JPH0291910A - Electrolyte for electrolytic capacitor - Google Patents

Electrolyte for electrolytic capacitor

Info

Publication number
JPH0291910A
JPH0291910A JP24228588A JP24228588A JPH0291910A JP H0291910 A JPH0291910 A JP H0291910A JP 24228588 A JP24228588 A JP 24228588A JP 24228588 A JP24228588 A JP 24228588A JP H0291910 A JPH0291910 A JP H0291910A
Authority
JP
Japan
Prior art keywords
compound
electrolytic capacitor
electrolytic solution
electrolytic
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24228588A
Other languages
Japanese (ja)
Inventor
Makoto Shimizu
誠 清水
Yutaka Yokoyama
豊 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP24228588A priority Critical patent/JPH0291910A/en
Publication of JPH0291910A publication Critical patent/JPH0291910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To improve the electric characteristic of an electrolytic capacitor and lengthen the lifetime thereof by adding an electrolyte of a specific compound salt to a solvent the principal ingredient of which is an aprotic solvent. CONSTITUTION:An electrolyte of a mono/di-N,N-dialkyltetrahydrooxazinium compound salt of an aliphatic unsaturated dicarboxylic acid compound shown by a general formula is added to a solvent the principal ingredient of which is an aprotic solvent. In the general formula, m+n is 4, m is 2-4, n is 2-0, R1 and R2 are alkyl radicals of one to six carbon atoms, R3 and R4 are alkoxy or alkyl radicals of one to six hydrogen and carbon atoms, R is an alkenylene radical of one to ten carbon atoms, and X is a hydrogen atom or the same radical as an N,N-dialkyltetrahydrooxazinium compound radical in the formula. This compound salt has high solubility in and high degree of dissociation from the solvent; therefore, the electric characteristic of an electrolytic capacitor improves to lengthen the lifetime thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、非プロトン溶媒を主体とする溶媒中に脂肪族
不飽和ジカルボン酸のモノ又はジーN、N−ジアルキテ
トラヒドロオキサジニウム化合物塩を電解質として含有
する電解コンデンサ用電解液に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the preparation of mono- or di-N,N-dialkitetrahydroxazinium compound salts of aliphatic unsaturated dicarboxylic acids in a solvent mainly consisting of an aprotic solvent. The present invention relates to an electrolytic solution for an electrolytic capacitor containing as an electrolyte.

(従来の技術) 電解コンデンサは、アルミニウム又はタンタルなどの表
面に絶縁性の酸化皮膜が形成された弁金属を陽極電極に
使用し、前記酸化皮膜層を誘電体とし、この酸化皮膜層
の表面に電解質層となる電解液を接触させ、更に通常陰
極と称する集電用の電極を配置して構成されている。
(Prior art) An electrolytic capacitor uses a valve metal such as aluminum or tantalum on the surface of which an insulating oxide film is formed as an anode electrode, the oxide film layer is used as a dielectric, and the surface of the oxide film layer is It is constructed by bringing an electrolytic solution, which forms an electrolyte layer, into contact with it, and further arranging a current collecting electrode, usually called a cathode.

電解コンデンサ用電解液は、上述したように誘電体層に
直接接触し、真の陰極として作用する。即ち、電解液は
電解コンデンサの誘電体層と集電陰極との間に介在して
、電解液の抵抗骨が電解コンデンサに直列に挿入されて
いることになる。故に、その特性が電解コンデンサ特性
を左右する大きな要因となる。例えば、電解液の電導塵
が低いと、電解コンデンサの内部の等価直列抵抗分を増
大させ、高周波特性や損失特性が悪くなる欠点がある。
As described above, the electrolytic solution for an electrolytic capacitor comes into direct contact with the dielectric layer and acts as a true cathode. That is, the electrolytic solution is interposed between the dielectric layer and the collector cathode of the electrolytic capacitor, and the resistance bones of the electrolytic solution are inserted in series with the electrolytic capacitor. Therefore, its characteristics become a major factor that influences the characteristics of electrolytic capacitors. For example, if the electrolytic solution has a low amount of conductive dust, it increases the equivalent series resistance inside the electrolytic capacitor, resulting in poor high frequency characteristics and loss characteristics.

このような背景から電導塵の高い電解質がちとめられて
おり、従来から知られた電導塵の高い電解質として、ア
ジピン酸などの有機酸又はその塩をエチレングリコール
などのグリフール類やアルコール類に溶解したものが通
常の用途に対し主流をなして使用されている。
From this background, electrolytes with high conductive dust have been selected, and conventionally known electrolytes with high conductive dust include organic acids such as adipic acid or their salts dissolved in glyfurs such as ethylene glycol or alcohols. These are mainly used for normal purposes.

(発明が解決しようとする課題) 近年の電子機器の利用範囲の増大から電解コンデンサ性
能の向上改善の要求が高まり、現状の電解液の電導塵で
は充分とはいえない。特に現状の電解液の場合、所望め
電導塵が得られない場合や、溶解度が低い電解質を用い
た時などは、意図的に水を添加して電導塵の向上を図る
ことが行われている。
(Problems to be Solved by the Invention) Due to the recent increase in the scope of use of electronic devices, there has been an increasing demand for improvements in the performance of electrolytic capacitors, and the current conductive dust in electrolytes is not sufficient. Particularly in the case of current electrolytes, when the desired conductive dust cannot be obtained or when an electrolyte with low solubility is used, water is intentionally added to improve the conductive dust. .

しかしながら、最近のように従来品を越える高温下で長
時間の使用が求められる電解コンデンサの使用状況にお
いては、電解液中の水分の存在は、誘電体皮膜層の劣化
や、電解コンデンサの内部蒸気圧を高め、封口部の破損
や電解液の蒸散による寿命劣化を招来し、長期間に亙っ
て安定した特性を維持出来ない欠点があった。
However, in recent years, when electrolytic capacitors are used for long periods of time at higher temperatures than conventional products, the presence of moisture in the electrolyte can cause deterioration of the dielectric film layer and internal steam of the electrolytic capacitor. This increases the pressure, leading to damage to the sealing part and evaporation of the electrolyte, which shortens its lifespan, and has the disadvantage that stable characteristics cannot be maintained over a long period of time.

それ故、本発明の目的は、非プロトン溶媒を主体とする
実質的に非水系の高電導度の電解液を提供することによ
り、電解コンデンサの電気的特性を向上させ、かつ安定
した特性を長期間維持することによって電解コンデンサ
の信頼性を向上させることにある。
Therefore, an object of the present invention is to improve the electrical characteristics of electrolytic capacitors and to maintain stable characteristics for a long time by providing a substantially non-aqueous highly conductive electrolytic solution containing an aprotic solvent as a main component. The purpose is to improve the reliability of electrolytic capacitors by maintaining them for a long period of time.

(課題を解決するための手段) 本発明者等は、非プロトン溶媒を主体とする実質的に非
水系の電解液でかつ高電導度を与える電解質につき鋭意
研究を重ねた結果、脂肪族不飽和ジカルボン酸モノ又は
ジーのN、N−ジアルキルテトラヒドロオキサジニウム
化合物塩が非プロトン溶媒に溶解性が高く、かつ解離度
も高く高電導度を付与することを見出して本発明に到達
したものである。
(Means for Solving the Problems) As a result of extensive research into an electrolyte that is a substantially non-aqueous electrolyte mainly composed of an aprotic solvent and provides high conductivity, the present inventors have found that an aliphatic unsaturated The present invention was achieved by discovering that N,N-dialkyltetrahydroxazinium compound salts of mono- or di-carboxylic acids have high solubility in aprotic solvents, have a high degree of dissociation, and impart high conductivity. .

即ち、本発明に係る電解コンデンサ用電解液は、非プロ
トン溶媒を主体とする溶媒中に一般式: (式中、re + n = 4+ 1=2−4.n=2
〜0、R1+ R*は各々同じ又は異なって良い炭素原
子1〜6個のアルキル基、R3lR4は各々同じ又は異
なって良い水素原子、炭素原子1〜6個のアルコキシ基
、又は炭素原子1〜6個のアルキル基、Rは炭素原子1
〜IO個のフルケニレン基、Xは水素原子又は式中に示
されるN、 N−ジアルキ・ルテトラヒドロオキサジニ
ウム化合物基と同じ基を表す)の脂肪族不飽和ジカルボ
ン酸化合物のモノ又はジーN、 N−ジアルキルテトラ
ヒドロオキサジニウム化合物塩を電解質として含有する
ことを特徴とする。
That is, the electrolytic solution for an electrolytic capacitor according to the present invention has the general formula: (wherein, re + n = 4+ 1 = 2-4. n = 2
~0, R1+ R* are each an alkyl group having 1 to 6 carbon atoms, which may be the same or different, R3lR4 are hydrogen atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms, which may each be the same or different. alkyl group, R is 1 carbon atom
~IO fulkenylene groups, X is a hydrogen atom or N shown in the formula; It is characterized by containing an N-dialkyltetrahydroxazinium compound salt as an electrolyte.

使用される非プロトン溶媒としては、 (1)  アミド系としてトメチルホルムアミド、N、
N−ジメチルホルムアミド、N−エチルホルムアミド、
N、トメチルホルムアミド、N−メチルアセトアミド、
N、N  −ジメチルアセトアミド、N−エチルアセト
アミド、N、N−ジエチルアセトアミド、ヘキサメチル
ホスホリックアミド、(2)オキシド系としてジメチル
スルホキシド(3)  ニトリル系としてアセトニトリ
ル、(4)環状エステル、アミド系としてγ−ブチロラ
クトン、N−メチル−2−ピロリドン、エチレンカーボ
ネート、プロピレンカーボネート、などが代表として挙
げられる。
The aprotic solvents used include (1) tomethylformamide, N, as an amide type;
N-dimethylformamide, N-ethylformamide,
N, tomethylformamide, N-methylacetamide,
N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, hexamethylphosphoric amide, (2) Dimethyl sulfoxide as oxide type (3) Acetonitrile as nitrile type, (4) Cyclic ester, as amide type Representative examples include γ-butyrolactone, N-methyl-2-pyrrolidone, ethylene carbonate, and propylene carbonate.

本発明の対象となる多価アルコール化合物は2価アルコ
ール化合物又は2価アルコール化合物のモノアルキルエ
ーテルが好適で、2価アルコール化合物がエチレングリ
コールでアリ、2価アルコールモノアルキルエーテル化
合物がメチルセルソルブ又はエチルセルソルブである。
The polyhydric alcohol compound to be used in the present invention is preferably a dihydric alcohol compound or a monoalkyl ether of a dihydric alcohol compound, and the dihydric alcohol compound is ethylene glycol, and the dihydric alcohol monoalkyl ether compound is methyl cellosolve or a dihydric alcohol compound. It is ethyl cellosolve.

非プロトン溶媒に対する多価アルコール化合物の重量割
合は、(100〜5G) : (0〜50)であって非
プロトン溶媒100%が適切であるが、約50%までの
多価アルコール化合物は実質的に製品劣化を避は得て、
適宜使用して良い。
The weight ratio of the polyhydric alcohol compound to the aprotic solvent is (100-5G): (0-50), and 100% of the aprotic solvent is suitable, but up to about 50% of the polyhydric alcohol compound is substantially To avoid product deterioration,
May be used as appropriate.

本発明の対象となる脂肪族不飽和ジカルボン酸化合物は
マレイン酸、シトラコン酸、グルタコン酸、イタコン酸
、アリルマロン酸、テラコン酸フマル酸、メサコン酸、
ムコン酸等であるがこれらに限定されるものでない。
The aliphatic unsaturated dicarboxylic acid compounds targeted by the present invention include maleic acid, citraconic acid, glutaconic acid, itaconic acid, allylmalonic acid, teraconic acid fumaric acid, mesaconic acid,
Examples include, but are not limited to, muconic acid.

本発明の対象となるN、N−ジアルキルテトラヒドロオ
キサジニウム化合物は、次の構造式で示される。
The N,N-dialkyltetrahydroxazinium compound that is the object of the present invention is represented by the following structural formula.

N、 N−ジメチルモルホリニウム  N、 N−ジエ
チルテトラヒドロ−。
N, N-dimethylmorpholinium N, N-diethyltetrahydro-.

N、 N−ジエチルモルホリニウム  1.2−オキサ
ジニウム但しR= C113,又はCtlls N、N−ジメチル−2−メトキシ−N、ll−ジメチル
−2,5−ジメチル−モルホリニウム        
モルホリニウムN、 N−ジメチルテトラヒドロ−1,
3−オキサジニウム本発明で使用されるN、 N−ジア
ルキルテトラヒドロオキサジニウム化合物の合成原料と
なるテトラヒドロオキサジン化合物は、例えばテトラヒ
ドロ−1,4−オキサジン(モルホリン)は、ジェタノ
ールアミンを硫酸等による脱水閉環により工業的に製造
され市場で入手可能で、これをハロゲン化アルキル、例
えば沃化メチルで常法によりNメチル化して対応する 
沃化N、N−ジメチルモルホリニウムを得ることが出来
る。これをイオン交換膜を使用した電気透析を行いアニ
オン交換を行う脱沃素と脱塩して、本発明の電解コンデ
ンサへの使用に適する精製された水酸化N、N−ジメチ
ルモルホリニウムの水溶液ヲ得ル。
N, N-diethylmorpholinium 1,2-oxazinium where R= C113, or Ctlls N, N-dimethyl-2-methoxy-N, ll-dimethyl-2,5-dimethyl-morpholinium
Morpholinium N, N-dimethyltetrahydro-1,
3-Oxazinium The tetrahydroxazine compound that is a raw material for the synthesis of the N,N-dialkyltetrahydroxazinium compound used in the present invention is, for example, tetrahydro-1,4-oxazine (morpholine), which is obtained by dehydrating jetanolamine with sulfuric acid or the like. It is produced industrially by ring closure and is available on the market, and is treated by N-methylation with an alkyl halide, such as methyl iodide, by a conventional method.
N,N-dimethylmorpholinium iodide can be obtained. This is subjected to electrodialysis using an ion exchange membrane and desalted with deiodine and anion exchange to produce a purified aqueous solution of N,N-dimethylmorpholinium hydroxide suitable for use in the electrolytic capacitor of the present invention. Get it.

この水溶液に所望の脂肪族不飽和ジカルボン酸化合物等
モル又は1/2モルを添加し、中和反応させ、減圧下に
蒸発乾固して脂肪族不飽和ジカルボン酸のモノ又はジー
N、 N−ジメチルモルホリニウム塩を得ることが出来
る。また、1.3−オキサジン又は1.2−オキサジン
は、例えば11.キング:ジャーナルケミカルソサイエ
ティ1942年、第432頁に記載の方法により適宜合
成出来、例えば1,2−オキサジンは、ヒドロキサム酸
エチルと1,4−ジブロムブタンを原料にして下記のよ
うにして合成出来る: 本発明に係る電解コンデンサ用電解液は、一般的に、非
プロトン溶媒に必要に応じ多価アルコール化合物又はそ
のモノアルキルエーテル化合物を混合した溶媒に所望の
脂肪族不飽和ジカルボン酸モノ又はジーN、 11−ジ
アルキルテトラヒドロオキサジニウム化合物塩を添加溶
解して得られる。
Equimole or 1/2 mole of the desired aliphatic unsaturated dicarboxylic acid compound is added to this aqueous solution, neutralized, and evaporated to dryness under reduced pressure to obtain mono- or di-N, N- of the aliphatic unsaturated dicarboxylic acid. Dimethylmorpholinium salt can be obtained. Moreover, 1,3-oxazine or 1,2-oxazine is, for example, 11. It can be synthesized as appropriate by the method described in King: Journal Chemical Society, 1942, p. 432. For example, 1,2-oxazine can be synthesized as follows using ethyl hydroxamate and 1,4-dibromobutane as raw materials: Book The electrolytic solution for an electrolytic capacitor according to the invention generally comprises a desired aliphatic unsaturated dicarboxylic acid mono- or di-N, in a solvent prepared by mixing an aprotic solvent with a polyhydric alcohol compound or its monoalkyl ether compound as necessary. - Obtained by adding and dissolving a dialkyltetrahydroxazinium compound salt.

(実施例) 以下、本発明に係る電解コンデンサ用電解液の実施例に
つき、脂肪族不飽和ジカルボン酸のモノ又はジーN、 
N−ジアルキルテトラヒドロオキサジニウム化合物塩の
各種非プロトン溶媒又はこれとエチレングリコール又は
メチルセルソルフ(エチレングリコールモノメチルエー
テル)に対する20重量%溶液の30℃における電導度
を第1表に示す。なお、比較例として従来の標準的電解
液(エチシングリコ−ルア8重盟%、水10%、アジピ
ン酸ジアンモニウ12%)を示している。
(Example) Hereinafter, examples of the electrolyte solution for electrolytic capacitors according to the present invention will be described.
Table 1 shows the electrical conductivity at 30 DEG C. of 20% by weight solutions of N-dialkyltetrahydroxazinium compound salts in various aprotic solvents or with ethylene glycol or methyl celluloph (ethylene glycol monomethyl ether). As a comparative example, a conventional standard electrolytic solution (8% ethysine liquor, 10% water, 12% diammonium adipate) is shown.

層上Å 以上や結果から分かるように、本発明の電解液は、従来
のものに比べて高い電導度を示している。
As can be seen from the above and the results, the electrolytic solution of the present invention exhibits higher conductivity than the conventional one.

次に、実施例1〜10及び比較例の電解液を用いて電解
コンデンサを製作し、その特性の比較を行った。
Next, electrolytic capacitors were manufactured using the electrolytes of Examples 1 to 10 and Comparative Example, and their characteristics were compared.

製作した電解コンデンサは、アルミニウム箔を陽極並び
に陰極に用い、セパレータ紙を挾んで重ね合わせて巻回
して円筒状のコンデンサ素子としたものに、各々の実施
例及び比較例の電解液を含浸して外装ケースに収納して
密封したものである。
The produced electrolytic capacitors were made by using aluminum foil as an anode and a cathode, sandwiching separator paper and rolling it up to form a cylindrical capacitor element, which was impregnated with the electrolyte of each example and comparative example. It is stored in an external case and sealed.

いずれも同一のコンデンサ素子を用いており定格電圧1
6V定格容fftllloμFである。
Both use the same capacitor element and have a rated voltage of 1
The 6V rated capacity is fftlloμF.

第2表は、これら電解コンデンサの初期値並びに110
℃で定格電圧を印加して1000時間経過後の静電容量
値(μF)、損失角の正接(tanδ)漏れ電流(μA
)(2分値)を表している。
Table 2 shows the initial values of these electrolytic capacitors as well as 110
Capacitance value (μF), tangent of loss angle (tan δ), leakage current (μA) after 1000 hours of applying rated voltage at °C
) (dichotomous value).

この試験の結果から明らかなように、本発明の電解液の
電導度が高いことから、従来のものに比べ損失、即ちt
anδの値が低くなる。
As is clear from the results of this test, since the electrolytic solution of the present invention has a high conductivity, the loss, that is, t
The value of anδ becomes low.

また、本質的に水を含まないので高温負荷状態に置いて
も、内圧上昇による外観異常や静電容量の減少がなく、
初期値と1000時間後の特性値の比較におしても、本
発明のものは極めて変化が少ない。
In addition, since it essentially does not contain water, there is no appearance abnormality or decrease in capacitance due to increased internal pressure even when placed under high temperature loads.
Even when comparing the initial values and the characteristic values after 1000 hours, there is very little change in the properties of the present invention.

(発明の効果) 本発明に係る電解液を用いた電解コンデンサは、低い損
失値と、高温で長時間使用しても安定した特性が維持出
来るので、高い周波数で使用され、かつ高効率が求めら
れるスイッチングレギュレータなどの電源装置や、高温
度で長期間使用される各種電気機器等に用いることが出
来る。
(Effects of the Invention) The electrolytic capacitor using the electrolyte according to the present invention has a low loss value and can maintain stable characteristics even when used at high temperatures for long periods of time, so it can be used at high frequencies and requires high efficiency. It can be used in power supply devices such as switching regulators, which are used for a long period of time, and various electrical devices that are used at high temperatures for long periods of time.

Claims (7)

【特許請求の範囲】[Claims] (1)非プロトン溶媒を主体とする溶媒中に一般式: [▲数式、化学式、表等があります▼]▲数式、化学式
、表等があります▼ (式中、m+n=4,m=2〜4,n=2〜0、R_1
,R_2は各々同じ又は異なって良い炭素原子1〜6個
のアルキル基、R_3,R_4は各々同じ又は異なって
良い水素原子、炭素原子1〜6個のアルコキシ基、又は
炭素原子1〜6個のアルキル基、Rは炭素原子1〜10
個のアルケニレン基、Xは水素原子又は式中に示される
N,N−ジアルキルテトラヒドロオキサジニウム化合物
基と同じ基を表す)の脂肪族不飽和ジカルボン酸化合物
のモノ又はジ−N,N−ジアルキルテトラヒドロオキサ
ジニウム化合物塩を電解質として含有する電解コンデン
サ用電解液。
(1) General formulas in solvents that are mainly aprotic solvents: [▲There are mathematical formulas, chemical formulas, tables, etc.▼]▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, m + n = 4, m = 2 ~ 4, n=2~0, R_1
, R_2 are each an alkyl group having 1 to 6 carbon atoms which may be the same or different, R_3 and R_4 are each a hydrogen atom which may be the same or different, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Alkyl group, R is 1 to 10 carbon atoms
mono- or di-N,N-dialkyl of an aliphatic unsaturated dicarboxylic acid compound of An electrolytic solution for electrolytic capacitors containing a tetrahydroxazinium compound salt as an electrolyte.
(2)非プロトン溶媒を主体とする溶媒は非プロトン溶
媒100〜50重量部と多価アルコール化合物0〜50
重量部とからなる請求項1記載の電解コンデンサ用電解
液。
(2) A solvent mainly composed of an aprotic solvent is 100 to 50 parts by weight of an aprotic solvent and 0 to 50 parts by weight of a polyhydric alcohol compound.
The electrolytic solution for an electrolytic capacitor according to claim 1, comprising parts by weight.
(3)非プロトン溶媒はN−メチルホルムアミドN,N
−ジメチルホルムアミド、N−エチルホルムアミド、N
,N−ジエチルホルムアミド、N−メチルアセトアミド
、N,N−ジメチルアセトアミドN−エチルアセトアミ
ド、N,N−ジエチルアセトアミド、γ−ブチロラクト
ン、N−メチル−2−ピロリドン、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルスルホキシド、
アセトニトリル又はこれらの混合物の群より選択される
請求項1又は請求項2に記載の電解コンデンサ用電解液
(3) The aprotic solvent is N-methylformamide N,N
-dimethylformamide, N-ethylformamide, N
, N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide N-ethylacetamide, N,N-diethylacetamide, γ-butyrolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, dimethyl sulfoxide,
The electrolytic solution for an electrolytic capacitor according to claim 1 or 2, which is selected from the group of acetonitrile or a mixture thereof.
(4)多価アルコール化合物は2価アルコール化合物又
は2価アルコール化合物のモノアルキルエーテルである
請求項2記載の電解コンデンサ用電解液。
(4) The electrolytic solution for an electrolytic capacitor according to claim 2, wherein the polyhydric alcohol compound is a dihydric alcohol compound or a monoalkyl ether of a dihydric alcohol compound.
(5)2価アルコール化合物がエチレングリコールであ
り、2価アルコールモノアルキルエーテル化合物がメチ
ルセルソルブ又はエチルセルソルブである請求項2記載
の電解コンデンサ用電解液。
(5) The electrolytic solution for an electrolytic capacitor according to claim 2, wherein the dihydric alcohol compound is ethylene glycol and the dihydric alcohol monoalkyl ether compound is methyl cellosolve or ethyl cellosolve.
(6)N,N−ジアルキルテトラヒドロオキサジニウム
化合物はN,N−ジメチルモルホリニウム、N,N−ジ
エチルモルホリニウム、N,N−ジエチルテトラヒドロ
−1,2−オキサジニウム、N,N−ジメチル−2−メ
トキシモルホリニウム、N,N−ジメチル−2,5−ジ
メチルモルホリニウム、N,N−ジメチルテトラヒドロ
−1,3−オキサジニウムである請求項1記載の電解コ
ンデンサ用電解液。
(6) N,N-dialkyltetrahydroxazinium compounds include N,N-dimethylmorpholinium, N,N-diethylmorpholinium, N,N-diethyltetrahydro-1,2-oxazinium, N,N-dimethyl The electrolytic solution for an electrolytic capacitor according to claim 1, which is -2-methoxymorpholinium, N,N-dimethyl-2,5-dimethylmorpholinium, or N,N-dimethyltetrahydro-1,3-oxazinium.
(7)脂肪族不飽和ジカルボン酸化合物はマレイン酸、
シトラコン酸、グルタコン酸、イタコン酸である請求項
1記載の電解コンデンサ用電解液。
(7) The aliphatic unsaturated dicarboxylic acid compound is maleic acid,
The electrolytic solution for an electrolytic capacitor according to claim 1, which is citraconic acid, glutaconic acid, or itaconic acid.
JP24228588A 1988-09-29 1988-09-29 Electrolyte for electrolytic capacitor Pending JPH0291910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24228588A JPH0291910A (en) 1988-09-29 1988-09-29 Electrolyte for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24228588A JPH0291910A (en) 1988-09-29 1988-09-29 Electrolyte for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0291910A true JPH0291910A (en) 1990-03-30

Family

ID=17086983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24228588A Pending JPH0291910A (en) 1988-09-29 1988-09-29 Electrolyte for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0291910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157683A (en) * 2006-12-21 2008-07-10 Ckd Corp Position sensor for hydraulic cylinder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196114A (en) * 1988-02-01 1989-08-07 Mitsubishi Petrochem Co Ltd Electrolytic solution for electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196114A (en) * 1988-02-01 1989-08-07 Mitsubishi Petrochem Co Ltd Electrolytic solution for electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157683A (en) * 2006-12-21 2008-07-10 Ckd Corp Position sensor for hydraulic cylinder

Similar Documents

Publication Publication Date Title
JPH0269916A (en) Electrolyte for electrolytic capacitor
JPH0291910A (en) Electrolyte for electrolytic capacitor
JP2672128B2 (en) Electrolyte for electrolytic capacitors
JP2774525B2 (en) Electrolyte for electrolytic capacitors
JPH0291909A (en) Electrolyte for electrolytic capacitor
JP2701876B2 (en) Electrolyte for electrolytic capacitors
JPH0291912A (en) Electrolyte for electrolytic capacitor
JP2701875B2 (en) Electrolyte for electrolytic capacitors
JPH0254511A (en) Electrolyte solution for electrolytic capacitor
JP2692880B2 (en) Electrolyte for electrolytic capacitors
JP2815875B2 (en) Electrolyte for electrolytic capacitors
JPH0269918A (en) Electrolyte for electrolytic capacitor
JPH0291911A (en) Electrolyte for electrolytic capacitor
JP2815874B2 (en) Electrolyte for electrolytic capacitors
JPH0291914A (en) Electrolyte for electrolytic capacitor
JP2732404B2 (en) Electrolyte for electrolytic capacitors
JPH02123722A (en) Electrolyte for electrolytic capacitor
JPH0291915A (en) Electrolyte for electrolytic capacitor
JP2732406B2 (en) Electrolyte for electrolytic capacitors
JPH02158117A (en) Electrolyte for electrolytic capacitor
JP2741609B2 (en) Electrolyte for electrolytic capacitors
JPH02163920A (en) Electrolytic solution for electrolytic capacitor use
JPH0269914A (en) Electrolyte for electrolytic capacitor
JPH0269919A (en) Electrolyte for electrolytic capacitor
JPH0254515A (en) Electrolyte solution for electrolytic capacitor