KR950027001A - Manufacturing method of high strength high conductivity copper alloy material for electronic device - Google Patents

Manufacturing method of high strength high conductivity copper alloy material for electronic device Download PDF

Info

Publication number
KR950027001A
KR950027001A KR1019950003411A KR19950003411A KR950027001A KR 950027001 A KR950027001 A KR 950027001A KR 1019950003411 A KR1019950003411 A KR 1019950003411A KR 19950003411 A KR19950003411 A KR 19950003411A KR 950027001 A KR950027001 A KR 950027001A
Authority
KR
South Korea
Prior art keywords
weight ratio
temperature
copper alloy
cold working
alloy material
Prior art date
Application number
KR1019950003411A
Other languages
Korean (ko)
Other versions
KR0160342B1 (en
Inventor
히로노브 사와타리
Original Assignee
코오노 히로노리
닛코킨조쿠 가부시가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6075424A external-priority patent/JP2732355B2/en
Priority claimed from JP7542594A external-priority patent/JP2673781B2/en
Application filed by 코오노 히로노리, 닛코킨조쿠 가부시가이샤 filed Critical 코오노 히로노리
Publication of KR950027001A publication Critical patent/KR950027001A/en
Application granted granted Critical
Publication of KR0160342B1 publication Critical patent/KR0160342B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Abstract

본 발명은, 반도체기기의 리드프레임재 등의 전자기기용 재료에 요구되는 강도, 도전율, 굽힘가공성 및 납땜성 등의 제성질을 높은 레벨에서 겸비한 전자기기용 고강도 고도전성금속제를 값싸게 제조할 수 있는 방법을 확립하는 것을 목적으로 하며, 그구성에 있어서, Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%를 함유하거나, 혹은 또 Zn:0.05∼2.0%와 Sn, In, Mn, P, Mg 및 Si의 1종이상:총량으로 0.01∼1%중에서 1종이상을 함유하는 동시에 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)가공개시온도가 800℃이상 950℃미만, 최종가공온도가 600℃이상이며, 또한 가공종료후는 100℃/min이상의 속도에서 냉각하는 열간가공, 2) 50∼98%의 가공도에서의 냉간가공, 3)300∼550℃의 온도에서의 시효처리, 4)16∼83%이하의 가공도에서의 냉간가공, 5)330∼700℃의 온도에서의 소둔이라는 처리를 이순서로 순차 실시하는 것을 특징으로 한것이다.SUMMARY OF THE INVENTION The present invention is a method for producing a high-strength highly conductive metal material for electronic devices at a high level that has high quality properties such as strength, electrical conductivity, bending workability, and solderability required for electronic device materials such as lead frame materials of semiconductor devices. In order to establish the structure, the composition contains Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80%, or Zn: 0.05 to 2.0% and one or more of Sn, In, Mn, P, Mg and Si: The total amount contains one or more of 0.01 to 1%, and the Fe / Ti weight ratio is 0.66 to 0.10% ≤ Ti ≤ 0.60%. 2.6 is satisfied and the Fe / Ti weight ratio is 1.1 to 2.6 at " 0.60% < Ti < 0.80% " and the remaining part is made of a copper alloy composed of Cu and inevitable impurities. 800 ℃ or more and less than 950 ℃, the final processing temperature is over 600 ℃, and after finishing processing, it is cooled at the speed of 100 ℃ / min or more. Hot work, 2) cold work at 50-98% workability, 3) aging at a temperature of 300-550 ° C, 4) cold work at workability below 16-83%, 5) 330-700 It is characterized in that the treatment of annealing at a temperature of ℃ is sequentially performed in this order.

Description

전자기기용 고강도 고도전성 구리합금제의 제조방법Manufacturing method of high strength highly conductive copper alloy for electronic devices

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

Claims (8)

중량비율로서 Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%를 함유하는 동시에, 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)가공개시온도가 800℃이상 950℃미만, 최종가공온도가 600℃이상이며, 또한 가공종료후는 100℃/min이상의 속도에서 냉각하는 열간가공, 2) 75∼98%의 가공도에서의 냉간가공, 3)300∼550℃의 온도에서의 시효처리, 4)80%이하의 가공도에서의 냉간가공, 5)330∼700℃의 온도에서의 소둔,이라는 처리를 이순서로 순차 실시하는 것을 특징으로 하는, 전자기기용 고강도 고도전성 구리합금재의 제조방법.Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80% as the weight ratio, and at 0.10% ≤Ti≤0.60%, the Fe / Ti weight ratio 0.66 to 2.6, and at 0.60% <Ti ≤ 0.80%, the Fe / Ti weight ratio satisfies 1.1 to 2.6, and the remainder of the copper alloy is composed of Cu and unavoidable impurities. Temperature between 800 ℃ and below 950 ℃, final machining temperature above 600 ℃, and after finishing, hot working at 100 ℃ / min or higher, 2) Cold working at 75 ~ 98% working degree, 3 Aging treatment at a temperature of 300 to 550 ° C., 4) cold working at a processing degree of 80% or less, and 5) annealing at a temperature of 330 to 700 ° C., in this order. Manufacturing method of high strength highly conductive copper alloy material for electronic devices. 중량비율로서 Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%, Zn:0.05∼2.0%를 함유하는 동시에, 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)가공개시온도가 800℃이상 950℃미만, 최종가공온도가 600℃이상이며, 또한 가공종료후는 100℃/min이상의 속도에서 냉각하는 열간가공, 2) 75∼98%의 가공도에서의 냉간가공, 3)300∼550b 온도에서의 시효처리, 4)80%이하의 가공도에서의 냉간가공, 5)330∼700℃의 온도에서의 소둔, 이라는 처리를 이순서로 순차 실시하는 것을 특징으로 하는 전자기기용 고강도 고도전성 구리합금재의 제조방법.Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80%, Zn: 0.05 to 2.0% as the weight ratio, and "0.10% ≤Ti≤0.60% Fe / Ti weight ratio satisfies 0.66 to 2.6, and Fe / Ti weight ratio satisfies 1.1 to 2.6 in "0.60% <Ti≤0.80%" and the rest of the copper alloy composed of Cu and unavoidable impurities. 1) Hot working temperature of 800 ℃ or more and less than 950 ℃ and final processing temperature of 600 ℃ or more, and after finishing processing, cooling at a speed of 100 ℃ / min or more, 2) 75 ~ 98% machining Cold processing in the figure, 3) Aging treatment at 300 to 550b temperature, 4) Cold processing at 80 degrees or less, 5) Annealing at a temperature of 330 to 700 ° C, sequentially A method for producing a high strength, highly conductive copper alloy material for an electronic device. 중량비율로서 Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%를 함유하고, 또 Sn, In, Mn, P, Mg 및 Si의 1종이상:총량으로 0.01∼1%을 함유하는 동시에 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)가공개시온도가 800℃이상 950℃미만, 최종가공온도가 600℃이상이며, 또한 가공종료후는 100℃/min이상의 속도에서 냉각하는 열간가공, 2) 75∼98%의 가공도에서의 냉간가공, 3)300∼550℃의 온도에서의 시효처리, 4)80%이하의 가공도에서의 냉간가공, 5)330∼700℃의 온도에서의 소둔, 이라는 처리를 이순서로 순차 실시하는 것을 특징으로 하는 전자기기용 고강도 고도전성 구리합금재의 제조방법.Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80% as the weight ratio, and at least one of Sn, In, Mn, P, Mg and Si : 0.01 to 1% of total amount, Fe / Ti weight ratio satisfies 0.66 to 2.6 at "0.10% ≤Ti≤0.60%", and Fe / Ti weight ratio at "0.60% <Ti≤0.80%" The material of copper alloy which satisfies 1.1 to 2.6 and the remainder is Cu and unavoidable impurities. 1) The processing start temperature is 800 ℃ or more and less than 950 ℃, and the final processing temperature is 600 ℃ or more. 2) cold working at a rate of not less than ℃ / min, 2) cold working at 75-98% working degree, 3) aging at a temperature of 300-550 ° C, 4) cold working at 80% or less 5) A method for producing a high strength, highly conductive copper alloy material for an electronic device, characterized by sequentially performing annealing at a temperature of 330 to 700 ° C in this order. 중량비율로서 Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼0.80%, Ti:0.10∼0.80%, Zn:0.05∼2.0%를 함유하고, 또 Sn, In, Mn, P, Mg 및 Si의 1종이상:총량으로 0.01∼1%을 함유하는 동시에 「0.60%〈Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)가공개시온도가 800℃이상 950℃미만, 최종가공온도가 600℃이상이며, 또한 가공종료후는 100℃/min이상의 속도에서 냉각하는 열간가공, 2) 75∼98%의 가공도에서의 냉간가공, 3)300∼550℃의 온도에서의 시효처리, 4)80%이하의 가공도에서의 냉간가공, 5)330∼700℃의 온도에서의 소둔, 이라는 처리를 이순서로 순차 실시하는 것을 특징으로 하는 전자기기용 고강도 고도전성 구리합금재의 제조방법.Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 0.80%, Ti: 0.10 to 0.80%, Zn: 0.05 to 2.0% as the weight ratio, and Sn, In, Mn, P, At least one type of Mg and Si: 0.01 to 1% of the total amount, and at "0.60% <Ti <0.60%", the Fe / Ti weight ratio satisfies 0.66 to 2.6, and "0.60% <Ti <0.80% Fe / Ti weight ratio satisfies 1.1 to 2.6, and the remainder is made of copper alloy consisting of Cu and unavoidable impurities. 1) Process start temperature is 800 ℃ or more and less than 950 ℃, and final processing temperature is 600 ℃ or more. In addition, after finishing, hot working at 100 ℃ / min or more, 2) cold working at 75 ~ 98%, 3) aging at 300 ~ 550 ℃, 4) 80% or less 5) A method for producing a high strength, highly conductive copper alloy material for an electronic device, characterized in that cold working at a degree of processing, 5) annealing at a temperature of 330 to 700 ° C., is sequentially performed in this order. 중량비율로서, Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%, Zn:0.05∼2.0%를 함유하는 동시에, 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)950℃미만의 온도에서의 용체화처리, 2)50∼90%의 가공도에서의 냉간가공, 3)300∼580℃의 온도에서의 시효처리, 4)16∼83%의 가공도에서의 냉간가공, 5)350∼700℃의 온도에서의 소둔, 이라는 처리를 이 순서로 순차 실시하는 것을 특징으로 하는 전자기기용 고강도 고도전성구리합금재의 제조방법.As the weight ratio, Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80%, Zn: 0.05 to 2.0%, while containing "0.10% ≤Ti≤0.60 % ”, The Fe / Ti weight ratio satisfies 0.66 to 2.6, and in“ 0.60% <Ti ≦ 0.80% ”, the Fe / Ti weight ratio satisfies 1.1 to 2.6, with the remainder being a copper alloy composed of Cu and unavoidable impurities. 1) Solvent treatment at temperatures below 950 ° C, 2) Cold working at 50 to 90% workability, 3) Aging at temperatures of 300 to 580 ° C, 4) 16 to 83% 5) A method for producing a high strength highly conductive copper alloy material for an electronic device, characterized by cold working at a degree of processing, and 5) annealing at a temperature of 350 to 700 ° C., in this order. 중량비율로서, Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%, Zn:0.05∼2.0%를 함유하는 동시에, 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)950℃미만의 온도에서의 용체화처리, 2)50∼90%의 가공도에서의 냉간가공, 3)300∼580℃의 온도에서의 시효처리, 4)16∼83%의 가공도에서의 냉간가공, 5)350∼700℃의 온도에서의 소둔, 이라는 처리를 이 순서로 순차 실시하는 것을 특징으로 하는 전자기기용 고강도 고도전성구리합금재의 제조방법.As the weight ratio, Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80%, Zn: 0.05 to 2.0%, while containing "0.10% ≤Ti≤0.60 % ”, The Fe / Ti weight ratio satisfies 0.66 to 2.6, and in“ 0.60% <Ti ≦ 0.80% ”, the Fe / Ti weight ratio satisfies 1.1 to 2.6, with the remainder being a copper alloy composed of Cu and unavoidable impurities. 1) Solvent treatment at temperatures below 950 ° C, 2) Cold working at 50 to 90% workability, 3) Aging at temperatures of 300 to 580 ° C, 4) 16 to 83% 5) A method for producing a high strength highly conductive copper alloy material for an electronic device, characterized by cold working at a degree of processing, and 5) annealing at a temperature of 350 to 700 ° C., in this order. 중량비율로서 Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%를 함유하고, 또 Sn, In, Mn, P, Mg 및 Si의 1종이상:총량으로 0.01∼1%를 함유하는 동시에 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)950℃미만의 온도에서의 용체화처리, 2) 50∼90%의 가공도에서의 냉간가공, 3)300∼580℃의 온도에서의 시효처리, 4)16∼83%의 가공도에서의 냉간가공, 5)350∼700℃의 온도에서의 소둔, 이라는 처리를 이순서로 순차 실시하는 것을 특징으로 하는 전자기기용 rhh강도 고도전성 구리합금재의 제조방법.Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80% as the weight ratio, and at least one of Sn, In, Mn, P, Mg and Si : 0.01 to 1% of total amount, Fe / Ti weight ratio satisfies 0.66 to 2.6 at "0.10% ≤Ti≤0.60%", and Fe / Ti weight ratio at "0.60% <Ti≤0.80%" 1) Solvent treatment at a temperature of less than 950 ° C, 2) Cold working at a workability of 50 to 90%, to a copper alloy material consisting of Cu and an unavoidable impurity, satisfying 1.1 to 2.6, 3 Aging treatment at a temperature of 300 to 580 ° C., 4) cold working at a degree of workability of 16 to 83%, and annealing at a temperature of 350 to 700 ° C., in this order. Method for manufacturing rhh strength highly conductive copper alloy material for electronic devices. 중량비율로서 Cr:0.05∼0.40%, Zr:0.03∼0.25%, Fe:0.10∼1.80%, Ti:0.10∼0.80%, Zn:0.05∼2.0%를 함유하고, 또, Sn, In, Mn, P, Mg 및 Si의 1종이상:총량으로 0.01∼1%를 함유하는 동시에, 「0.10%≤Ti≤0.60%」에서는 Fe/Ti중량비가 0.66∼2.6을 만족하고, 또, 「0.60%〈Ti≤0.80%」에서는 Fe/Ti중량비가 1.1∼2.6을 만족하고 있고 나머지부가 Cu 및 불가피적불순물로 이루어진 구리합금의 소재에, 1)950℃미만의 온도에서의 용체화처리 2)50%이상 90%이하의 가공도에서의 냉간가공, 3)300∼580℃의 온도에서의 시효처리, 4)16∼83%의 가공에서의 냉간가공, 5)350∼700℃의 온도에서의 소둔. 이라는 처리를 이 순서로 순차 실시하는 것을 특징으로 하는 전자기기용 고강도 고도전성 구리합금재의 제조방법.Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.10 to 0.80%, Zn: 0.05 to 2.0% as the weight ratio, and Sn, In, Mn, P , At least one of Mg and Si: 0.01 to 1% by total amount, and at "0.10% ≤ Ti ≤ 0.60%", the Fe / Ti weight ratio satisfies 0.66 to 2.6, and "0.60% <Ti≤ 0.80% ”, the Fe / Ti weight ratio satisfies 1.1 to 2.6, and the remainder is copper alloy material composed of Cu and unavoidable impurities. 1) Solvent treatment at a temperature below 950 ° C. 2) 50% or more and 90% Cold working in the following working degrees, 3) Aging treatment at a temperature of 300 to 580 ° C, 4) Cold working in a 16 to 83% process, 5) Annealing at a temperature of 350 to 700 ° C. A process for producing a high strength, highly conductive copper alloy material for an electronic device, comprising the steps of: ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019950003411A 1994-03-22 1995-02-22 Production of high-strength and high-conductivity copper alloy material for electronic equipment KR0160342B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP94-75425 1994-03-22
JP6075424A JP2732355B2 (en) 1994-03-22 1994-03-22 Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JP7542594A JP2673781B2 (en) 1994-03-22 1994-03-22 Method for producing high strength and high conductivity copper alloy material for electronic equipment
JP94-75424 1994-03-22

Publications (2)

Publication Number Publication Date
KR950027001A true KR950027001A (en) 1995-10-16
KR0160342B1 KR0160342B1 (en) 1999-01-15

Family

ID=26416559

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950003411A KR0160342B1 (en) 1994-03-22 1995-02-22 Production of high-strength and high-conductivity copper alloy material for electronic equipment

Country Status (1)

Country Link
KR (1) KR0160342B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434810B1 (en) * 2001-12-05 2004-06-12 한국생산기술연구원 Thixoformable Cu-Zr alloy and the method for manufacturing the same
JP4041803B2 (en) * 2004-01-23 2008-02-06 株式会社神戸製鋼所 High strength and high conductivity copper alloy

Also Published As

Publication number Publication date
KR0160342B1 (en) 1999-01-15

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
US4042424A (en) Electrical conductors of aluminum-based alloys
KR950704520A (en) Copper alloy having high strength and conductivity and method of manufacturing
JPH0841612A (en) Copper alloy and its preparation
WO2009082695A1 (en) Copper-nickel-silicon alloys
US4486250A (en) Copper-based alloy and method for producing the same
JPS58199835A (en) Copper alloy for electric or electronic apparatus
JP3896793B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
US4678637A (en) Copper-chromium-titanium-silicon alloy and application thereof
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
CA1119920A (en) Copper based spinodal alloys
US3287180A (en) Method of fabricating copper base alloy
KR950027001A (en) Manufacturing method of high strength high conductivity copper alloy material for electronic device
US3347717A (en) High strength aluminum-bronze alloy
JPH09143597A (en) Copper alloy for lead frame and its production
JP2651122B2 (en) Method for producing Cu-Ni-Si alloy for electric / electronic device parts
JPH0469217B2 (en)
EP1967597A2 (en) Beryllium-Copper conductor
JP2619326B2 (en) Special alloy gold material
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPH0456755A (en) Manufacture of phosphor bronze excellent in bendability
JPH0416534B2 (en)
JPS63243252A (en) Manufacture of high-strength conductive aluminum-alloy conductor
JPS61288036A (en) Copper alloy for lead frame and its production

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030806

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee