JPH06350190A - Wavelength controlled surface emitting semiconductor laser - Google Patents
Wavelength controlled surface emitting semiconductor laserInfo
- Publication number
- JPH06350190A JPH06350190A JP13598593A JP13598593A JPH06350190A JP H06350190 A JPH06350190 A JP H06350190A JP 13598593 A JP13598593 A JP 13598593A JP 13598593 A JP13598593 A JP 13598593A JP H06350190 A JPH06350190 A JP H06350190A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- quantum well
- multiple quantum
- type semiconductor
- dbr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18341—Intra-cavity contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、広範囲に渡り発振波長
を任意にコントロールすることができる垂直共振器型の
面発光半導体レーザに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical cavity surface emitting semiconductor laser capable of arbitrarily controlling the oscillation wavelength over a wide range.
【0002】[0002]
【従来の技術】従来の垂直共振器型面発光半導体レーザ
の発振波長は、外部ミラーや外部共振器を取り付けて共
振器長を変更したり、温度制御により活性層のバンドギ
ャップエネルギーを変化させることによって制御を行っ
ていた。しかし、外部ミラーや外部共振器を取り付けた
構造では、レーザ素子との集積化ができず、素子を小型
化できないという問題があった。また温度により活性層
のバンドギャップエネルギーを変更する方法では、しき
い値が上昇するとともに素子の劣化によりレーザの寿命
が短くなるという問題があった。このため、共振器の片
側または両側に複数層積層されたp−n接合、またはn
−p接合からなる分布反射器(DBR)を設け、このD
BRに電界を印加して屈折率を変えることによりレーザ
の発振波長を変化させる面発光型波長制御DBRレーザ
が採用されている(例えば、特開平3ー11689)。
しかしながらDBRに電界を加えることにより制御でき
る波長範囲は100オングストローム程度に過ぎず、多
重送受信に必要な広い発振波長域を確保することは不可
能であった。2. Description of the Related Art Regarding the oscillation wavelength of a conventional vertical cavity surface emitting semiconductor laser, an external mirror or an external cavity is attached to change the cavity length, or the band gap energy of the active layer is changed by controlling the temperature. Was controlled by. However, in the structure in which the external mirror and the external resonator are attached, there is a problem that the laser device cannot be integrated and the device cannot be downsized. Further, the method of changing the bandgap energy of the active layer depending on the temperature has a problem that the threshold value rises and the device life is shortened to shorten the life of the laser. Therefore, a p-n junction in which a plurality of layers are stacked on one side or both sides of the resonator, or n
-A distributed reflector (DBR) consisting of a p-junction is provided, and this D
A surface emitting type wavelength controlled DBR laser has been adopted in which the oscillation wavelength of the laser is changed by applying an electric field to BR to change the refractive index (for example, JP-A-3-11689).
However, the wavelength range that can be controlled by applying an electric field to the DBR is only about 100 Å, and it has been impossible to secure a wide oscillation wavelength range necessary for multiplex transmission and reception.
【0003】[0003]
【発明が解決しようとする課題】この発明は、上述のよ
うな問題点に鑑みてなされたもので、広範囲に渡り発振
波長を変化させることができる波長制御型面発光半導体
レーザを提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and provides a wavelength control type surface emitting semiconductor laser capable of changing the oscillation wavelength over a wide range. is there.
【0004】[0004]
【課題を解決するための手段】本発明は、上記問題点に
鑑みてなされたものであって、発振器の片側または両側
に、屈折率の低いバルク層と、このバルク層よりも屈折
率の高い多重量子井戸層の繰り返し構造により構成され
る多重量子井戸DBR層を設けたことにより、広範囲に
渡って波長制御を可能とする面発光型波長制御DBRレ
ーザである。また本発明は、各量子井戸層に交互に圧縮
及び引っ張り歪を加えることにより、更に広範囲に渡り
波長制御を可能とすることができるものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a low refractive index bulk layer on one side or both sides of an oscillator and a higher refractive index than the bulk layer. A surface emitting type wavelength controlled DBR laser capable of controlling wavelength over a wide range by providing a multiple quantum well DBR layer constituted by a repeating structure of multiple quantum well layers. Further, according to the present invention, it is possible to control the wavelength over a wider range by alternately applying compression and tensile strain to each quantum well layer.
【0005】[0005]
【実施例】以下本発明を実施例に基づいて説明する。 (実施例1)図1は、本発明の第1の実施例の構成を示
す断面図であり、図2は本発明の特徴である多重量子井
戸DBR層の構成を示す断面図である。図2中、12a
は、バンドギャップの狭いGaInAsPまたはGaI
nAsよりなる井戸層と、それよりもバンドギャップの
広いGaInAsPまたはInPよりなるバリア層とを
数層乃至数十層積層した構造を有する多重量子井戸層で
あり、12bは、InPよりなるバルク層であり、多重
量子井戸層12aとバルク層12bが十層乃至百層積層
されて多重量子井戸DBR層12が構成されている。ま
た、多重量子井戸層12aの屈折率はバルク層12bの
屈折率よりも高く設定されており、多重量子井戸層12
a、バルク層12bの厚さはそれぞれ1/4光学ブラッ
グ波長厚であり、ともにアンドーピングである。EXAMPLES The present invention will be described below based on examples. (Embodiment 1) FIG. 1 is a sectional view showing the structure of a first embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of a multiple quantum well DBR layer which is a feature of the present invention. 12a in FIG.
Is GaInAsP or GaI having a narrow band gap.
A multi-quantum well layer having a structure in which a well layer made of nAs and a barrier layer made of GaInAsP or InP having a wider bandgap are laminated in several to several tens layers, and 12b is a bulk layer made of InP. That is, the multi-quantum well DBR layer 12 is formed by stacking ten to one hundred layers of the multi-quantum well layer 12a and the bulk layer 12b. The refractive index of the multiple quantum well layer 12a is set higher than that of the bulk layer 12b.
The thicknesses of a and the bulk layer 12b are each 1/4 optical Bragg wavelength thickness, and both are undoped.
【0006】図1中、多重量子井戸DBR層12を除く
部分は、以下述べるとおり公知の垂直共振器型面発光型
レーザと同一の構造により構成されている。即ち、n型
半導体層4、活性層5、p型半導体層8によりダブルへ
テロダイン構造が構成されており、n型半導体基板2の
下部及び、p型GaInAsPコンタクト層9の上部に
はそれぞれレーザ発振用電極が構成されている。また、
活性層5の外周にはp型半導体ブロッキング層6およ
び、n型半導体ブロッキング層7が構成されており、n
型半導体層4の下部には、エッチング停止層3、及び多
重量子井戸DBR層と対として用いる反射鏡15が構成
されている。また、波長制御用電極11及び14は、そ
れぞれp型GaInAsPコンタクト層9、13上に形
成されている。この波長制御用電極11、14に電圧を
かけることにより、DBR中の多重量子井戸層の屈折率
を大きく変化させることができるために、広範囲に渡る
波長制御が可能となるものであり、本実施例においては
300オングストロームの波長制御が可能である。In FIG. 1, the portion excluding the multi-quantum well DBR layer 12 has the same structure as that of a known vertical cavity surface emitting laser as described below. That is, a double heterodyne structure is constituted by the n-type semiconductor layer 4, the active layer 5, and the p-type semiconductor layer 8, and laser oscillation is generated in the lower part of the n-type semiconductor substrate 2 and the upper part of the p-type GaInAsP contact layer 9, respectively. The electrodes for use are configured. Also,
A p-type semiconductor blocking layer 6 and an n-type semiconductor blocking layer 7 are formed on the outer periphery of the active layer 5, and n
A reflection mirror 15 used as a pair with the etching stop layer 3 and the multiple quantum well DBR layer is formed below the type semiconductor layer 4. The wavelength controlling electrodes 11 and 14 are formed on the p-type GaInAsP contact layers 9 and 13, respectively. By applying a voltage to the wavelength controlling electrodes 11 and 14, the refractive index of the multi-quantum well layer in the DBR can be largely changed, so that the wavelength can be controlled over a wide range. In the example, wavelength control of 300 Å is possible.
【0007】尚、本発明の使用材料は、上記した組み合
わせに限定されるものではなく、たとえばバルク層12
bをAlAs、多重量子井戸層12aをGaAlAsよ
りなるバリア層及び、GaAsよりなる井戸層により構
成した場合、あるいは、バルク層12bにAlAs、多
重量子井戸層12aをGaAsよりなるバリア層及びI
nGaAsよりなる井戸層により構成した場合等も、上
記実施例と同様の効果を得ることができる。The material used in the present invention is not limited to the above combination, and for example, the bulk layer 12 is used.
b is AlAs and the multi-quantum well layer 12a is a barrier layer made of GaAlAs and a well layer made of GaAs. Alternatively, the bulk layer 12b is made of AlAs and the multi-quantum well layer 12a is made of GaAs.
Even when the well layer is made of nGaAs, the same effect as that of the above-described embodiment can be obtained.
【0008】(実施例2)図3は、本発明の第2の実施
例の構成を示す断面図であり、図1に示す第1の実施例
の各部に対応する部分については、同一の符号を付して
説明を省略する。図3において、12及び12’は実施
例1における図2と同一の構成を有する多重量子井戸D
BR層であり、 発振器層の上下に多重量子井戸DBR
層を配置した構造としたものであり、16、17は、多
重量子井戸DBR層12’に用いる波長制御用電極であ
る。(Embodiment 2) FIG. 3 is a cross-sectional view showing the structure of a second embodiment of the present invention, in which parts corresponding to those of the first embodiment shown in FIG. Is attached and the description is omitted. In FIG. 3, 12 and 12 ′ are multiple quantum wells D having the same configuration as in FIG. 2 in the first embodiment.
BR layer, and multiple quantum well DBRs above and below the oscillator layer
The layers 16 and 17 are wavelength control electrodes used for the multi-quantum well DBR layer 12 ′.
【0009】本実施例においては、多重量子井戸DBR
層12の屈折率は波長制御用電極11、14に電圧をか
けることにより、多重量子井戸DBR層12’の屈折率
は波長制御用電極16、17に電圧をかけることによ
り、それぞれ変化させることができるため、発振器の片
側のみが多重量子井戸DBR層である実施例1よりもさ
らに大きな発振波長変化を得ることができる。尚、本実
施例における、バルク層、バリア層、井戸層には実施例
1と同様の使用材料の組み合わせが可能である。In this embodiment, the multiple quantum well DBR is used.
The refractive index of the layer 12 can be changed by applying a voltage to the wavelength controlling electrodes 11 and 14, and the refractive index of the multiple quantum well DBR layer 12 ′ can be changed by applying a voltage to the wavelength controlling electrodes 16 and 17, respectively. Therefore, it is possible to obtain a larger oscillation wavelength change than in the first embodiment in which only one side of the oscillator is the multiple quantum well DBR layer. Note that, in the present embodiment, the bulk layer, the barrier layer, and the well layer can be combined with the same materials used in the first embodiment.
【0010】(実施例3)図4は、本発明の第3の実施
例における歪多重量子井戸DBR層の構成を示す断面図
である。図4における歪多重量子井戸DBR層は、In
Pと多重量子井戸層のペアの繰り返しにより構成される
が、第1番目のペアの多重量子井戸層12cには引っ張
り歪を、第2番目のペアの多重量子井戸層12dには圧
縮歪を用い、これを一組として繰り返す構造である。こ
の様に、多重量子井戸層に歪を導入するのは、歪により
電圧による屈折率の変化を大きくできるからであり、ま
た、圧縮と引っ張りの歪を交互に組み合わせるのは、圧
縮または引っ張り歪のみで構成すると、一定膜厚以上で
結晶性が極端に悪くなるため、歪の方向を交互に変化さ
せることにより多重量子井戸DBR層全体の歪を緩和し
たものであり、歪量は両歪とも同程度、例えば圧縮歪を
0.15%とした場合は引っ張り歪は−0.15%、と
することが適当である。また、圧縮歪と引っ張り歪の順
序は逆としてもよい。(Embodiment 3) FIG. 4 is a sectional view showing the structure of a strained multiple quantum well DBR layer in a third embodiment of the present invention. The strained multiple quantum well DBR layer in FIG.
It is configured by repeating a pair of P and a multiple quantum well layer, but tensile strain is used for the first pair of multiple quantum well layers 12c and compressive strain is used for the second pair of multiple quantum well layers 12d. , Is a structure that repeats this as one set. In this way, the reason why strain is introduced into the multiple quantum well layer is that the change in the refractive index due to the voltage can be increased by the strain, and that the compression strain and the tensile strain are alternately combined only in the compression or the tensile strain. Since the crystallinity becomes extremely poor at a certain thickness or more, the strain of the entire multi-quantum well DBR layer is relaxed by alternately changing the strain direction, and the strain amount is the same for both strains. For example, when the compressive strain is 0.15%, the tensile strain is -0.15%. The order of compressive strain and tensile strain may be reversed.
【0011】この歪多重量子井戸DBR層を、図1ある
いは、図3と同一の構成により発振器の片側または両側
に配置して、電圧を印加することにより、実施例1、ま
たは実施例2と比較した場合、更に10%程度大きく発
振波長を変化させることができる。This strained multi-quantum well DBR layer is arranged on one side or both sides of the oscillator with the same structure as in FIG. 1 or 3, and a voltage is applied to compare with the first or second embodiment. In this case, the oscillation wavelength can be changed by about 10%.
【0012】[0012]
【発明の効果】本発明は、以上説明したように、分布反
射器を多重量子井戸DBR層とすることにより、従来よ
りも広範囲に渡る発振波長の制御が可能になるという利
点がある。As described above, the present invention has an advantage that it is possible to control the oscillation wavelength over a wider range than before by using the distributed quantum reflector as the multiple quantum well DBR layer.
【図1】本発明の第1の実施例の構成を示す断面図であ
る。FIG. 1 is a sectional view showing a configuration of a first exemplary embodiment of the present invention.
【図2】図1及び図3に示す多重量子井戸DBR層12
の構成を示す断面図である。FIG. 2 is a multiple quantum well DBR layer 12 shown in FIGS. 1 and 3.
3 is a cross-sectional view showing the configuration of FIG.
【図3】本発明の第2の実施例の構成を示す断面図であ
る。FIG. 3 is a sectional view showing a configuration of a second exemplary embodiment of the present invention.
【図4】本発明の第3の実施例における歪多重量子井戸
DBR層の構成を示す断面図である。FIG. 4 is a sectional view showing a configuration of a strained multiple quantum well DBR layer in a third embodiment of the present invention.
1、10は、レーザ発振用電極 2は、n型半導体基板 3は、エッチング停止層 4は、n型半導体層 5は、活性層 6は、p型半導体ブロッキング層 7は、n型半導体ブロッキング層 8は、p型半導体層 9、13は、p型GaInAsPコンタクト層 11、14、16、17は波長制御用電極 12は、多重量子井戸DBR層 12aは、多重量子井戸層 12bは、バルク層 12cは、引っ張り歪を用いた多重量子井戸層 12dは、圧縮歪を用いた多重量子井戸層 1, 10 are laser oscillation electrodes 2, n-type semiconductor substrate 3, etching stop layer 4, n-type semiconductor layer 5, active layer 6, p-type semiconductor blocking layer 7, n-type semiconductor blocking layer 8 is a p-type semiconductor layer 9, 13 is a p-type GaInAsP contact layer 11, 14, 16 and 17 is a wavelength control electrode 12, a multi-quantum well DBR layer 12a, a multi-quantum well layer 12b, a bulk layer 12c Is a multiple quantum well layer using tensile strain. 12d is a multiple quantum well layer using compressive strain.
Claims (2)
りもバンドギャップの広いバリア層の繰り返し構造より
なる多重量子井戸層と、この多重量子井戸層よりも屈折
率の低いバルク層の繰り返し構造よりなる多重量子井戸
DBR層を活性層の少なくとも一方の側に配置したこと
を特徴とする波長制御型面発光半導体レーザ。1. A multiple quantum well layer comprising a repeating structure of a well layer having a narrow bandgap and a barrier layer having a wider bandgap, and a repeating structure of a bulk layer having a refractive index lower than that of the multiple quantum well layer. A wavelength-controlled surface emitting semiconductor laser having a multi-quantum well DBR layer disposed on at least one side of an active layer.
井戸層が、交互に圧縮歪及び引っ張り歪を有しているこ
とを特徴とする請求項1に記載の波長制御型面発光半導
体レーザ。2. The wavelength-controlled surface emitting semiconductor laser according to claim 1, wherein each of the multiple quantum well layers in the multiple quantum well DBR layer has compressive strain and tensile strain alternately.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13598593A JPH06350190A (en) | 1993-06-07 | 1993-06-07 | Wavelength controlled surface emitting semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13598593A JPH06350190A (en) | 1993-06-07 | 1993-06-07 | Wavelength controlled surface emitting semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06350190A true JPH06350190A (en) | 1994-12-22 |
Family
ID=15164500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13598593A Pending JPH06350190A (en) | 1993-06-07 | 1993-06-07 | Wavelength controlled surface emitting semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06350190A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09135051A (en) * | 1995-11-09 | 1997-05-20 | Nec Corp | Surface light emitting device and its manufacture |
US5949808A (en) * | 1995-07-21 | 1999-09-07 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser and method for producing the same |
JP2004247730A (en) * | 2003-02-15 | 2004-09-02 | Agilent Technol Inc | Frequency modulation vertical-cavity laser |
JP2008147531A (en) * | 2006-12-13 | 2008-06-26 | Opnext Japan Inc | Surface light emitting semiconductor laser element |
JP2015079831A (en) * | 2013-10-16 | 2015-04-23 | セイコーエプソン株式会社 | Light-emitting device and atomic oscillator |
-
1993
- 1993-06-07 JP JP13598593A patent/JPH06350190A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5949808A (en) * | 1995-07-21 | 1999-09-07 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser and method for producing the same |
US6108361A (en) * | 1995-07-21 | 2000-08-22 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser and method for producing the same |
JPH09135051A (en) * | 1995-11-09 | 1997-05-20 | Nec Corp | Surface light emitting device and its manufacture |
JP2004247730A (en) * | 2003-02-15 | 2004-09-02 | Agilent Technol Inc | Frequency modulation vertical-cavity laser |
JP2008147531A (en) * | 2006-12-13 | 2008-06-26 | Opnext Japan Inc | Surface light emitting semiconductor laser element |
JP2015079831A (en) * | 2013-10-16 | 2015-04-23 | セイコーエプソン株式会社 | Light-emitting device and atomic oscillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5255278A (en) | Semiconductor laser with vertical resonator | |
US5212706A (en) | Laser diode assembly with tunnel junctions and providing multiple beams | |
KR100273594B1 (en) | Visible Surface Emitting Semiconductor Laser | |
US6771680B2 (en) | Electrically-pumped, multiple active region vertical-cavity surface-emitting laser (VCSEL) | |
US6434180B1 (en) | Vertical cavity surface emitting laser (VCSEL) | |
US6697413B2 (en) | Tunable vertical-cavity surface-emitting laser with tuning junction | |
JP2596195B2 (en) | Vertical resonator type surface input / output photoelectric fusion device | |
US5903585A (en) | Optoelectronic devices | |
EP0565374B1 (en) | Vertical-to-surface transmission electrophotonic device | |
JPH06291406A (en) | Surface emitting semiconductor laser | |
JP4497859B2 (en) | Surface emitting semiconductor laser device, optical transmission module, and optical transmission system | |
JPH0793419B2 (en) | Light receiving and emitting integrated device | |
KR970013541A (en) | Short wave vertical cavity surface emitting laser and method of manufacturing the same | |
US4894833A (en) | Surface emitting lasers with combined output | |
JPH0348476A (en) | Semiconductor light emitting element | |
JP2000196189A (en) | Surface-emission semiconductor laser | |
US7907653B2 (en) | Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array | |
KR20060074934A (en) | External cavity surface emitting laser device having a plurality of quantum wells | |
JPH06350190A (en) | Wavelength controlled surface emitting semiconductor laser | |
JP2940644B2 (en) | Surface light emitting device | |
JPH05152674A (en) | Surface light emitting semiconductor laser with outer modulator | |
KR19980064846A (en) | Vertical cavity surface emitting laser of visible wavelength | |
JP4815772B2 (en) | Surface emitting semiconductor laser device and method for manufacturing the same | |
JPH08288586A (en) | 2mum band semiconductor laser | |
JPH0563301A (en) | Semiconductor optical element and optical communication system |