KR950013420B1 - Electrolytri liquid for aluminium electrolytri capacitor - Google Patents

Electrolytri liquid for aluminium electrolytri capacitor Download PDF

Info

Publication number
KR950013420B1
KR950013420B1 KR1019920022376A KR920022376A KR950013420B1 KR 950013420 B1 KR950013420 B1 KR 950013420B1 KR 1019920022376 A KR1019920022376 A KR 1019920022376A KR 920022376 A KR920022376 A KR 920022376A KR 950013420 B1 KR950013420 B1 KR 950013420B1
Authority
KR
South Korea
Prior art keywords
electrolytri
electrolyte
electrolyte solution
capacitor
sorbitol
Prior art date
Application number
KR1019920022376A
Other languages
Korean (ko)
Other versions
KR940012415A (en
Inventor
이영훈
Original Assignee
삼화전기주식회사
서갑수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화전기주식회사, 서갑수 filed Critical 삼화전기주식회사
Priority to KR1019920022376A priority Critical patent/KR950013420B1/en
Publication of KR940012415A publication Critical patent/KR940012415A/en
Application granted granted Critical
Publication of KR950013420B1 publication Critical patent/KR950013420B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The long life and high electrical conductivity electrolytic solution for aluminum electrolytic condenser is prepared by dissolving 15-25 wt% triethylmethylammonium salt of maleic acid into 72-84.5 wt% gamma butyrolactone solvent or its mixed solvent with ethylene glycol or methylcellosolve and 1 wt% sorbitol and para nitrobenzoate against the total weight as an additive for enhancing the voltage property of electrolytic solution.

Description

알루미늄 전해콘덴서용 전해액Electrolytic Solution for Aluminum Electrolytic Capacitors

본 발명은 알루미늄 전해콘덴서용 전해액에 관한 것이다. 더 구체적으로, 본 발명은 고주파 저임피던스 특성과 장수명품에 사용할 수 있는 알루미늄 전해콘덴서용 전해액에 관한 것이다.The present invention relates to an electrolytic solution for aluminum electrolytic capacitors. More specifically, the present invention relates to an electrolytic solution for aluminum electrolytic capacitors that can be used for high frequency low impedance characteristics and long life products.

종래의 전해콘덴서용 전해액은 용매인 에틸렌글리콜에 전해질을 용해시켜서 제조하였다. 이러한 종류의 전해액은 비저항이 높고, 임피던스 특성이 나빠서 물을 첨가하여 제조하였다. 그러나, 이 전해액은 물을 사용하기 때문에 고온에서 증기압이 높고, 알루미늄과 반응이 쉬워서 고온도 영역에 사용하는 것은 적합치 못하였다.A conventional electrolytic solution for electrolytic capacitors was prepared by dissolving an electrolyte in ethylene glycol as a solvent. This type of electrolyte was prepared by adding water because of its high resistivity and poor impedance characteristics. However, since this electrolyte solution uses water, its vapor pressure is high at high temperatures, and it is easy to react with aluminum, and thus it is not suitable for use in a high temperature region.

이러한 문제을 개선시키기 위한 기술로서, 일본특허공개(소) 54-7,564호에서, 가마-부티로락톤 용매에 말레인산의 트리에틸 암모늄염을 사용하였고, 일본특허공개 (소) 61-70, 711호에서는, 감마-부티로락톤 용매에 프탈산의 트리에틸 암모늄염을 사용하였다.As a technique for improving this problem, Japanese Patent Application Laid-Open No. 54-7,564 used triethyl ammonium salt of maleic acid as a kiln-butyrolactone solvent, and Japanese Patent Application Laid-open No. 61-70, 711, Triethyl ammonium salt of phthalic acid was used in the gamma-butyrolactone solvent.

또한, 일본특허공개 (소) 63-118, 018호와 한국특허공개 제 92-8790호에서는, 감마-부티로락톤 용매에 프탈산의 테트라메틸 암모늄염을 사용하였고, 일본특허공개 (소) 63-226, 912호에서는, 감마-부티로락톤 용매에 말레인산의 테트라메틸 암모늄염을 사용하였다.In addition, Japanese Patent Application Laid-Open No. 63-118, 018 and Korean Patent Publication No. 92-8790 used tetramethyl ammonium salt of phthalic acid as a gamma-butyrolactone solvent, and Japanese Patent Application Laid-Open No. 63-226 In 912, tetramethyl ammonium salt of maleic acid was used as a gamma-butyrolactone solvent.

또한, 한국특허공개 제 92-13, 580호에서는, 감마-부티로락톤 용매에 프탈산의 테트라에틸 암모늄염을 사용하여 전해액을 제조하였다.In addition, in Korean Patent Application Laid-Open Nos. 92-13 and 580, an electrolyte solution was prepared using a tetraethyl ammonium salt of phthalic acid in a gamma-butyrolactone solvent.

그러나, 프탈산이나 말레인산의 트리에틸 암모늄염을 사용할 경우에는, 산 해리도가 트리에틸 아민의 프로톤(proton)화 평형에 기인하기 때문에 이온 생성이 감소하여 비저항이 높고, 용질로 사용된 프탈산이나 말레인산의 트리에틸 암로늄염이 고온에서 불안정하여 장시간 사용할 때 비저항이 증가함으로써 콘덴서의 특성 변화의 원인이 되기도 한다.However, when the triethyl ammonium salt of phthalic acid or maleic acid is used, the acid dissociation degree is due to the protonation equilibrium of triethyl amine, resulting in a decrease in ionic production and high specific resistance, and triethyl of phthalic acid or maleic acid used as a solute. Amronium salts are unstable at high temperatures and increase resistivity when used for long periods of time, which can cause changes in capacitor characteristics.

또한, 프탈산의 테트라메틸 암모늄염이나 프탈산의 테트라에틸 암모늄염을 사용할 경우에는, 임피던스 특성의 개선 및 고온 안정성이 양호하게 장수명화가 가능하지만 사용자의 요구에 부응하는 특성을 갖지는 못하였다.In addition, when the tetramethyl ammonium salt of phthalic acid or the tetraethyl ammonium salt of phthalic acid is used, the improvement of the impedance characteristic and the high temperature stability can be satisfactorily extended, but it does not have the characteristic which meets the needs of a user.

본 발명은 상기의 문제점을 해결하기 위해, 비저항을 감소시켜 고주파영역에서 저임피던스 특성을 가지고, 열적 안정성이 높아 고온에서 장수명이 가능한 알루미늄 전해콘덴서용 전해액을 제공하는데 목적이 있다.In order to solve the above problems, an object of the present invention is to provide an electrolytic solution for aluminum electrolytic capacitors having a low impedance characteristic in a high frequency region by reducing a specific resistance, and having high thermal stability and having a long life at high temperature.

이러한 목적을 달성하기 위하여, 본 발명에서는 감마-부티로락톤 용매를 단독 또는 메틸셀로솔브, 에틸렌글리콜 등과의 혼합용매에다 말레인산의 트리에틸메틸 암모늄염을 혼합하고, 첨가제로서 파라니트로벤조산과 솔비톨을 사용하였다.In order to achieve this object, in the present invention, a triethylmethyl ammonium salt of maleic acid is mixed with a gamma-butyrolactone solvent alone or in a mixed solvent with methyl cellosolve, ethylene glycol, and the like, and paranitrobenzoic acid and sorbitol are used as additives. It was.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 감마-부티로락톤 용매 단독 또는 에틸렌글리콜이나 메틸셀로솔브와의 혼합용매 72 내지 84.5 중량% 말레인산의 트리에틸메틸암모늄염을 15 내지 25중량%를 용해시키고, 이 용액에 첨가제로서 파라-니트로벤조산 1% 및 솔비톨 1%를 첨가하여서 되는 알루미늄 전해콘덴서용 전해액을 제공하는 것이다.The present invention dissolves 15 to 25% by weight of a gamma-butyrolactone solvent alone or a mixed solvent of ethylene glycol or methyl cellosolve with 72 to 84.5% by weight of triethylmethylammonium salt of maleic acid. The present invention provides an electrolytic solution for aluminum electrolytic capacitors by adding 1% nitrobenzoic acid and 1% sorbitol.

본 발명에 따르면, 상기의 전해액에 첨가제로서 파라니트로벤조산과 솔비톨중 적어도 하나를 0.5 내지 3중량%로 첨가할 수 있다.According to the present invention, at least one of paranitrobenzoic acid and sorbitol may be added to the electrolyte as an additive in an amount of 0.5 to 3% by weight.

본 발명에서와 같이, 감마-부티로락톤 용매에 말레인산의 트리에틸메틸 암모늄염을 용질로 사용할 경우에는, 종래의 용질인 프탈산의 테트라메틸이나 테트라에틸 암모늄보다 전도도를 높게 할 수 있다.As in the present invention, when a triethylmethyl ammonium salt of maleic acid is used as a solute in a gamma-butyrolactone solvent, the conductivity can be higher than that of tetramethyl or tetraethyl ammonium of phthalic acid, which is a conventional solute.

상기의 첨가제에서, 파라-니트로벤조산은 전해액과 콘덴서에 사용되는 소재와의 반응으로 생성되는 가스를 환원반응에 의해 억제시킴으로써, 콘덴서의 내부압력을 감소시키게 된다. 따라서 제품의 안정성을 증가시키게 되며, 솔비톨은 전해액의 전압특성을 보장시키는 작용을 하게 된다.In the above additive, para-nitrobenzoic acid reduces the internal pressure of the condenser by suppressing the gas generated by the reaction between the electrolyte and the material used in the condenser by a reduction reaction. Therefore, it increases the stability of the product, sorbitol is to act to ensure the voltage characteristics of the electrolyte.

본 발명에 의하여 전해액의 조성물에 첨가제로서 종래에 사용된바 없었던 솔비톨을 첨가함으로써 본 발명의 전해액은 종래의 전해액에 비해서 불꽃발생 전압이 155% 향상되었고, 이로 인해서 제품사용전압도 140% 향상되는 놀라운 효과를 나타냈다.By adding sorbitol, which has not been used conventionally as an additive to the composition of the electrolyte according to the present invention, the electrolyte solution of the present invention has a 155% improvement in the spark generation voltage compared to the conventional electrolyte solution, resulting in a 140% improvement in the product voltage. Effect.

본 발명에 따른 전해액을 알루미늄 전해콘덴서에 사용할 경우에는 전해액의 전도도가 증가하게 되어 콘덴서의 손실을 감소시키게 되고, 고주파영역에서 임피던스특성을 감소시키게 되며, 불꽃발생전압을 승압시키므로서 제품사용전압을 높혀주게 됨으로써 전해액의 사용범위를 넓혀 주는 효과를 갖게 된다.When the electrolyte according to the present invention is used in an aluminum electrolytic capacitor, the conductivity of the electrolyte is increased to reduce the loss of the capacitor, the impedance characteristic is reduced in the high frequency range, and the product voltage is increased by boosting the spark generation voltage. By giving it has the effect of widening the range of use of the electrolyte.

또한, 본 발명에 사용하는 용매와 용질은 온도 및 수명시험시간에 대하여 비저항 변화가 적고, 안정하므로, 장수명 제품이 사용이 가능하다.In addition, since the solvent and the solute used in the present invention have a small change in resistivity with respect to the temperature and the life test time and are stable, a long-life product can be used.

이하, 실시예에 의거 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

감마-부티로락톤 75g에 말레인산의 트리에틸메틸 암모늄 25g을 용해시켜서 전해액을 제조하였다. 이 전해액의 비저항은 72Ω·㎝/30℃이었다.An electrolytic solution was prepared by dissolving 25 g of triethylmethyl ammonium of maleic acid in 75 g of gamma-butyrolactone. The specific resistance of this electrolyte solution was 72 Pa.cm/30 degreeC.

이 전해액을 사용하여 25WV, 470μF의 전해콘덴서를 제작한 후, 100kHz에서의 임피던스특성을 측정한 결과 0.0658이었고, 105℃ 정격전압을 인가한 후에 고온부하시험을 행한 결과는 다음 표 1과 같았다.After fabricating a 25WV, 470μF electrolytic capacitor using this electrolyte, the impedance characteristics at 100 kHz were measured and found to be 0.0658. The results of the high temperature load test after applying the rated voltage of 105 ° C are shown in Table 1 below.

[실시예 2]Example 2

감마-부티로락톤 63g과 메틸셀로솔브 10g의 혼합용매에 말레인산의 트리에틸메틸 암모늄 25g, 파라-니트로벤조산 1g 및 솔비톨 1g을 혼합하여 전해액을 제조하었다. 이 전해액의 비저항은 85Ω·㎝/30℃이었다.An electrolytic solution was prepared by mixing 25 g of triethylmethyl ammonium maleic acid, 1 g of para-nitrobenzoic acid, and 1 g of sorbitol in a mixed solvent of 63 g of gamma-butyrolactone and 10 g of methyl cellosolve. The specific resistance of this electrolyte solution was 85 Pa · cm / 30 ° C.

이 전해액을 사용하여 실시예 1과 동일하게 전해콘덴서를 제작한 후, 100kHz에서의 임피던스특성을 측정한 결과 0.0764이었고, 고온부하시험을 행한 결과는 다음 표 1과 같았다.The electrolytic capacitor was manufactured in the same manner as in Example 1 using this electrolyte, and the impedance characteristics at 100 kHz were measured. The result was 0.0764. The results of the high temperature load test were shown in Table 1 below.

[비교예 1]Comparative Example 1

감마-부티로락톤 70g과 에틸렌글리콜 10g이 혼합용매에 말레인산의 트리에틸 암모늄염 20g을 용해하여 전해액을 제조하였다. 이 전해액의 비저항은 135Ω·㎝/30℃이었다.70 g of gamma-butyrolactone and 10 g of ethylene glycol dissolved 20 g of triethyl ammonium salt of maleic acid in a mixed solvent to prepare an electrolyte solution. The specific resistance of this electrolyte solution was 135 Pa · cm / 30 ° C.

이 전해액을 사용하여 실시예 1과 동일하게 전해콘덴서를 제작한 후, 100kHz에서의 임피던스특성을 측정한 결과는 0.1556이었고, 고온부하시험을 행한 결과는 다음 표 1과 같았다.Using the electrolyte, the electrolytic capacitor was manufactured in the same manner as in Example 1, and the impedance characteristic at 100 kHz was measured at 0.1556. The result of the high temperature load test was shown in Table 1 below.

[비교예 2]Comparative Example 2

감마-부티로락톤 80g에 프탈산의 테트라메틸 암모늄염 20g을 용해하여 전해액을 제조하였다. 이 전해액의 비저항은 103Ω·㎝/30℃이었다.An electrolyte solution was prepared by dissolving 20 g of tetramethyl ammonium salt of phthalic acid in 80 g of gamma-butyrolactone. The specific resistance of this electrolyte solution was 103 Pa · cm / 30 ° C.

이 전해액을 사용하여 실시예 1과 동일하게 전해콘덴서를 제작한 후, 100kHz에서의 임피던스특성의 측정한 결과는 0.1040이였고, 고온부하시험을 행한 결과는 다음 표 1과 같았다.After the electrolytic capacitor was fabricated in the same manner as in Example 1 using this electrolyte solution, the impedance characteristic measured at 100 kHz was 0.1040. The results of the high temperature load test were shown in Table 1 below.

[비교예 3]Comparative Example 3

감마-부티로락톤 70g과 에틸렌글리콜 10g의 혼합용매에 프탈산의 테트라 메틸 암모늄염 20g을 용해하여 전해액을 제조하였다. 이 전해액의 비저항은 115Ω·㎝/30℃이었다.An electrolyte solution was prepared by dissolving 20 g of tetramethylammonium salt of phthalic acid in a mixed solvent of 70 g of gamma-butyrolactone and 10 g of ethylene glycol. The specific resistance of this electrolyte solution was 115 Ω · cm / 30 ° C.

이 전해액을 사용하여 실시예 1과 동일하게 전해콘덴서를 제작한 후, 100kHz에서의 임피던스특성을 측정한 결과는 0.1232이였고, 고온부하시험을 행한 결과는 다음 표 1과 같았다.Using this electrolyte solution, the same electrolytic capacitor as in Example 1 was prepared, and the impedance characteristic measured at 100 kHz was 0.1232. The results of the high-temperature load test were shown in Table 1 below.

[표 1]TABLE 1

※tanδ: 손실, LC는 누설전류※ tanδ: loss, LC is leakage current

상기 표에 의하면, 본 발명의 실시예가 비교예에 비하여 비저항이 충분히 낮기 때문에, 초기손실특성과 임피던스가 평균 0.13Ω에서 0.07Ω으로 감소하였음을 알 수 있다.According to the above table, since the specific resistance of the embodiment of the present invention is sufficiently low as compared with the comparative example, it can be seen that the initial loss characteristic and the impedance decreased from 0.13 평균 to 0.07 평균 on average.

특히, 고온부하시험에서 비교예의 전해액을 사용한 콘덴서는 전해액의 비저항 증가에 의해 tanδ 및 용량 변화율이 심하여 2,000시간에서 대부분 불량이 발생하였다.In particular, in the high-temperature load test, the capacitor using the electrolyte solution of Comparative Example was mostly defective at 2,000 hours due to the high tanδ and capacity change rate due to the increased resistivity of the electrolyte solution.

그러나, 본 발명에 의한 실시예의 전해액의 비저항이 낮아 105℃, 2,000시간에서 tanδ변화치가 적기 때문에, 고온 장수명 특성을 나타낼 수 있는 전해콘덴서의 제조가 가능하였다.However, since the specific resistance of the electrolyte solution according to the present invention was low and the tanδ change was small at 105 ° C. and 2,000 hours, it was possible to manufacture an electrolytic capacitor capable of exhibiting high temperature long life characteristics.

이와 같은 본 발명의 전해콘덴서용 전해액은 비저항이 충분히 낮기 때문에 고주파에서 낮은 임피던스 특성을 나타내며, 고온에서 장시간 사용할 때 발생되는 가스를 억제하고, tanδ변화가 적으므로 인해 장수명의 효과가 있으며, 첨가제로서 유기물질인 솔비톨을 사용하므로서 불꽃발생전압을 승압시켜 제품 사용전압을 높여줌으로써 전해액의 사용범위를 넓혀주게 되므로 경제적 및 산업적 효과가 큰 이점을 갖고 있다.Since the electrolytic capacitor electrolyte solution of the present invention has a low specific resistance, it exhibits low impedance characteristics at high frequencies, suppresses gases generated when used at a high temperature for a long time, and has a long life effect due to less tanδ change. By using sorbitol as a material, the spark generation voltage is boosted to increase the product use voltage, thereby widening the range of use of the electrolyte, which has great economic and industrial effects.

Claims (2)

말레인산 트리에틸메틸암모늄염을 용매로서 감마-부티로락톤 단독 또는 에틸렌글리콜이나 메틸셀로솔브와의 혼합물에 용해시켜서 되는 전해액에 있어서, 첨가제로서 솔비톨을 첨가하는 것을 특징으로 하는 알루미늄 전해콘덴서용 전해액.An electrolytic solution in which triethylmethylammonium salt of maleic acid is dissolved in gamma-butyrolactone alone or as a mixture of ethylene glycol and methyl cellosolve as a solvent, wherein an sorbitol is added as an additive. 제 1 항에 있어서, 솔비톨을 전해액 전체 중량에 대하여 1중량% 첨가하는 것을 특징으로 하는 전해액.The electrolyte solution according to claim 1, wherein sorbitol is added in an amount of 1% by weight based on the total weight of the electrolyte solution.
KR1019920022376A 1992-11-26 1992-11-26 Electrolytri liquid for aluminium electrolytri capacitor KR950013420B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920022376A KR950013420B1 (en) 1992-11-26 1992-11-26 Electrolytri liquid for aluminium electrolytri capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920022376A KR950013420B1 (en) 1992-11-26 1992-11-26 Electrolytri liquid for aluminium electrolytri capacitor

Publications (2)

Publication Number Publication Date
KR940012415A KR940012415A (en) 1994-06-23
KR950013420B1 true KR950013420B1 (en) 1995-11-08

Family

ID=19343915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920022376A KR950013420B1 (en) 1992-11-26 1992-11-26 Electrolytri liquid for aluminium electrolytri capacitor

Country Status (1)

Country Link
KR (1) KR950013420B1 (en)

Also Published As

Publication number Publication date
KR940012415A (en) 1994-06-23

Similar Documents

Publication Publication Date Title
KR950013420B1 (en) Electrolytri liquid for aluminium electrolytri capacitor
KR0144616B1 (en) Electrolyte processing method for aluminum electrolyte condenser
KR100455018B1 (en) An electrolyte for high voltage Al capacitor
JPH0325912A (en) Electrolyte for electrolytic capacitor
KR100455017B1 (en) An electrolyte for high voltage Al capacitor
KR0169781B1 (en) An electroyte for al electrolytic condenser
KR0144608B1 (en) Electrolyte of electrolytic condenser
JPH07118432B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2774525B2 (en) Electrolyte for electrolytic capacitors
JPH0376007B2 (en)
JPH0325911A (en) Electrolyte for electrolytic capacitor
JPH031819B2 (en)
JP2732406B2 (en) Electrolyte for electrolytic capacitors
KR100561264B1 (en) Ultrahigh voltage electrolyte of aluminium electrolytic condenser
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
KR100616704B1 (en) Ultrahigh voltage electrolyte of aluminium electrolytic condenser
JPH0254514A (en) Electrolyte solution for electrolytic capacitor
JPH0254919A (en) Electrolytic solution for electrolytic capacitor
JPH0291913A (en) Electrolyte for electrolytic capacitor
JPS60207330A (en) Electrolyte for electrolytic condenser
JPH0254513A (en) Electrolyte solution for electrolytic capacitor
JPH0291909A (en) Electrolyte for electrolytic capacitor
JPS63211612A (en) Electrolyte for driving electrolytic capacitor
JPH02123721A (en) Electrolyte for electrolytic capacitor
JPH0269915A (en) Electrolyte for electrolytic capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021030

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee