KR950021801A - Optical logic element (SEED) and its manufacturing method - Google Patents

Optical logic element (SEED) and its manufacturing method Download PDF

Info

Publication number
KR950021801A
KR950021801A KR1019930026307A KR930026307A KR950021801A KR 950021801 A KR950021801 A KR 950021801A KR 1019930026307 A KR1019930026307 A KR 1019930026307A KR 930026307 A KR930026307 A KR 930026307A KR 950021801 A KR950021801 A KR 950021801A
Authority
KR
South Korea
Prior art keywords
layer
thickness
seed
grown
optical logic
Prior art date
Application number
KR1019930026307A
Other languages
Korean (ko)
Other versions
KR970006606B1 (en
Inventor
최영완
권오균
심숙이
이일항
Original Assignee
양승택
재단법인 한국전자통신연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 재단법인 한국전자통신연구소 filed Critical 양승택
Priority to KR1019930026307A priority Critical patent/KR970006606B1/en
Priority to JP30108394A priority patent/JP2641705B2/en
Publication of KR950021801A publication Critical patent/KR950021801A/en
Application granted granted Critical
Publication of KR970006606B1 publication Critical patent/KR970006606B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 외부 인가전압 없이도 광 시스템에서 실용가능한 정도의 광 쌍안정을 실현 할 수 있는 광 논리소자의 창출을 그 내용으로 한다.The present invention is directed to the creation of an optical logic device capable of realizing optical bistable to the extent practical in an optical system without an external applied voltage.

혼합물 반도체로 이루어진 얕은 다중양자 우물(Shal1ow Mutiple Quantum Well, SMQW)의 저전계흡수(low field electroabsoption) 특성과 비대칭 페브리 페롯(ASymmetric Fabry Perot, ASFP)공명 구조를 결합함으로써 이를 창출하였다.This was achieved by combining the low field electroabsoption characteristics of the shallow multi-quantum wells (SMQW) made of mixed semiconductors with the asymmetric Fabry Perot (ASFP) resonance structure.

ASFP공명구조로 이루어진 PIN다이오드 SEED는 그 구조특성상 광 흡수층인 다중양자 우물로 이루어진 진성영역의 두께를 일반적인 SEED구조보다 크게 줄여 줄 수 있다는 점에 착안하였다.The PIN diode SEED composed of ASFP resonance structure was focused on the fact that the thickness of the intrinsic region composed of multi-quantum wells, which are light absorbing layers, can be greatly reduced than the general SEED structure.

이는 일정한 내재전위(built in potential)를 가정할때, SMQW ASFP S-SEED회로에서의 인가전압 VAP=0일 경우의 각 SEED에 존재하는 전계의 차이가 일반적인 SMQW S-SEED회로에서의 각 SEED에 존재하는 전계의 차이보다 크게 된다는 것을 뜻한다.This assumes a constant built in potential, so that the difference in the electric field present in each SEED when the applied voltage VAP = 0 in the SMQW ASFP S-SEED circuit is equal to each SEED in a typical SMQW S-SEED circuit. This means that the difference is greater than the electric field present.

즉 각 SEED소자의 광 흡수율의 차이가 크게되고 광 쌍안정의 반사율 차이와 폭(width)이 증가된다는 것이다.In other words, the difference in light absorption of each SEED element is increased, and the difference in reflectance and width of light bistable are increased.

본 발명에 의한 적절한 소자설계는 Self-Biased SMQW ASFP S-SEED(VAP=D)의 두 다이오드 전계차이가 일반적인 SMQW S-SEED의 동작전압 VAP=5Volt일때의 두 다이오드 전계차이정도가 되도록 할 수 있다.Appropriate device design according to the present invention can allow two diode electric field difference of self-biased SMQW ASFP S-SEED (VAP = D) to be about two diode electric field difference when operating voltage VAP = 5Volt of typical SMQW S-SEED. .

Description

광 논리소자(SEED) 및 그의 제조방법Optical logic element (SEED) and its manufacturing method

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

제4도는 본 발명의 바람직한 실시예에 따른 SEED의 구조를 나타낸 도면.4 is a view showing the structure of a SEED according to a preferred embodiment of the present invention.

Claims (7)

SEED(Self Electro-optic Effective Device)광 논리소자에 있어서; 반절연 GaAs기판(1)과; 상기 기판(1)위에 소정의 두께로 성장되고 소정의 굴절율(n)을 갖는 제1의 λ/4n반사층(여기서, λ는 광의 파장)(2)과, 이 제1의 반사층(2)위에 소정의 두께로 성장되되 상기 제1의 반사층(2)의 굴절율과 상이한 굴절율을 갖는 제2의 λ/4n반사층으로 이루어지는 반사층이 소정의 주기로 반복적으로 형성되는 하부거울층(10)과; 상기 하부거울층(10) 위에 N+형의 500㎚정도의 두께로 성장되는 캐소우드접촉층(4)과; 상기 캐소우드접촉층(4)위에 20㎚정도의 두께로 성장되는 제1의 완충층(5)과; 상기 제1의 완충층(5) 위에, 6㎚정도 두께의 장벽층(6) 및 10㎚정도 두께의 우물층(7)으로 이루어지는 얕은 양자우물층이 소정의 주기로 다중으로 성장되는 얕은 다중양자우물층(11)과; 상기 얕은 다중양자우물층(11) 위에 20㎚정도의 두께로 성장되는 제2의 완충층(8)과; 상기 제2의완충층(8) 위에 506.7㎚정도의 두께로 성장되는 애노우드 접촉층(9)을 포함하는 것이 특징인 광 논리소자.In the SEED (Self Electro-optic Effective Device) optical logic device; A semi-insulating GaAs substrate 1; A first [lambda] / 4n reflection layer (where [lambda] is the wavelength of light) 2, which is grown on the substrate 1 to a predetermined thickness and has a predetermined refractive index n, and on the first reflective layer 2 A lower mirror layer 10 formed of a second reflective layer having a refractive index different from that of the first reflective layer 2 and having a refractive index different from that of the first reflective layer 2, repeatedly formed at predetermined intervals; A cathode contact layer (4) grown on the lower mirror layer (10) to a thickness of about 500 nm of N + type; A first buffer layer (5) grown on the cathode contact layer (4) with a thickness of about 20 nm; On the first buffer layer 5, a shallow multi-quantum well layer in which a shallow quantum well layer composed of a barrier layer 6 about 6 nm thick and a well layer 7 about 10 nm thick is multiply grown at a predetermined period. (11); A second buffer layer 8 grown on the shallow multi-quantum well layer 11 to a thickness of about 20 nm; And an anode contact layer (9) grown on the second buffer layer (8) to a thickness of about 506.7 nm. 제1항에 있어서, 상기 제1반사층(2)의 굴절율은 상기 제2반사층(3) 굴절율 보다 상대적으로 작은 것이 특징인 광 논리소자.The optical logic element according to claim 1, wherein the refractive index of the first reflective layer (2) is relatively smaller than the refractive index of the second reflective layer (3). 제2항에 있어서, 상기 제1 및 제2반사층(2,3) 각각은 AlAs 및 Al0.1Ga0.9As로 이루어지고, 상기 제1 및 제2반사층(2,3) 각각은 약 72.1㎚ 및 60.7㎚정도의 두께를 갖고, 상기 캐소우드접촉층(4) 및 제1환충층(5)은 N+형의 Al0.1Ga0.9As 및 비도핑된 Al0.1Ga0.9As로 이루어지는 것이 특징인 광 논리소자.3. The method of claim 2, wherein the first and second reflecting layers (2,3) are each made of AlAs and Al 0.1 Ga 0.9 As, and the first and second reflecting layers (2,3) are each about 72.1 nm and 60.7. An optical logic device having a thickness of about nm, wherein the cathode contact layer 4 and the first circularly insulating layer 5 are made of N + Al 0.1 Ga 0.9 As and undoped Al 0.1 Ga 0.9 As. . 제3항에 있어서, 상기 하부거울층(10)은 상기 제1의 반사층(2)과 상기 제2의 반사층(3)이 12주기 이상 반복적으로 형성되는 것이 특징인 광 논리소자.The optical logic device of claim 3, wherein the lower mirror layer (10) is formed by repeatedly forming the first reflective layer (2) and the second reflective layer (3) for at least 12 cycles. 제4항에 있어서, 상기 장벽층(6) 및 상기 우물층(7)은 36주기로 반복적으로 형성되고, 상기 장벽층(6) 및 상기 우물층(7)은 Al0.04Ga0.96As 및 GaAs로 각각 이루어지는 것이 특징인 광 논리소자.5. The barrier layer (6) and the well layer (7) are repeatedly formed in 36 cycles, and the barrier layer (6) and the well layer (7) are each made of Al 0.04 Ga 0.96 As and GaAs. Optical logic device, characterized in that made. 제5항에 있어서, 상기 제2완충층(8) 및 상기 애노우드접촉층(9)은 비도핑된 Al0.1Ga0.9As 및 P+형의 Al0.1Ga0.9As로 각각 이루어지는 것이 특징인 광 논리소자.6. The optical logic device according to claim 5, wherein the second buffer layer (8) and the anode contact layer (9) consist of undoped Al 0.1 Ga 0.9 As and P + type Al 0.1 Ga 0.9 As, respectively. . SEED(Self Electro-optic Effective Device)광 논리소자의 제조하는 방법에 있어서, 반절연 GaAs기판(1)위에 소정의 굴절율(n)을 갖는 AlAs로 이루어지는 제1의 λ/4n반사층(여기서, λ는 광의 파장)(2)을 72.1nm정도의 두께로 성장시키고 상대적으로 높은 굴절율을 갖는 Al0.1Ga0.9As로 이루어지는 제2의 λ/4n반사층(3)을 60.7nm정도의 두께로 성장시키되, 상기 제1의 λ/4n반사층(2)과 상기 제2의 λ/4n반사층(3)을 12주기 이상 형성하는 것에 의해 하부거울층(10)을 형성하는 공정과; 상기 하부거울층(10) 위에 N+형의 Al0.1Ga0.9As를 500nm정도의 두께로 성장시켜 캐소우드접촉층(4)을 형성하는 공정과; 상기 캐소우드접촉층(4) 위에 비도핑된 Al0.1Ga0.9As를 20nm정도의 두께로 성장시켜 제1의 완충층(5)을 형성하는 공정과; 상기 제1의 완충층(5) 위에 장벽층으로서 6nm정도 두께의 Al0.04Ga0.96As층(6) 우물층으로서 10nmIn the method of manufacturing a SEED (Self Electro-optic Effective Device) optical logic element, a first λ / 4n reflective layer made of AlAs having a predetermined refractive index n on a semi-insulated GaAs substrate 1 (where λ is The wavelength of light) 2 is grown to a thickness of about 72.1 nm, and a second λ / 4n reflective layer 3 made of Al 0.1 Ga 0.9 As having a relatively high refractive index is grown to a thickness of about 60.7 nm. Forming a lower mirror layer (10) by forming at least 12 cycles of the lambda / 4n reflection layer (2) and the second lambda / 4n reflection layer (3); Forming a cathode contact layer (4) by growing N + type Al 0.1 Ga 0.9 As on the lower mirror layer (10) to a thickness of about 500 nm; Forming a first buffer layer (5) by growing non-doped Al 0.1 Ga 0.9 As on the cathode contact layer (4) to a thickness of about 20 nm; 10 nm of Al 0.04 Ga 0.96 As layer 6 on the first buffer layer 5 having a thickness of about 6 nm as a barrier layer. 정도 두께의 GaAs층(7)을 순차로 성장시키되, 상기 장벽층(6) 및 상기 우물층(7)을 36주기로 성장시켜 얕은 다중양자우물층(SMQW)(11)을 형성하는 공정과; 상기 얕은 다중양자우물층(11) 위에 20㎚정도의 두께로 비도핑된 Al0.1Ga0.9As를 성장시켜 제2의 완충층(8)을 형성하는 공정과; 상기 제2의 완충층(8) 위에 506.7㎚정도의 두께로 P+형의 Al0.1Ga0.9As를 성장시켜 애노우드접촉층(9)을 형성하는 공정을 포함하는 것이 특징인 광 논리소자의 제조방법.Growing a GaAs layer (7) having a thickness of approximately one order, and growing the barrier layer (6) and the well layer (7) in 36 cycles to form a shallow multi-quantum well layer (SMQW) (11); Forming a second buffer layer (8) by growing Al 0.1 Ga 0.9 As undoped with a thickness of about 20 nm on the shallow multi-quantum well layer (11); Production method of the second is characterized by an optical logic element comprising a step of forming a buffer layer (8) Al 0.1 Ga 0.9 As grown to anode contact layer 9 of the P + type to a thickness to just above the 506.7㎚ . ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019930026307A 1993-12-03 1993-12-03 Optical self electro-optic effective device and method of manufacturing the same KR970006606B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019930026307A KR970006606B1 (en) 1993-12-03 1993-12-03 Optical self electro-optic effective device and method of manufacturing the same
JP30108394A JP2641705B2 (en) 1993-12-03 1994-12-05 Logic device exhibiting optical bistability without externally applied voltage and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930026307A KR970006606B1 (en) 1993-12-03 1993-12-03 Optical self electro-optic effective device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR950021801A true KR950021801A (en) 1995-07-26
KR970006606B1 KR970006606B1 (en) 1997-04-29

Family

ID=19369766

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930026307A KR970006606B1 (en) 1993-12-03 1993-12-03 Optical self electro-optic effective device and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR970006606B1 (en)

Also Published As

Publication number Publication date
KR970006606B1 (en) 1997-04-29

Similar Documents

Publication Publication Date Title
US5345328A (en) Tandem resonator reflectance modulator
US5068867A (en) Coupled quantum well strained superlattice structure and optically bistable semiconductor laser incorporating the same
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
US5315430A (en) Strained layer Fabry-Perot device
US5101293A (en) Electrooptic device for modulation of intensity and phase of transmitted or reflected light at discrete operating wavelengths
KR930020790A (en) Surface Emitting Semiconductor Laser
US5027178A (en) Electrically tunable interference filters and methods for their use
JPH02103021A (en) Quantum well optical device
US5012474A (en) Polarization switching in active devices
KR950021801A (en) Optical logic element (SEED) and its manufacturing method
US4768200A (en) Internal current confinement type semiconductor light emission device
KR920701859A (en) Fabry Ferro Modulator
KR970048681A (en) Vertical structured optical modulator using dual wavelength DBR
Jennings et al. Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JPH06350190A (en) Wavelength controlled surface emitting semiconductor laser
JP2641705B2 (en) Logic device exhibiting optical bistability without externally applied voltage and method of manufacturing the same
KR950021812A (en) Asymmetric Fabry-Perot Seed (ASFP-SEED) Optical Logic Devices
AU653261B2 (en) Current injection modulator
JPH04242989A (en) Semiconductor light emitting device
KR0170481B1 (en) High efficiency nonbiased optical bistable with full reflection thin film
JPH03240285A (en) Bistable semiconductor laser
KR950029799A (en) Low Voltage Operation Optical Bistable Logic Devices
EP0397690A1 (en) Electrooptic modulator
US5093746A (en) Current injection modulator

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070702

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee