JPH03240285A - Bistable semiconductor laser - Google Patents

Bistable semiconductor laser

Info

Publication number
JPH03240285A
JPH03240285A JP3633390A JP3633390A JPH03240285A JP H03240285 A JPH03240285 A JP H03240285A JP 3633390 A JP3633390 A JP 3633390A JP 3633390 A JP3633390 A JP 3633390A JP H03240285 A JPH03240285 A JP H03240285A
Authority
JP
Japan
Prior art keywords
region
saturable absorption
absorption region
gain
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3633390A
Other languages
Japanese (ja)
Other versions
JPH07112087B2 (en
Inventor
Hiroyuki Uenohara
裕行 植之原
Hidetoshi Iwamura
岩村 英俊
Mitsuru Naganuma
永沼 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2036333A priority Critical patent/JPH07112087B2/en
Publication of JPH03240285A publication Critical patent/JPH03240285A/en
Publication of JPH07112087B2 publication Critical patent/JPH07112087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/026Optical bistable devices based on laser effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To control hysteresis characteristic in current vs. optical output charac teristic and optical input/output characteristic of a laser by introducing a superlattice structure to a gain region and a saturable absorption region, and forming a resonator perpendicularly to the growing surface of a crystal. CONSTITUTION:A distributed reflection type reflecting mirror 2 made of a multilayer film of AlyGa1-yAs/AlzGa1-zAs (0<y<z), a saturable absorption region 3 having an AlxGa1-xAs/GaAs superlattice structure, an N-type AluGa1-uAs (u>=w) clad layer 4, a gain region 5 having an AlwGa1-wAs/GaAs superlattice structure, a P-type AluGa1-uAs clad layer 6, and a P<+> type AlyGa1-yAs cap layer 7 are formed on a GaAs substrate 1. Here, the relationship between the (w) and the (x) is that the exciton absorption peak wavelength of the region 5 is equal to or longer than that of the region 3. The (r) of the layer 7 is so set that the wavelength of the band gap of the cap layer is shorter than an oscillation wavelength. Electrodes 8, 9 on the region 3 are for injection a current, and an electrode 10 on the mirror 2 is for applying an electric field to the region 3.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光通信・光情報システムの構成要素となる
期待される光交換機・光中継器などに利用可能な光論理
・光スイツチング動作を行う双安定半導体レーザに関す
るものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention provides optical logic and optical switching operations that can be used in optical exchanges, optical repeaters, etc., which are expected to be components of optical communication and optical information systems. The present invention relates to bistable semiconductor lasers.

(従来の技術) 電流対光出力特性および光入出力特性にヒステリシス現
象を持つ双安定半導体レーザは、光通信・光情報システ
ムを構成する機能デバイス(例えば高速光スイッチ、光
論理演算、光メモリなど)として期待されている。
(Prior art) Bistable semiconductor lasers, which have hysteresis phenomena in current vs. optical output characteristics and optical input/output characteristics, are used in functional devices that constitute optical communication and optical information systems (e.g., high-speed optical switches, optical logic operations, optical memories, etc.) It is expected that

従来の双安定半導体レーザの結晶面に垂直方向の断面図
を第5図に示す。第5図に示す構造は、半導体の成長層
に平行な方向に光を出射する半導体レーザのP側電極、
n側電極のうち、エピタキシャル成長面側に位置する電
極を二つ以上の複数に分割した構造となっており、相互
に高抵抗の分m領域14を挟んで電気的に分離されてい
る。第5図では、−例として2電極の場合を示した。第
5図において、一方の領域12は光を発生して増幅する
利得領域であり、他方の領域13は利得領域12にて発
生し、レーザの共振器を導波してきた光を吸収する可飽
和吸収領域である。注入電流または外部からの入力光が
小さいときは、共振器内の光が可飽和吸収領域13で吸
収されるので、共振器損失が大きく、発振に至らない。
FIG. 5 shows a cross-sectional view of a conventional bistable semiconductor laser in a direction perpendicular to the crystal plane. The structure shown in FIG. 5 consists of a P-side electrode of a semiconductor laser that emits light in a direction parallel to the semiconductor growth layer;
Of the n-side electrodes, the electrode located on the epitaxial growth surface side is divided into two or more parts, which are electrically separated from each other with a high-resistance m region 14 in between. In FIG. 5, the case of two electrodes is shown as an example. In FIG. 5, one region 12 is a gain region that generates and amplifies light, and the other region 13 is a saturable region that absorbs light generated in the gain region 12 and guided through the laser resonator. This is an absorption area. When the injected current or external input light is small, the light inside the resonator is absorbed by the saturable absorption region 13, so the resonator loss is large and oscillation does not occur.

注入電流または入力光を大きくすると、可飽和吸収領域
13の光の吸収係数が共振器内の光強度に依存し、光に
より伝導帯へ励起された電子が、エネルギーバンドの底
にたまるので、吸収係数が減少する。従って共振器損失
が減少するので、ある励起強度を境にして発振に至る。
When the injection current or input light is increased, the light absorption coefficient of the saturable absorption region 13 depends on the light intensity within the resonator, and the electrons excited to the conduction band by the light accumulate at the bottom of the energy band, resulting in absorption. The coefficient decreases. Therefore, since the resonator loss is reduced, oscillation occurs after a certain excitation intensity is reached.

この様子を第6図に示す。This situation is shown in FIG.

利得領域12および可飽和吸収領域13としてバルク構
造を用い、光を結晶成長層に平行な方向に出射する通常
の端面発光型の半導体レーザを用いた双安定半導体レー
ザの試みは“カワグチ”(H,Kawaguchi) 
と“°イワネ” (G、Iwane)により提案されて
いる(雑誌エレクトロニクス・レターズ1981年17
巻167〜168真)。利得領域12および可飽和吸収
領域13を多重量子井戸(multiple quan
tum well)構造とし、光を前述と同様のに出射
する端面発光型の双安定半導体レーザの試みは、AlG
aAs / GaAs系について°“タルチャ゛’ (
S、Tarucha)と“°オカモ)” (H,Oka
moto)により提案されている(雑誌アプライド・フ
ィジックス・レターズ1986年49巻543〜545
頁)。
Kawaguchi (H , Kawaguchi)
and “°Iwane” (Magazine Electronics Letters 1981, 17).
Volumes 167-168 (true). The gain region 12 and the saturable absorption region 13 are formed by multiple quantum wells (multiple quantum wells).
An attempt was made to create an edge-emitting bistable semiconductor laser with a tum well structure that emits light in the same manner as described above.
About aAs/GaAs system
S, Tarucha) and “°Okamo)” (H, Oka
moto) (Magazine Applied Physics Letters, 1986, Vol. 49, 543-545)
page).

第7図に示すように、バルク構造を用い、また光を結晶
成長面に対して垂直方向に出射することにより、2次元
並列処理やモノリシックな形成に適する特長を有する面
発光型双安定半導体レーザについては、′°ニッタ” 
(J、Nttta)と“イガ(K、Iga)により提案
されている(電子情報通信学会論文誌Cl987年J7
0−C巻517〜524頁)。
As shown in Figure 7, a surface-emitting bistable semiconductor laser has features that are suitable for two-dimensional parallel processing and monolithic formation by using a bulk structure and emitting light in a direction perpendicular to the crystal growth plane. For more information, click here.
(J, Nttta) and Iga (K, Iga) (IEICE Transactions Cl987 J7
0-C, pp. 517-524).

(発明が解決しようとする。課題) 前記“カワグチ”等や“二ツタ゛等の提案のように、バ
ルブ構造を用いた双安定半導体レーザは、可飽和吸収領
域の吸収の飽和が起こるまでの光強度が大きいので、動
作時の消費パワーが大きくなる。またフランツ−ケルデ
イツシュ効果として知られているバルブ構造の吸収係数
の印加電界による変化量は小さく、外部からの電界印加
によるヒステリシス特性の制御性に乏しい。“カワグチ
′。
(Problem to be solved by the invention) As proposed by Kawaguchi et al. and Futatsuta et al., a bistable semiconductor laser using a valve structure is capable of absorbing light until saturation of absorption in the saturable absorption region occurs. Since the strength is large, the power consumption during operation is large.Also, the amount of change in the absorption coefficient of the valve structure due to the applied electric field, known as the Franz-Kjelditssch effect, is small, making it difficult to control the hysteresis characteristics by applying an external electric field. Scarce. “Kawaguchi”.

等や“タルチャ”等の提案のように、通常の端面発光型
の双安定半導体レーザでは、光の導波する導波路領域が
幅5μm、厚さ0.1μ園程度のため、外部からの入力
光を効率よく導波路領域に結合させることが困難であり
、次世代の主力を担うであろうと考えられる2次元並列
処理にも適さない。
In a typical edge-emitting bistable semiconductor laser, as proposed by et al. and "Talcha" et al., the waveguide region for guiding light is about 5 μm wide and 0.1 μm thick, making it difficult for external input to occur. It is difficult to efficiently couple light into the waveguide region, and it is not suitable for two-dimensional parallel processing, which is thought to be the mainstay of the next generation.

そこで、本発明の課題は、前記諸欠点を除去し、ヒステ
リシス特性の制御性に優れ、2次元並列処理への適正性
も大きい双安定半導体レーザを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a bistable semiconductor laser which eliminates the above-mentioned drawbacks, has excellent controllability of hysteresis characteristics, and is highly suitable for two-dimensional parallel processing.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する手段は、
光を発生し増幅する利得領域aと、共振器内に存在し光
を吸収して自らの吸収係数の飽和により双安定動作を発
生させる可飽和吸収領域をを有する双安定半導体レーザ
において、利得領域aと可飽和吸収領域をを半導体結晶
の成長方向に形成することによって、光を半導体結晶面
に対して垂直方向に出射させ、かつ利得領域aと可飽和
吸収領域をを超格子構造として2次元励起子の特性を応
用することにより、すなわち可飽和吸収領域をの吸収係
数の波長依存性が可飽和吸収領域すへの印加電界により
変化する特性、いわゆる量子閉じ込めシュタルク効果を
利用して、可飽和吸収領域をの印加電界により、双安定
半導体レーザの1を流対光出力特性および光入出力特性
におけるヒステリシス特性を制御する。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems are as follows:
In a bistable semiconductor laser, the gain region a has a gain region a that generates and amplifies light, and a saturable absorption region that exists in the resonator and absorbs light and generates bistable operation by saturating its own absorption coefficient. By forming a and a saturable absorption region in the growth direction of the semiconductor crystal, light is emitted perpendicularly to the semiconductor crystal plane, and the gain region a and the saturable absorption region are formed into a two-dimensional superlattice structure. By applying the properties of excitons, that is, the property that the wavelength dependence of the absorption coefficient of a saturable absorption region changes depending on the electric field applied to the saturable absorption region, the so-called quantum confined Stark effect, The electric field applied to the absorption region controls the hysteresis characteristics in the optical output characteristics and optical input/output characteristics of the bistable semiconductor laser.

(実施例) 以下に図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の結晶成長面に対して垂直方
向の断面図である。
FIG. 1 is a cross-sectional view in a direction perpendicular to the crystal growth plane of an embodiment of the present invention.

この実施例は、GaAs基板1の上に順にAlyGa、
In this embodiment, AlyGa, AlyGa, and
.

As/AIJa+−uAs (0<y <z )の多層
膜から構成される分布反射(distribut、ed
 Bragg reflector。
Distributed reflection composed of a multilayer film of As/AIJa+-uAs (0<y<z)
Bragg reflector.

DBR)形反射鏡2、AlGaAs 造の可飽和吸収領域3、n −A1.Ga+−uAs 
(u≧W)クラッド層4、A1wGa+−wAs/Ga
As超格子構造の利得領域5 (wとXの関係は、利得
領域5の励起子吸収ピーク波長が、可飽和吸収領域3の
励起子吸収ピーク波長に等しいか、またはそれよりも長
くなるように設定) 、p−A1uGa+−uAsクラ
ッド層6、p ”  AIrGa+−rAsキー117
プ層7(rは、キャップ層のバンドギャップの波長が発
振波長よりも短くなるように設定)を成長する。DBR
形反対反射鏡2層厚は発振波長の4分の1をさらに各層
の屈折率で割った値となり、超格子構造の可飽和吸収領
域3の各層厚は100Å以下の値とする。また超格子構
造の利得領域5の各層厚も、可飽和吸収領域3と同様1
00Å以下に設定する。電極を形成するため、まずDB
R形反対反射鏡2さまでメサをエツチングにより形成し
た後、可飽和吸収領域3よりも小さい面積のメサを、可
飽和吸収領域3の深さまでエツチングにより形成する。
DBR) type reflector 2, a saturable absorption region 3 made of AlGaAs, n-A1. Ga+-uAs
(u≧W) cladding layer 4, A1wGa+-wAs/Ga
Gain region 5 of As superlattice structure (The relationship between w and X is such that the exciton absorption peak wavelength of gain region 5 is equal to or longer than the exciton absorption peak wavelength of saturable absorption region 3. setting), p-A1uGa+-uAs cladding layer 6, p'' AIrGa+-rAs key 117
A cap layer 7 (r is set such that the wavelength of the band gap of the cap layer is shorter than the oscillation wavelength) is grown. DBR
The thickness of the two layers of the anti-shaped reflecting mirror is a value obtained by further dividing one quarter of the oscillation wavelength by the refractive index of each layer, and the thickness of each layer of the saturable absorption region 3 of the superlattice structure is set to a value of 100 Å or less. Also, the thickness of each layer in the gain region 5 of the superlattice structure is 1
Set to 00 Å or less. To form the electrode, first DB
After a mesa is formed by etching up to the R-shaped counter-reflecting mirror 2, a mesa having an area smaller than the saturable absorption region 3 is formed by etching to the depth of the saturable absorption region 3.

キャップ層7、可飽和吸収領域3の上の電極8.9は、
電流注入用であり、DBR形反対反射鏡2の電極lOは
、可飽和吸収領域3への電界印加用である。p形成長面
倒の反射鏡11は、TiO□/sio、などの誘電体多
層膜またはAuなとの金属蒸着膜などである。
The cap layer 7, the electrode 8.9 on top of the saturable absorption region 3,
The electrode IO of the DBR type counter-reflector 2 is used for current injection, and the electrode IO of the DBR type counter-reflector 2 is used for applying an electric field to the saturable absorption region 3. The reflective mirror 11, which requires p-type growth, is a dielectric multilayer film such as TiO□/sio, or a metal vapor deposited film such as Au.

次にこの実施例の双安定半導体レーザの動作について説
明する。超格子構造の吸収係数の波長依存性を第3図に
示す。この実施例の双安定半導体レーザの発振波長は、
第3図中の矢印に示されているように、バンドギャップ
縮小効果により、可飽和吸収領域3の励起子吸収ピーク
よりも長波長となるので、可飽和吸収領域3への印加が
Ovのときは吸収が小さい。ところが、可飽和吸収領域
3への逆バイアス印加電界を大きくしていくと、量子閉
じ込めシュタルク効果により、励起子吸収ピークが長波
長側にシフトし、共振損失が増大するので、発振闇値が
大きくなるとともに、双安定特性がより顕著となる。2
次元励起子による吸収飽和の光強度は、バルクに比べて
小さいので、低パワーで動作し、吸収係数が大きいこと
から素子の小型化が実現可能である。また量子効果によ
って微分利得係数が大きいので、高速化や闇値低減に有
効となる。ヒステリシスの制御を可飽和吸収領域3への
逆バイアス印加により行う場合は、逆バイアスによって
キャリアの吸い出しができるので、スイッチ・オフ時間
の短縮ができる。さらに共振器が結晶成長面に対して垂
直方向に形成される垂直共振器構造のため、第4図に示
すような2次元配列が容易であり、2次元並列処理に適
し、モノリシックな作製が可能である。第4図において
、34は本発明の双安定半導体レーザである。
Next, the operation of the bistable semiconductor laser of this embodiment will be explained. FIG. 3 shows the wavelength dependence of the absorption coefficient of the superlattice structure. The oscillation wavelength of the bistable semiconductor laser in this example is
As shown by the arrow in FIG. 3, due to the band gap reduction effect, the wavelength becomes longer than the exciton absorption peak of the saturable absorption region 3, so when the voltage applied to the saturable absorption region 3 is Ov. has low absorption. However, as the reverse bias applied electric field to the saturable absorption region 3 is increased, the exciton absorption peak shifts to longer wavelengths due to the quantum confined Stark effect, and the resonance loss increases, so the oscillation darkness value increases. As the temperature increases, the bistable property becomes more pronounced. 2
The optical intensity of absorption saturation by dimensional excitons is smaller than that of the bulk, so it operates with low power, and the absorption coefficient is large, making it possible to miniaturize the device. Furthermore, since the differential gain coefficient is large due to the quantum effect, it is effective for speeding up and reducing dark values. When the hysteresis is controlled by applying a reverse bias to the saturable absorption region 3, carriers can be sucked out by the reverse bias, so that the switch-off time can be shortened. Furthermore, because of the vertical cavity structure in which the cavity is formed perpendicularly to the crystal growth plane, a two-dimensional arrangement as shown in Figure 4 is easy, making it suitable for two-dimensional parallel processing and capable of monolithic fabrication. It is. In FIG. 4, 34 is a bistable semiconductor laser of the present invention.

本発明の特性の数値解析結果を第2図に示す。The results of numerical analysis of the characteristics of the present invention are shown in FIG.

第2図(a)は電流対先出力特性、第2図(b)は光入
出力特性、第2図(C)は可飽和吸収領域3に電界を印
加して、発振波長における吸収係数を変化させたときの
電流対光出力特性を表わしている。解析では、 二ツタ
゛’ (J、N1tta) と“イガ”(K、Iga)
が電子情報通信学会論文誌C1987年J70−C巻5
17〜524頁中に記載されている手法を用いた。第2
図(a)において、実線は超格子構造を用いた場合、破
線はバルク構造を想定した解析結果を示し、いずれもヒ
ステリシスを示しているが、発振闇値電流は超格子構造
の方が低くなっている。解析においては共振器長7μm
、第1図に示す利得領域5のうち、バンド・ギャップエ
ネルギーの小さいCaAs層の合計の厚みおよび第7図
に示す利得領域25の厚みを1μ鴫、第1図に示す可飽
和吸収領域3のうち、バンド・ギャップエネルギーの小
さいCaAs層の合計の厚みおよび第7図に示す可飽和
吸収領域24の厚みをl grm 、反射率を0.97
、波長を0.88μmとした。第2図(b)において実
線は超格子構造を用いた場合、破線はバルク構造を想定
した場合の解析結果を示し、構造パラメータは、第2図
(a)と同じ値を用いている。ただし、利得領域におけ
る超格子構造、バルク構造の微分利得係数を、それぞれ
4 X10”′c1.2.57xlO−” c−とし、
可飽和吸収領域における超格子構造、バルク構造の微分
利得係数を、利得領域の値の1.5倍に設定した。また
超格子構造の場合のバイアス電流値は15.4kA/c
n+2、バルク構造の場合のバイアス電流値は23に4
7cm”とした。光入出力特性においてもヒステリシス
が得られる。第2図(C)は電流対光出力特性の可飽和
吸収領域3への印加電界依存性の解析結果を示し、可飽
和吸収領域3への印加電界を小さ(するほど(逆バイア
スの場合はその絶対値が大きくなるほど)、すなわち吸
収係数が大きくなるにつれて、立ち上がり閾値、立ち下
がり閾値が、ともに大きくなり、ヒステリシス幅が広く
なる傾向が見られる。ただし、解析では可飽和吸収領域
3の微分利得係数の値6 Xl0−” cm” (A)
を基準にして2倍(B) 、3分の1(C)として計算
を行っている。
Figure 2(a) shows the current vs. output characteristics, Figure 2(b) shows the optical input/output characteristics, and Figure 2(C) shows the absorption coefficient at the oscillation wavelength by applying an electric field to the saturable absorption region 3. It shows the current vs. light output characteristics when changed. In the analysis, Nitsuta' (J, N1tta) and "Iga" (K, Iga)
IEICE Journal of Electronics, Information and Communication Engineers, Vol. 5, J70-C, 1987
The procedure described on pages 17-524 was used. Second
In figure (a), the solid line shows the analysis results assuming a superlattice structure, and the dashed line shows the analysis results assuming a bulk structure. Both show hysteresis, but the oscillation dark value current is lower in the superlattice structure. ing. In the analysis, the resonator length was 7 μm.
, the total thickness of the CaAs layer with small band gap energy in the gain region 5 shown in FIG. 1 and the thickness of the gain region 25 shown in FIG. Among them, the total thickness of the CaAs layer with small band gap energy and the thickness of the saturable absorption region 24 shown in FIG. 7 are l grm , and the reflectance is 0.97.
, the wavelength was set to 0.88 μm. In FIG. 2(b), the solid line indicates the analysis result when a superlattice structure is used, and the broken line indicates the analysis result when a bulk structure is assumed, and the same values of the structural parameters as in FIG. 2(a) are used. However, the differential gain coefficients of the superlattice structure and the bulk structure in the gain region are respectively 4X10"'c1.2.57xlO-"c-,
The differential gain coefficient of the superlattice structure and bulk structure in the saturable absorption region was set to 1.5 times the value in the gain region. In addition, the bias current value in the case of a superlattice structure is 15.4 kA/c
n+2, the bias current value in the case of bulk structure is 23 to 4
7 cm". Hysteresis is also obtained in the optical input/output characteristics. Figure 2 (C) shows the analysis results of the electric field dependence of the current vs. optical output characteristics on the electric field applied to the saturable absorption region 3. As the electric field applied to 3 becomes smaller (in the case of reverse bias, the absolute value becomes larger), that is, as the absorption coefficient becomes larger, both the rising threshold and the falling threshold tend to become larger, and the hysteresis width becomes wider. However, in the analysis, the value of the differential gain coefficient of saturable absorption region 3 is 6 Xl0-"cm" (A)
Calculations are made based on 2 times (B) and 1/3 (C).

以上はAlGaAs / GaAs系について述べたが
、InGaAsP/InP系、InGaAs / Ga
As歪超格子系においても、同様の作用・効果を得るこ
とが可能である。
The above description has been about the AlGaAs/GaAs system, but the InGaAsP/InP system, InGaAs/Ga
Similar actions and effects can be obtained also in the As strained superlattice system.

(発明の効果) 以上説明したように、本発明は双安定半導体レーザにお
いて、利得領域5および可飽和吸収領域3に超格子構造
を導入し、共振器を結晶の成長面に対して垂直方向に形
成する垂直共振器構造とすることにより、 (1)2次元励起子の吸収係数の波長依存性が、印加電
界により変化する量子閉じ込めシュタルク効果を利用す
ることによって、ヒステリシス特性の制御性が大きい、 (2)吸収飽和の起こる光強度が小さいので、低パワー
での動作が可能である、 (3)2次元励起子による吸収係数が大きいことを利用
して小型化が可能である、 (4)量子効果により微分利得係数が大きくなるので、
高速化、闇値低減に適する、 (5)  ヒステリシスの制御を、可飽和吸収領域3へ
逆バイアスを印加することにより行う場合は、スイッチ
・オフ時間を短縮できる、(6)垂直共振器構造のため
2次元並列処理、モノリシックな形成が可能である という効果がある。
(Effects of the Invention) As explained above, the present invention introduces a superlattice structure into the gain region 5 and the saturable absorption region 3 in a bistable semiconductor laser, and aligns the resonator in a direction perpendicular to the crystal growth plane. By forming a vertical cavity structure, (1) the wavelength dependence of the absorption coefficient of two-dimensional excitons changes with the applied electric field, making use of the quantum-confined Stark effect, which allows for greater controllability of hysteresis characteristics; (2) Since the light intensity at which absorption saturation occurs is low, operation at low power is possible. (3) Downsizing is possible by taking advantage of the large absorption coefficient due to two-dimensional excitons. (4) Because the differential gain coefficient increases due to quantum effects,
(5) When hysteresis is controlled by applying a reverse bias to the saturable absorption region 3, the switch-off time can be shortened; (6) Vertical resonator structure Therefore, two-dimensional parallel processing and monolithic formation are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の結晶成長面に対して垂直方
向の断面図、 第2図(a)は本発明の一実施例の電流対光出力特性の
解析結果を示す図、 第2図(1))は本発明の一実施例の光入出力特性の解
析結果を示す図、 第2図(C)は本発明に係わる電流対光出力特性の印加
電界依存性を示す図、 第3図は超格子構造の吸収係数の波長依存性を示す図、 第4図は本発明の2次元配列構成の斜視図、第5図は従
来の双安定半導体レーザの結晶成長面に対して垂直方向
の断面図、 第6図(a)は電流対光出力特性図、 第6図(b)は光入出力特性図、 第7図は“二ツタ′°と“イガ″の提案による面発光形
双安定半導体レーザの断面図である。 1・・・GaAs基板 2・・・^!、Ga、−、As/A1.Ga、−、As
D B R厚反射鏡 3・・・^1xGa I−XAs/GaAs超格子構造
の可飽和吸収領域 4− n−AluGaI−uAsクラッド層5 ・・・
A1wGa+−wAs/GaAs超格子構造の利得領域
6−P−^1uGaI−aAsクラッド層7 ”・p 
”  A1rGa+−rAsAsキャラ8・・・利得領
域のP側電極 9・・・利得領域のn側電極 10・・・可飽和吸収領域への電界印加用電極11・・
・P検反射鏡    12・・・利得領域13・・・可
飽和吸収領域  14・・・分離領域15・・・n形基
板     16・・・n形りラッド層17・・・ナロ
ーギャップの半導体 18・・・p形りラッド層  19・・・n側電極20
・・・利得領域のp側電極 21・・・可飽和吸収領域のP側電極 22・・・n形TE板     23・・・n形りラッ
ド層24・・・可飽和吸収領域(n形) 25・・・利得領域(p形)26・・・P形りラッド層
27・・・キャップ層    28・・・n側電極29
・・・p側電極     30・・・n側反射鏡31・
・・P検反射鏡    32・・・光共振33・・・光
出力 @1 図 氷東R 第2図 ζC) fフ几 氷41碗 @3図 雉−凌長一長 先入力 34−−−41を弓日−ヌZ安′足−ギj季≧A引L−
プ第6図 てa) (1)? 先入力 第5図 n 第7図
FIG. 1 is a cross-sectional view in the direction perpendicular to the crystal growth plane of an embodiment of the present invention, FIG. FIG. 2(1)) is a diagram showing the analysis results of the optical input/output characteristics of an embodiment of the present invention, FIG. 2(C) is a diagram showing the dependence of the current vs. optical output characteristics on the applied electric field according to the present invention, Fig. 3 is a diagram showing the wavelength dependence of the absorption coefficient of the superlattice structure, Fig. 4 is a perspective view of the two-dimensional array configuration of the present invention, and Fig. 5 is a diagram showing the crystal growth plane of a conventional bistable semiconductor laser. Vertical cross-sectional view, Figure 6 (a) is a current vs. optical output characteristic diagram, Figure 6 (b) is an optical input/output characteristic diagram, and Figure 7 is a surface proposed by “Futatsuta'° and Iga”. It is a sectional view of a light-emitting type bistable semiconductor laser. 1...GaAs substrate 2...^!, Ga, -, As/A1.Ga, -, As
DBR thick reflector 3...^1xGa I-XAs/GaAs superlattice structure saturable absorption region 4-n-AluGaI-uAs cladding layer 5...
A1wGa+-wAs/GaAs superlattice structure gain region 6-P-^1uGaI-aAs cladding layer 7''・p
” A1rGa+-rAsAs character 8... P-side electrode of gain region 9... N-side electrode of gain region 10... Electrode for applying electric field to saturable absorption region 11...
・P detection reflector 12...Gain region 13...Saturable absorption region 14...Isolation region 15...N type substrate 16...N type rad layer 17...Narrow gap semiconductor 18 ...p-shaped rad layer 19...n-side electrode 20
P-side electrode 21 of gain region P-side electrode 22 of saturable absorption region N-type TE plate 23 N-shaped rad layer 24 Saturable absorption region (n-type) 25... Gain region (p type) 26... P-shaped rad layer 27... Cap layer 28... N-side electrode 29
...p-side electrode 30...n-side reflecting mirror 31.
... P detection reflector 32... Optical resonance 33... Optical output @1 Fig. Ice East R Fig. 2 ζC) 41 to bow day - Nu Z cheap foot - Gi j season ≧ A pull L -
Figure 6 a) (1)? First input Figure 5 n Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、光を発生し増幅する利得領域aと共振器内に存在し
光を吸収して自らの吸収係数の飽和により双安定動作を
発生させる可飽和吸収領域をを有する双安定半導体レー
ザにおいて、利得領域aと可飽和吸収領域bを半導体結
晶の成長方向に形成することによって光を半導体結晶面
に対して垂直方向に出射させ、かつ利得領域aと可飽和
吸収領域bを超格子構造として2次元励起子の特性によ
り、可飽和吸収領域bの吸収係数の波長依存性を可飽和
吸収領域bへの印加電界により変化させ(量子閉じ込め
シュタルク効果)、可飽和吸収領域をの印加電界により
、双安定半導体レーザの電流対光出力特性および光入出
力特性におけるヒステリシス特性を制御することを特徴
とする双安定半導体レーザ。
1. In a bistable semiconductor laser that has a gain region a that generates and amplifies light and a saturable absorption region that exists in the resonator and absorbs light and generates bistable operation by saturating its own absorption coefficient, the gain By forming the region a and the saturable absorption region b in the growth direction of the semiconductor crystal, light is emitted perpendicularly to the semiconductor crystal plane, and the gain region a and the saturable absorption region b are formed into a two-dimensional superlattice structure. Due to the properties of excitons, the wavelength dependence of the absorption coefficient of saturable absorption region b can be changed by the electric field applied to saturable absorption region b (quantum confined Stark effect), and the saturable absorption region can be made bistable by the electric field applied to it. A bistable semiconductor laser characterized by controlling hysteresis characteristics in the current versus optical output characteristics and optical input/output characteristics of the semiconductor laser.
JP2036333A 1990-02-19 1990-02-19 Bistable semiconductor laser Expired - Fee Related JPH07112087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036333A JPH07112087B2 (en) 1990-02-19 1990-02-19 Bistable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036333A JPH07112087B2 (en) 1990-02-19 1990-02-19 Bistable semiconductor laser

Publications (2)

Publication Number Publication Date
JPH03240285A true JPH03240285A (en) 1991-10-25
JPH07112087B2 JPH07112087B2 (en) 1995-11-29

Family

ID=12466903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036333A Expired - Fee Related JPH07112087B2 (en) 1990-02-19 1990-02-19 Bistable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07112087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2341974A (en) * 1998-09-22 2000-03-29 Secr Defence Semiconductor device incorporating a superlattice structure
US6608846B1 (en) * 2001-05-01 2003-08-19 Sandia Corporation Bistable laser device with multiple coupled active vertical-cavity resonators
CN106329310A (en) * 2016-11-15 2017-01-11 中国科学院福建物质结构研究所 Mode-locked semiconductor laser based on multimode interference structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296573A (en) * 1986-06-17 1987-12-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS6446996A (en) * 1988-08-03 1989-02-21 Agency Ind Science Techn Method for realizing optical bistable function and optical bistable function element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296573A (en) * 1986-06-17 1987-12-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS6446996A (en) * 1988-08-03 1989-02-21 Agency Ind Science Techn Method for realizing optical bistable function and optical bistable function element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2341974A (en) * 1998-09-22 2000-03-29 Secr Defence Semiconductor device incorporating a superlattice structure
US6545340B1 (en) 1998-09-22 2003-04-08 Qinetiq Limited Semiconductor device
US6608846B1 (en) * 2001-05-01 2003-08-19 Sandia Corporation Bistable laser device with multiple coupled active vertical-cavity resonators
CN106329310A (en) * 2016-11-15 2017-01-11 中国科学院福建物质结构研究所 Mode-locked semiconductor laser based on multimode interference structure

Also Published As

Publication number Publication date
JPH07112087B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US5457569A (en) Semiconductor amplifier or laser having integrated lens
US5212706A (en) Laser diode assembly with tunnel junctions and providing multiple beams
EP0465145B1 (en) Vertical cavity laser with mirror having controllable reflectivity
US5260822A (en) Tapered semiconductor laser gain structure with cavity spoiling grooves
US20050271092A1 (en) Electrooptically wavelength-tunable resonant cavity optoelectronic device for high-speed data transfer
JP5391240B2 (en) Surface emitting laser, light source, and optical module
JPH06224521A (en) Integrated short-cavity laser
US5052008A (en) Current injection laser
US4982408A (en) Variable oscillation wavelength semiconduction laser device
EP0935319B1 (en) Surface-emitting laser device
KR100381985B1 (en) Vertical cavity surface emitting laser (VCSEL) and its manufacturing method
JPH04291304A (en) Optical waveguide and control method for light signal
JPS59119783A (en) Semiconductor light emitting device
JPH03240285A (en) Bistable semiconductor laser
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
US4768200A (en) Internal current confinement type semiconductor light emission device
JPH0563301A (en) Semiconductor optical element and optical communication system
US6608846B1 (en) Bistable laser device with multiple coupled active vertical-cavity resonators
JPH03248130A (en) Semiconductor optical amplifying element, semiconductor optical element and method for using these elements
JPH1012960A (en) Semiconductor laser device
JPS62137893A (en) Semiconductor laser
JP2528886B2 (en) Semiconductor light emitting device
JPH0774427A (en) Semiconductor laser element and laser module
JPH0629625A (en) Vertical resonator type bistable semiconductor laser
JPH07122723A (en) Wavelength conversion laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees