process is solid-liquid, to discharge the liquid containing low concentration of fluorine, and to make the rare earth fluoride and the rare earth hydroxide into sludge, and to add the inorganic acid to the sludge separated from the rare earth fluoride and the rare earth hydroxide. The pH is adjusted to selectively dissolve the rare earth hydroxide, and then the solid-liquid separation is performed to recover the liquid containing the rare earth and reuse it, and to recover the rare earth fluoride as a solid.

고체로 회수된 희토불화물은 재처리하여 사용된다.The rare earth fluoride recovered as a solid is used after reprocessing.

제1도는 불소가 함유된 폐수의 본 발명 처리공정도로서, 이에따라 구체적으로 설명한다.1 is a process chart of the present invention for treating wastewater containing fluorine, which will be described in detail accordingly.

불소가 함유된 폐수에 가용성 희토류화합물인 희토류염화물을 불소와 결합하는 화학반응 당량의 2-10배 첨가하는데 바람직하게는 3배 이상 첨가하여 용액중 불소를 1㎎/ℓ이하가 되게한다.To the fluorine-containing wastewater, a rare earth chloride, a soluble rare earth compound, is added 2-10 times the chemical reaction equivalent of fluorine, preferably 3 times or more, so that the fluorine in the solution is 1 mg / l or less.

이때 가성용 희토류염은 예로서 CeCl3, LaCl3, NdCl3, PrCl3을 들수 있으나 이에 국한하지 않고 화학주기율 표상 란탄계에 속하는 희토류를 포함한 염화물, 황화물, 질화물의 사용이 가능함으로 상기 염화물에 국한하지 않는다.Caustic rare earth salts include, for example, CeCl 3 , LaCl 3 , NdCl 3 , PrCl 3 , but are not limited thereto. Chlorides, sulfides and nitrides, including rare earths belonging to the lanthanide series of the chemical periodic rate, are limited to the above chlorides. I never do that.

이와같이 희토류염화물을 첨가한 후 교반장치를 이용하여 PH를 조성하는데 이때 상기한 폐수의 액성이 경우에 따라서 강산성이나 강알카리성일 경우 PH를 5-10, 바람직하게는 6-8로 조정한다.In this way, after adding rare earth chloride, the pH is formed by using a stirring apparatus. In this case, the pH of the wastewater is adjusted to 5-10, preferably 6-8, in case of strong acidity or strong alkalinity.

이때 PH 조정은 무기시약한 가성소다, 암모니아, 수산화칼슘, 황산, 염산, 질산 등으로 조절한다.At this time, the pH adjustment is adjusted with inorganic reagent caustic soda, ammonia, calcium hydroxide, sulfuric acid, hydrochloric acid, nitric acid and the like.

상기한 공정을 행한 후 통상적인 기술인 여과, 경사, 원심분리, 또는 탈수 등과 같은 공정인 고액분리 공정을 통하여 희토불화물 및 희토수산화물의 고체와 불소가 1㎎/ℓ이하의 농도로 제거된 액체로 분리되며, 액체는 방류한다.After performing the above process, the solid and fluorine of rare earth fluoride and rare earth hydroxide are separated into a liquid in which concentrations of fluorine and rare earth hydroxide are removed at a concentration of 1 mg / l or less through a conventional technique such as filtration, decantation, centrifugation, or dehydration. And the liquid is discharged.

이와같이 고액분리 공정이 끝난 고체인 희토불화물과 희토수산화물의 혼합물 중에서 희토수산화물을 선택적으로 용해하여 희토류이온을 회수하여 재사용하는데, 회수 공정은 상기한 고체의 슬러지를 물에 현탁시키고 교반을 통해 희토불화물과 희토수산화물을 균일하게 풀리게한 뒤 무기산(염산, 황산, 질산)을 사용 PH를 조정하여 희토수산화물을 선택적으로 용해 시킨다.As such, the rare earth hydroxide is selectively dissolved in a mixture of the rare earth fluoride and the rare earth hydroxide, which is the solid-liquid separation process, to recover and reuse the rare earth ions. The recovery process suspends the sludge of the solid in water and stirs the rare earth fluoride by stirring. After the rare earth hydroxide is uniformly released, the rare earth hydroxide is selectively dissolved by adjusting the pH using inorganic acids (hydrochloric acid, sulfuric acid, nitric acid).

이때 PH 조정은 2.5-5.5로 하며, 바람직하게는 3.5-4.5가 되게한다.At this time, the pH adjustment is 2.5-5.5, preferably 3.5-4.5.

PH가 2.5 이하 일때는 불화물에 있는 불소가 다시 용액중으로 용해된 가능성이 있으며, PH가 5.5 이상일때는 수산화물이 용액으로 용해되기 어렵기 때문에 바람직하지 못하다.When the pH is 2.5 or less, the fluorine in the fluoride may be dissolved in the solution again, and when the pH is 5.5 or more, the hydroxide may not be easily dissolved in the solution.

이와같이 희토류불화물과 용해된 희토류가 들어있는 용액을 고액분리하여 액체로 회수된 희토류용액은 불소제거용으로 다시 사용하고, 고체로 분리된 희토불화물은 재처리하여 사용할 수 있다.As such, the rare earth solution recovered as a liquid by solid-liquid separation of the rare earth fluoride and the rare earth dissolved therein may be used again for fluorine removal, and the rare earth fluoride separated as a solid may be reprocessed.

다음은 실시예에 따라 설명한다.The following is described according to the embodiment.

[실시예 1]Example 1

불소화합물을 사용하는 공장에서 배출되는 폐수 500㎖(불소농도 25.0㎎/ℓ, PH=2.0)에 가용성 희토화합물인 희토류염화물을 화학반응당량의 1-10배를 첨가하였다.Soluble rare earth chloride, a soluble rare earth compound, was added 1-10 times the chemical reaction amount to 500 ml of wastewater discharged from a plant using a fluorine compound (fluorine concentration 25.0 mg / l, PH = 2.0).

첨가되어지는 희토류화합물은 희토류염화물이며 용액의 조성은 주성분이 CeCl3183.5g/ℓ, LaCl386.4g/ℓ, NdCl354.1g/ℓ, PrCl312.0g/ℓ로 구성되어지며 소량의 NH4Cl, CaCl2, BaCl2로 구성되어 진다.Which is added to the rare earth compound is a rare earth chloride solution, the composition of the main component is the CeCl 3 183.5g / ℓ, LaCl 3 86.4g / ℓ, NdCl 3 54.1g / ℓ, PrCl becomes consists of 3 12.0g / ℓ small amount of NH 4 It is composed of Cl, CaCl 2 and BaCl 2 .

희토류용액이 첨가되어진 후 일반적인 교반장치를 사용하여 교반하고 용액의 PH를 6.5가 되도록 알카리용액, 바람직하게는 가성소다를 첨가 하였다.After the rare earth solution was added, the mixture was stirred using a general stirring apparatus, and an alkaline solution, preferably caustic soda, was added so that the pH of the solution was 6.5.

PH를 조정한 뒤 반응생성물인 희토류불화물과 희토류수산화물을 통상적인 고액분리 장치를 사용하여 분리 하였다.After adjusting the pH, the rare earth fluoride and rare earth hydroxides were separated using a conventional solid-liquid separator.

이때 고액분리한 여액(액체로서 방류)의 용존불소이온의 농도는 이온 meter를 이용하는 표준법, SRANDARD METHODS for the examination of water & waste water APHA(american public health association), AWWA(american water works association), WPCF(water pollution control fedcratio), 16th edition을 사용하여 측정 하였다.At this time, the concentration of dissolved fluorine ion in the filtrate (liquid discharged) of the solid-liquid separation was measured using an ionic meter, SRANDARD METHODS for the examination of water & waste water APHA (American public health association), AWWA (American water works association), WPCF (water pollution control fedcratio), measured using a 16th edition.

각 당량별 첨가에 의한 결과는 [표1]나타내었다.The result by the addition of each equivalent is shown in [Table 1].

[표 1]TABLE 1

당량별 첨가량에 따른 불소이온의 농도Concentration of Fluoride Ion According to Addition Amount

표 1의 결과를 살펴보면 당량의 1배에서 2배 사이는 불소가 6-13㎎/ℓ 정도의 농도로 용액에 존재하고 있으며 2배 이상의 첨가량에서 불소이온의 농도가 급격히 감소됨을 알 수 있다.Looking at the results of Table 1 it can be seen that between 1 and 2 times the equivalent of fluorine is present in the solution at a concentration of about 6-13 mg / L, and the concentration of fluorine ion is drastically reduced at the added amount of 2 or more times.

상기 결과에 따라, 불소를 저농도로 제거시는 화학반응 당량의 2배 이상, 바람직하게는 3배 이상 첨가되어지는 것을 본 발명의 특징으로 한다.According to the above results, it is a feature of the present invention that at least two times, preferably three times or more, of chemical equivalents are added when fluorine is removed at low concentrations.

[실시예 2]Example 2

불소화합물을 사용하는 공장에서 배출하는 폐수 500㎖(불소농도 25.0㎎/ℓ, PH=4.5)에 가용성 희토화합물인 희토류염화물을 화학반응당량의 2-4배를 첨가 하였다.Soluble rare earth chloride, a soluble rare earth compound, was added 2-4 times the chemical reaction amount to 500 ml of wastewater discharged from the plant using fluorine compounds (fluorine concentration 25.0 mg / l, PH = 4.5).

참가되어지는 희토류화합물은 희토류염화물이며 용액의 조성은 주성분이 CeCl3135.0g/ℓ, LaCl364.0g/ℓ, NdCl340.0g/ℓ, PrCl38.3g/ℓ로 구성되어지며 소량의 NH4Cl, CaCl2, BaCl2로 구성되어 진다.Rare earth compounds that are participating is a rare-earth chloride solution, the composition of the main component is the CeCl 3 135.0g / ℓ, LaCl 3 64.0g / ℓ, NdCl 3 40.0g / ℓ, PrCl becomes consists of 3 8.3g / ℓ small amount of NH 4 It is composed of Cl, CaCl 2 and BaCl 2 .

희토류용액이 첨가되어진 후 일반적인 교반장치를 사용하여 교반하고 용액의 PH를 6.5-10.5가 되도록 알카리용액, 바람직하게는 가성소다를 첨가 하였다.After the rare earth solution was added, the mixture was stirred using a general stirring apparatus, and an alkaline solution, preferably caustic soda, was added so that the pH of the solution was 6.5-10.5.

PH를 조정한 뒤 반응생성물인 희토류불화물과 희토류수산화물을 통상적인 고액분리 장치를 사용하여 분리 하였다.After adjusting the pH, the rare earth fluoride and rare earth hydroxides were separated using a conventional solid-liquid separator.

이때, 고액분리한 여액의 용존불소이온의 농도는 실시예 1과 같은 방법으로 분석하였고 용액중의 희토류이온은 ICP(ion xpupled plasma)를 이용하여 분석하였다.At this time, the concentration of dissolved fluorine ions of the filtrate separated from the solid-liquid solution was analyzed in the same manner as in Example 1 and the rare earth ions in the solution was analyzed using ICP (ion xpupled plasma).

당량별로 PH를 변화하면서 용존불소를 제거한 후의 방류수의 불소와 희토류이온의 농도는 (표 2)에 나타내었다.The concentrations of fluorine and rare earth ions in the effluent after removing the dissolved fluorine while changing the pH by equivalent weight are shown in (Table 2).

[표 2]TABLE 2

당량 및 PH조절에 따른 제거효과Elimination Effect by Equivalent and PH Control

(표 2)의 결과를 살펴보면 Ln(란타나이드) 이온은 상기 PH 범위에서는 거의 희토류불화물과 같이 희토류수산화물로 침전이 되어 용액에서는 0.3-0.7㎎/ℓ으로되는 반면에 용존불소의 경우는 PH=8.5 이상의 경우는 상당량이 액중에 남아있기 때문에 희토류용액을 첨가한 뒤 PH를 8.5 이상으로 올려서는 않된다.Looking at the results of Table 2, Ln (lanthanide) ions are precipitated with rare earth hydroxides, such as rare earth fluorides in the PH range, and are 0.3-0.7 mg / l in solution, whereas PH = 8.5 in the case of dissolved fluorine. In this case, since the considerable amount remains in the liquid, the pH should not be raised above 8.5 after the addition of the rare earth solution.

상기 결과에 따라, 불소를 저농도로 제거하기 위해서는 희토류화합물을 화학반응 당량의 2배 이상, 바람직하게는 3배 이상을 첨가하고 난 뒤, PH 조정공정에서 알카리로 PH를 조정시에 PH를 5-10까지, 바람직하게는 PH6-8로 조정한 뒤 고액분리하여 여액을 방류하는 것을 특징으로 한다.According to the above results, in order to remove fluorine at low concentration, the rare earth compound is added at least two times, preferably at least three times the equivalent of the chemical reaction, and then the pH is adjusted when adjusting the pH with alkali in the pH adjustment step. Up to 10, preferably adjusted to PH6-8 characterized in that the filtrate is discharged by solid-liquid separation.

[실시예 3]Example 3

용존불소가 함유된 폐수와 첨가되는 희토류화합물의 조성과 농도는 실시예 2와 등일하다.The composition and concentration of the wastewater containing dissolved fluorine and the rare earth compound added are the same as in Example 2.

폐수 1,000㎖에 가용성 희토화합물인 희토류염화물을 반응당량의 4배를 첨가하고 희토류용액이 첨가되어진 후 일반적인 교반장치를 사용하여 교반하고 용액의 PH를 7.0이 되도록 알카리용액, 바람직하게는 가성소다를 첨가하였다.To 1,000 ml of wastewater, a rare earth chloride, a soluble rare earth compound, is added four times the reaction equivalent weight, and a rare earth solution is added, followed by stirring using a general stirring apparatus, and an alkaline solution, preferably caustic soda, to bring the pH of the solution to 7.0. It was.

PH를 조정한 뒤 반응생성물인 희토류불화물과 희토류수산화물을 통상적인 고액분리 장치를 사용하여 분리하였다.After adjusting the pH, the rare earth fluoride and rare earth hydroxides were separated using a conventional solid-liquid separation device.

이때 고액분리한 여액의 불소와 희토류이온의 농도는 각각 F 0.5㎎/ℓ, Ln 0.7 ㎎/ℓ로서 불소이온의 제거효율이 99.5%이며 첨가된 희토류이온은 대부분 반응생성물인 희토불화물과 희토류수산화물의 혼합물로 존재하게 된다.At this time, the concentrations of fluorine and rare earth ions of the filtrate separated from the solid-liquid solution were F 0.5 mg / l and 0.7 mg / l, respectively, and the removal efficiency of fluorine ion was 99.5%. The rare earth ions added were rare reactions of rare earth fluoride and rare earth hydroxide. Will be present in the mixture.

상기 공정을 거친 반응생성물을 건조공정을 행하지 않고 각각 물 100㎖에 현탁시키고 교반을 행하여 희토불화물과 희토수산화물을 균일하게 풀리게 한 뒤 희석된 염산을 사용하여 PH를 조정하여 희토수산화물을 선택적 용해를 실시한 뒤 고액분리하여 여액의 희토류이온과 불소이온의 농도를 실시예 2와 같은 방법으로 측정하였다.The reaction product was subjected to the above step without suspending the drying step and suspended in 100 ml of water, followed by stirring to uniformly dissolve the rare earth fluoride and rare earth hydroxides, and then adjusted the pH using diluted hydrochloric acid to selectively dissolve the rare earth hydroxides. After the solid-liquid separation, the concentration of rare earth ions and fluorine ions in the filtrate was measured in the same manner as in Example 2.

이때 선택적용해를 위해 첨가되는 무기산은 염산, 질산, 황산 등이 될 수 있으며 무기산의 선택은 첨가되어지는 희토류화합물의 종류에 따라 선택되어질 수 있으며 무기산의 산도는 본 공정상 결정적인 것은 아니며, 균일한 반응을 위해서는 희석산을 사용함이 본 공정의 목적을 달성함에 있어서 바람직하다고 생각된다.In this case, the inorganic acid added for selective dissolution may be hydrochloric acid, nitric acid, sulfuric acid, etc. The selection of the inorganic acid may be selected according to the type of rare earth compound to be added, and the acidity of the inorganic acid is not critical in the present process and is uniform. It is thought that it is preferable to use dilute acid for the reaction in achieving the object of this process.

상기 공정에서 반응생성물을 물에 현탁시킬때의 물과 반응생성물과의 비율은 본 발명에서 중요하지 않으며 희수된 희토류용액의 농도에 관련된 사항이므로 농도조절 공정의 조건에 따라 조절되어질 수도 있다.The ratio of water and reaction product when the reaction product is suspended in water in the process is not important in the present invention and is related to the concentration of the rare earth solution, which may be adjusted according to the conditions of the concentration control process.

상기한 방법에 따라, 선택적용해시의 PH 조절 범위를 3.0-5.0으로 조절하여 희토류이온과 불소이온의 농도를 측정한 결과를 (표 3)에 나타내었다.According to the method described above, the results of measuring the concentration of rare earth ions and fluorine ions by adjusting the pH control range at the time of selective dissolution to 3.0-5.0 are shown in (Table 3).

[표 3]TABLE 3

반응물의 선택적 용해공정의 PH 변화에 따른 Ln & F 이온의 변화Changes in Ln & F Ions According to PH Change in Selective Dissolution of Reactant

상기 결과를 살펴보면, 초기에 첨가되어진 희토류이온의 절대량은 466.3㎎이며 이중 희토류불화물로 결합하고 있는 량과 희토수산화물로 결합하고 있는 량은 각각 116.6㎎과 349.7㎎인데 PH를 5.0으로 조절시는 희토수산화물로 결합하고 있는 희토류량의 20% 정도 회수되며 PH 3.6, 4.0, 4.2에서는 각각 97.6%, 91.2%, 90.7% 정도 회수되며 PH가 3.0일때는 희토류수산화물과 결합하고 있는 희토류 뿐만 아니라 희토불화물과 결합하고 있는 희토류도 일부 용출되며 동시에 F 이온도 해리되므로 회수, 재사용하기에는 부적합하다고 생각된다.As a result, the absolute amount of rare earth ions initially added is 466.3 mg, the amount of which is bound by rare earth fluoride and the amount of which is bound by rare earth hydroxide is 116.6 mg and 349.7 mg, respectively. It recovers about 20% of the amount of rare earths bound to it, and recovers 97.6%, 91.2%, and 90.7% at pH 3.6, 4.0, and 4.2, respectively.When pH is 3.0, it combines with rare earth fluoride as well as rare earths that are combined with rare earth hydroxides. Some rare earths are also eluted and at the same time the F ions dissociate, which makes them unsuitable for recovery and reuse.

상기 결과에 따라서, 용존불소를 저농도로 제거함과 동시에 희토류소비량을 최소로 하기 위한 본 발명의 선택적 용해공정의 PH는 2.5-5.5, 바람직하게는 PH 3.5-4.5의 범위로 조절하는 것을 특징으로 한다.According to the above results, the pH of the selective dissolution process of the present invention for removing dissolved fluorine at low concentration and at the same time minimizing the rare earth consumption is characterized in that it is adjusted to the range of 2.5-5.5, preferably PH 3.5-4.5.

[실시예 4]Example 4

용존불소가 함유된 폐수는 실시예 2와 동일한 것이며 첨가되는 희토류화합물의 조성은 CeCl354.7g/ℓ, LaCl354.7g/ℓ로 구성되어 있다.The wastewater containing dissolved fluorine is the same as in Example 2, and the composition of the rare earth compound added is composed of CeCl 3 54.7g / L, LaCl 3 54.7g / L.

상기 희토류화합물을 첨가시 불소의 제거효과와 상기 희토류화합물에 Ca 이온과 Mg 이온을 Ln(란타나이드이온)에 대한 무게비로서 2%, 5%, 10%를 CaCl2, MgCl2의 형태로 첨가한 것의 제거효과를 비교함으로서 알카리토금속의 인위적인 첨가효과를 살펴보았다.When the rare earth compound is added, 2%, 5%, and 10% of Ca ions and Mg ions are added in the form of CaCl 2 and MgCl 2 as weight ratios to Ln (lanthanide ions) to the rare earth compound. By comparing the elimination effect of these, we examined the effects of artificial addition of alkaline earth metals.

각각의 조성물을 반응당량의 3배를 첨가한 뒤 일반적인 교반장치를 사용하여 교반하고 용액의 PH를 7.0이 되도록 알카리용액, 바람직하게는 가성소다를 첨가한다.Each composition is added three times the reaction equivalent weight and then stirred using a general stirrer and an alkaline solution, preferably caustic soda, is added so that the pH of the solution is 7.0.

PH를 조정한 뒤 반응생성물인 희토류불화물과 희토류수산화물을 통상적인 고액분리 장치를 사용하여 분리한다.After adjusting the pH, the rare earth fluoride and rare earth hydroxides are separated using a conventional solid-liquid separation device.

이때 고액분리한 여액의 불소이온의 농도는 표 4와 같다.At this time, the concentration of fluoride ions in the filtrate separated from the solid-liquid solution is shown in Table 4.

[표 4]TABLE 4

알카리토금속의 첨가효과Effect of Alkaline Metal Addition

(표 4)의 결과를 살펴보면 Ca와 Mg를 첨가시와 첨가하지 않을 경우의 불소제거 효과가 거의 유사하므로 희토류화합물의 원광석이나 중간산물에 포함되어 있는 것외의 인위적인 알카리금속의 첨가는 필요하지 않다.The results in Table 4 show that the fluoride removal effects of the Ca and Mg additions and non-additions are almost the same, so that the addition of artificial alkali metals other than those contained in the ore or intermediates of the rare earth compounds is not necessary.

[실시예 5]Example 5

용존불소가 함유된 폐수는 실시예 2와 동일한 것이며 첨가되는 희토류화합물은 희토류질산염 용액을 사용하였으며 그의 조성 및 농도는 La(NO3)3350.7g/ℓ이다.The wastewater containing dissolved fluorine was the same as in Example 2, and the rare earth compound added was a rare earth nitrate solution, and its composition and concentration were 350.7 g / L of La (NO 3 ) 3 .

상기 희토류질산염을 첨가하였을 때와 실시예 1에서 언급한 희토류염화물을 첨가하였을 때 불소의 제거효과를 비교하였다.When the rare earth nitrate was added and the rare earth chloride mentioned in Example 1, the effect of removing fluorine was compared.

상기 희토류질산염을 화학반응 당량의 1-4배 첨가한 뒤 일반적인 교반장치를 사용하여 교반하고 용액의 PH를 6.5가 되도록 알카리용액, 바람직하게는 가성소다를 첨가하였다.The rare earth nitrate was added 1-4 times the chemical reaction equivalent weight, followed by stirring using a general stirring apparatus, and an alkaline solution, preferably caustic soda, was added so that the pH of the solution was 6.5.

PH를 조정한 뒤 반응생성물인 희토류불화물과 희토류수산화물을 통상적인 고액분리 장치를 사용하여 분리하였다.After adjusting the pH, the rare earth fluoride and rare earth hydroxides were separated using a conventional solid-liquid separation device.

이때 고액분리한 여액의 불소이온의 농도와 실시예 1에서의 불소이온의 농도를 (표 5)에 나타내었다.At this time, the concentration of fluorine ions of the filtrate separated from the solid-liquid separation and the concentration of fluorine ions in Example 1 are shown in Table 5.

[표 5]TABLE 5

희토류질산염과 희토류염화물의 첨가효과 비교Comparison of Addition Effects of Rare Earth Nitrate and Rare Earth Chloride

(표 5)의 결과를 살펴보면 희토류질산염을 첨가시와 희토류염화물을 첨가시 불소의 제거효과가 거의 유사하므로 희토류화합물을 사용함에 있어서 음이온기의 영향은 없으므로 일반적인 희토류화합물인 염화물, 질산염, 황산염 중 폐수의 성질에 따라 선택적으로 사용되어질 수 있다.The results of Table 5 show that the removal effect of fluorine is almost the same when rare earth nitrate is added and rare earth chloride is added.Therefore, there is no effect of anion group in the use of rare earth compounds. Can be used selectively depending on the nature of the.

[실시예 6]Example 6

불소화합물을 사용하는 공장에서 배출되는 폐수 1,000㎖(불소농도 100.0㎎/ℓ, PH=2.5)에 가용성 희토화합물인 희토류염화물을 반응당량의 4배를 첨가하여 불소를 불용성화합물로 제거시 이때 첨가되어지는 희토류염화물 용액의 조성과 농도는 실시예 2와 동일하다.Soluble earth chloride, a soluble rare earth compound, is added to 1,000 ml of wastewater discharged from the plant using fluorine compounds (Fluorine concentration of 100.0 mg / l, PH = 2.5) by adding four times the reaction equivalent to fluorine as an insoluble compound. The composition and concentration of the losing rare earth chloride solution are the same as in Example 2.

희토류용액이 첨가되어진 후 일반적인 교반장치를 사용하여 교반하고 용액의 PH를 7.0이 되도록 알카리용액, 바람직하게는 가성소다를 첨가하였다.After the rare earth solution was added, the mixture was stirred using a general stirring apparatus and an alkaline solution, preferably caustic soda, was added so that the pH of the solution was 7.0.

PH를 조정한 뒤 반응생성물인 희토류불화물과 희토류수산화물을 통상적인 고액분리 장치를 사용하여 분리하였다.After adjusting the pH, the rare earth fluoride and rare earth hydroxides were separated using a conventional solid-liquid separation device.

이때 고액분리한 영액의 불소와 희토류이온의 농도는 각각 F 0.5㎎/ℓ, Ln 1.4㎎/ℓ로서 불소이온의 제거효율이 99.5%이며 첨가된 희토류이온은 대부분 반응생성물로 존재하게 된다.At this time, the concentrations of fluorine and rare earth ions of the solid-liquid separated solution were F 0.5 mg / l and Ln 1.4 mg / l, respectively, and the removal efficiency of fluorine ion was 99.5%, and the added rare earth ions were mostly present as reaction products.

상기 공정을 거친 반응생성물을 건조공정을 행하지 않고 물 100㎖에 현탁시키고 교반을 행하여 희토불화물과 희토수산화물을 균일하게 풀리게 한 뒤 희석된 염산을 사용하여 PH를 4.2로 조정한다.The reaction product passed through the above step is suspended in 100 ml of water without performing a drying step, stirred to uniformly freeze the rare earth fluoride and the rare earth hydroxide, and the pH is adjusted to 4.2 using diluted hydrochloric acid.

이때 희토불화물은 상기 PH에서는 안정한 화합물로 존재하지만 과잉의 희토류수산화물은 용액중으로 회수된다.At this time, rare earth fluoride is present as a stable compound in the PH, but excess rare earth hydroxide is recovered in the solution.

PH 조정 공정을 거친 뒤 통상적인 고액분리 방법을 사용하여 고액분리를 행하면 과잉으로 투입된 3당량의 희토류화합물의 91%가 용액중으로 회수되며 F 이온의 농도는 0.1㎎/ℓ가 되어 폐수처리에 다시 사용되어질 수 있다.After the pH adjustment process, the solid-liquid separation using the conventional solid-liquid separation method recovers 91% of the excess of 3 equivalents of rare earth compounds into the solution, and the concentration of F ions becomes 0.1 mg / l, which is used again for wastewater treatment. Can be done.

상기 선택적 용해공정인 PH를 조정공정을 거치기 전과 후의 X 선회질 분석결과를 제2도에 나타내었다.Figure 2 shows the results of X-ray gray matter analysis before and after the PH, which is the selective dissolution process.

그 결과 PH 조정 공정을 거치기전에는 희토불화물과 희토수산화물의 혼합물로 구성되어 있으나 PH 조정 공정을 거친 후에는 희토수산화물의 희절선이 거의 없어지며 희토불화물의 peak로 구성되어 있음 알 수 있다.As a result, the mixture of rare earth fluoride and rare earth hydroxide was used before the pH adjustment process. However, the rare earth hydroxide rarely disappears and the peak of rare earth fluoride is formed after the pH adjustment process.

[실시예 7]Example 7

불소화합물을 사용하는 공장에서 배출되는 폐수 300㎖(불소농도 50.0㎎/ℓ, PH=2.5)에 가용성 희토화합물인 희토류염화물 용액을 화학반응당량의 3배를 첨가하였다.To 300 ml of wastewater discharged from the plant using the fluorine compound (fluorine concentration 50.0 mg / l, PH = 2.5), a rare earth chloride solution, a soluble rare earth compound, was added three times the chemical reaction equivalent weight.

이때 첨가되어지는 희토류염화물용액의 농도와 조성은 실시예 6과 동일하다.At this time, the concentration and composition of the rare earth chloride solution added are the same as in Example 6.

희토류용액이 첨가되어진 후 일반적인 교반장치를 사용하여 교반하고 용액의 PH를 6.5가 되도록 알카리용액, 바람직하게는 가성소다를 첨가하였다.After the rare earth solution was added, the mixture was stirred using a general stirring apparatus, and an alkaline solution, preferably caustic soda, was added so that the pH of the solution was 6.5.

PH를 조정한 뒤 반응생성물인 희토류불화물과 희토류수산화물을 통상적인 고액분리 장치를 사용하여 분리하였다.After adjusting the pH, the rare earth fluoride and rare earth hydroxides were separated using a conventional solid-liquid separation device.

이때 고액분리한 여액의 불소와 희토류이온의 농도는 각각 F 0.4㎎/ℓ, Ln 0.6㎎/ℓ로서 불소이온의 제거효율이 99.2%이며 첨가된 희토류이온은 대부분 반응생성물로 존재하게 된다.At this time, the concentrations of fluorine and rare earth ions of the filtrate separated from the solid-liquid solution were F 0.4 mg / l and 0.6 mg / l of Ln, respectively, and the removal efficiency of fluorine ions was 99.2%.

상기 공정을 거친 반응생성물을 건조공정을 행하지 않고 물 25㎖에 현탁시키고 교반을 행하여 희토불화물과 희토수산화물을 균일하게 풀리게 한 뒤 희석된 염산을 사용하여 PH를 4로 조정한다.The reaction product which passed through this process is suspended in 25 ml of water without performing a drying process, stirring is carried out, the rare earth fluoride and a rare earth hydroxide are uniformly solved, and pH is adjusted to 4 using diluted hydrochloric acid.

이때 희토불화물은 상기 PH에서는 안정한 화합물로 존재하지만 과잉의 희토류수산화물은 용액중으로 회수된다.At this time, rare earth fluoride is present as a stable compound in the PH, but excess rare earth hydroxide is recovered in the solution.

PH 조정 공정을 거친 뒤 통상적인 고액분리 방법을 사용하여 고액분리를 행하면 과잉으로 투입된 3당량의 희토류화합물의 90%가 용액중으로 회수되며 F 이온의 농도는 0.1㎎/ℓ가 되어 폐수처리에 다시 사용되어질 수 있다.After the pH adjustment process, the solid-liquid separation is carried out using a conventional solid-liquid separation method, and 90% of the excess of 3 equivalents of rare earth compounds are recovered into the solution, and the concentration of F ions becomes 0.1 mg / l, which is used again for wastewater treatment. Can be done.

이상에서와 같이 희토류원소들은 불소와 매우 안정한 화합물인 희토불화물을 형성하고 형성된 희토불화물은 난용성이므로 불소제거효과가 뛰어날뿐 아니라 처리후 잔사의 발생량이 적은점 등은 희토류원소를 불소제거제로서 이용하는데 상당히 유리한점으로 작용하나 가장 큰 문제점은 희토류원소를 사용함에 따라 약품비가 비싸진다는 점인데 특히 불소를 저농도까지 제거하여 방류시는 당량의 수배를 첨가하여야 가능한데 이때 첨가되어서 실제불소와 결합하여 불화물을 형성하는 당량 이상의 희토류는 수산화물 또는 용액중에 존재하게 되어 산업적으로 이용하기에는 경제적인 측면에서 볼대 불가능하다고 생각되어져 왔다.As mentioned above, rare earth elements form rare earth fluoride, which is a very stable compound with fluorine, and the rare earth fluoride formed is poorly soluble, so it is excellent in fluorine removal effect and uses less rare earth as fluorine remover. It is quite advantageous, but the biggest problem is that the cost of chemicals becomes expensive by using rare earth elements. Especially, when fluoride is removed to a low concentration, it is possible to add several times the equivalent amount when it is discharged. Rare earths in excess of equivalents are present in hydroxides or solutions and have been considered economically inexpensive for industrial use.

그러나 본 발명은 불소를 저농도까지 높은 효율로 제거하면서도 실제사용되는 희토류는 반응당량 만큼이며 그 당량 이상의 희토류는 다시 회수되어 불소제거 반응에 참여시킴으로서 경제성에도 우수한 처리방법을 갖게 되는 것이다.However, the present invention removes fluorine at low concentrations with high efficiency, but the rare earths actually used are equivalent to the reaction equivalents, and the rare earths above the equivalents are recovered again to participate in the fluorine removal reaction, thereby having an excellent treatment method in terms of economic efficiency.

Claims (6)

불소가 함유된 폐수에 가용성 희토류화합물을 불소와 결합하는 화학반응 당량의 2-10배 첨가하고, PH를 조절하는 제1공정과, 제1공정에 이어서 고액분리하여 불소가 저농도 제거된 액체는 방류하고 희토불화물과 희토류수산화물은 슬러지(Sludge)로 하는 제2공정과, 제2공정을 통한 슬러지에 무기산을 첨가하여 PH를 조절함과 함께 희토류수산화물을 선택적으로 용해한 후 고액분리하여 희토류를 포함한 액체를 회수하여 재사용하고 희토불화물은 고체로 회수하는 공정으로 이루어짐을 특징으로 하는 불소가 함유된 폐수의 처리방법.The fluorine-free wastewater is added to the fluorine-containing waste water by adding 2-10 times the equivalent of a chemical reaction equivalent to fluorine, and controlling the pH, followed by the first step to solid-liquid separation to remove fluorine. The rare earth fluoride and rare earth hydroxide are sludge, and the inorganic acid is added to the sludge through the second step to adjust the pH, selectively dissolve the rare earth hydroxide, and then liquid-separate the liquid containing rare earth. A method for treating fluorine-containing wastewater, wherein the effluent is recovered and reused and the rare earth fluoride is recovered as a solid. 제1항에 있어서, 가용성 희토류화합물이 가용성 희토류염으로서 염화물, 황화물, 질화물 중 선택된 용액임을 특징으로 하는 불소가 함유된 폐수의 처리방법.The method of treating fluorine-containing wastewater according to claim 1, wherein the soluble rare earth compound is a solution selected from chloride, sulfide and nitride as a soluble rare earth salt. 제1항에 있어서, PH를 5-10으로 하는 제1공정으로 이루어짐을 특징으로 하는 불소가 함유된 폐수의 처리방법.The method for treating fluorine-containing wastewater according to claim 1, wherein the fluorine-containing wastewater is formed in a first process having a pH of 5-10. 제1항 또는 제3항에 있어서, 제2공정 후 희토수산화물 용해서 PH가 2.5-5.5가 되게함을 특징으로 하는 불소가 함유된 폐수의 처리방법.The method for treating fluorine-containing wastewater according to claim 1 or 3, wherein the rare earth hydroxide is dissolved to have a pH of 2.5-5.5 after the second process. 제4항에 있어서, PH 조절시 사용되는 알카리는 가성소다, 수산화칼륨, 암모니아수 중에서 선택하여 사용하는 것임을 특징으로 하는 불소가 함유된 폐수의 처리방법.The method of treating wastewater containing fluorine according to claim 4, wherein the alkali used for pH adjustment is selected from caustic soda, potassium hydroxide and ammonia water. 제4항에 있어서, PH 조절시 사용되는 산이 염산, 질산, 황산 중에서 선택하여 사용하는 것임을 특징으로 하는 불소가 함유된 폐수의 처리방법.The method of treating wastewater containing fluorine according to claim 4, wherein the acid used for pH adjustment is selected from hydrochloric acid, nitric acid and sulfuric acid.
KR1019930012855A 1993-07-08 1993-07-08 Treatment method for waste water including fluorine KR960002260B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930012855A KR960002260B1 (en) 1993-07-08 1993-07-08 Treatment method for waste water including fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930012855A KR960002260B1 (en) 1993-07-08 1993-07-08 Treatment method for waste water including fluorine

Publications (2)

Publication Number Publication Date
KR950003179A KR950003179A (en) 1995-02-16
KR960002260B1 true KR960002260B1 (en) 1996-02-14

Family

ID=19358976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930012855A KR960002260B1 (en) 1993-07-08 1993-07-08 Treatment method for waste water including fluorine

Country Status (1)

Country Link
KR (1) KR960002260B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347601B1 (en) * 1997-12-17 2003-03-06 주식회사 포스코 Method for treating fluoride wastewater

Also Published As

Publication number Publication date
KR950003179A (en) 1995-02-16

Similar Documents

Publication Publication Date Title
EP0986518B1 (en) A process for the treatment of effluent streams
US6464883B2 (en) Remover of fluoride ion and treatment method for wastewater containing fluoride ion using the same
US7077963B2 (en) Processes for water treatment
US3692671A (en) Rare earth ion removal from waste water
JP3635643B2 (en) Waste liquid treatment method
EP1135537B1 (en) Treating niobium and/or tantalum containing raw materials
KR960002260B1 (en) Treatment method for waste water including fluorine
US4008162A (en) Waste treatment of fluoroborate solutions
US3804751A (en) Disposal of wastes containing mercury
AU661518B2 (en) Immobilisation of metal contaminants from a liquid to a solid medium
US5534160A (en) Method for the re-treatment of residue generated from the removal of fluorine dissolved in waste water
US8993828B2 (en) Method of radium stabilizing in solid effluent or effluent containing substances in suspension
EP1493716A1 (en) Method of wastewater treatment
AU749246B2 (en) Process for separation of heavy metals from residues by use of ethylene-diamine-disuccinic acid (EDDS) complexant
KR100365465B1 (en) Remover of fluoride ion and treatment method for waste water comprising fluoride ion using the same
JPH03186393A (en) Treatment of waste water containing fluorine
SU876791A1 (en) Method of regenerating nitric-fluoric pickling solution
Glombitza et al. Biotechnology based opportunities for environmental protection in the uranium mining industry
EP0666100A2 (en) Scrubbing of sulfur dioxide
AU757830B2 (en) Processes and compositions for water treatment
DE10005240A1 (en) Improving the precipitation of uranium and other contaminants from radioactive water by decomposing the carbonate complexes prior to precipitation by addition of lime
KR970001450B1 (en) Matter for removing fluorine ion from water
KR0142931B1 (en) Fluorine-containing wastewater processing method
RU2198707C1 (en) Method for reprocessing lewisite detoxication products
JPS6342791A (en) Treatment of waste water

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010117

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee