KR950004678B1 - Making method of high tensile strength steel - Google Patents

Making method of high tensile strength steel Download PDF

Info

Publication number
KR950004678B1
KR950004678B1 KR1019920024971A KR920024971A KR950004678B1 KR 950004678 B1 KR950004678 B1 KR 950004678B1 KR 1019920024971 A KR1019920024971 A KR 1019920024971A KR 920024971 A KR920024971 A KR 920024971A KR 950004678 B1 KR950004678 B1 KR 950004678B1
Authority
KR
South Korea
Prior art keywords
high tensile
steel
temperature
strength
rolling
Prior art date
Application number
KR1019920024971A
Other languages
Korean (ko)
Other versions
KR940014847A (en
Inventor
홍순택
Original Assignee
포항종합제철주식회사
박득표
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 박득표, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019920024971A priority Critical patent/KR950004678B1/en
Publication of KR940014847A publication Critical patent/KR940014847A/en
Application granted granted Critical
Publication of KR950004678B1 publication Critical patent/KR950004678B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The high tensile steel is made by heating a steel slab comprising (by wt.) 0.100˜0.20 % C, 0.1˜0.4% Mn, 0.15˜0.35% Si, 1.0˜1.8% Cr, 2.25˜3.50% Ni, 0.20˜0.60% Mo, up to 0.05% V, up to 250 ppm P, up to 150 ppm S, balance Fe and inevitable impurities, to 1150˜1300 deg.C, hot-rolling it at finishing temp. of 750˜900 deg.C with 30% reduction, water-cooling the hot-rolled steet up to room temp. with 10˜15 deg.C/sec. rate for below 30 secs., and tempering at 600˜660 deg.C of below Ac1 transformation point.

Description

항복강도 90kgf/mm2급 고장력강의 제조방법Yield strength 90kgf / mm2 high tensile steel manufacturing method

제1도는 종래 방법 및 본 발명에 따라 고장력강을 제조하는 공정을 개략적으로 나타내는 공정개략도.1 is a process schematic diagram showing a conventional method and a process for producing high tensile steel according to the present invention.

본 발명은 심해구조용 강재, 심해탐사선의 선각재, 압력용기등에 사용되는 고장력강을 제조하는 방법에 관한 것으로서, 보다 상세하게는, 통상의 항복강도 70kgf/mm2급 고장력강에 직접 소입공정을 도입하므로서 저온 충격인성이 우수한 항복강도 90kgf/mm2급 고장력강을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing high tensile steel used for deep sea structural steel, hull hulls of deep sea probes, pressure vessels, and more particularly, by introducing a hardening process directly into the general yield strength 70kgf / mm 2 high tensile steel The present invention relates to a method of producing a yield strength of 90kgf / mm 2 high tensile strength steel with excellent impact toughness.

심해구조용 강재, 심해탐사선의 선각재, 압력용기용으로 항복강도 70kgf/mm2급 고장력강이 사용되고 있는데, 그 제조방법은 다음과 같다.Yield strength 70kgf / mm 2 high tensile strength steel is used for deep sea structural steel, hull shell of deep sea probe and pressure vessel. The manufacturing method is as follows.

즉, 상기한 항복강도 70kgf/mm2급 고장력강은 중량%로, C : 0.2% 이하, Mn : 0.1-0.4%, Si : 0.15-0.35%, P : 0.025% 이하, S : 0.015% 이하, Ni : 2.25-3.50%, Cr : 1.0-1.8%, Mo : 0.20-0.60%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 1150-1300℃에서 충분히 가열하고, 각 압연 패스(pass)당 10-30%의 압하율로 900℃이상에서 압열을 종료하고 공냉한 후 다시 900℃로 재가열과 수냉한 후, 600-650℃에서 템퍼링하여 제조된다.That is, the yield strength of the above 70kgf / mm class 2 high tensile strength steel by weight, C: 0.2% or less, Mn: 0.1-0.4%, Si: 0.15-0.35%, P: 0.025% or less, S: 0.015% or less, Ni : 2.25-3.50%, Cr: 1.0-1.8%, Mo: 0.20-0.60%, steel slab composed of the balance Fe and other unavoidable impurities is sufficiently heated at 1150-1300 ° C., 10- per each rolling pass After the end of the pressurization at 900 ℃ or more at a reduction rate of 30% and air-cooled again and then re-heated and water cooled to 900 ℃, it is produced by tempering at 600-650 ℃.

그러나, 상기한 항복강도 70kgf/mm2급 고장력강을 심해탐사선의 선각재등에 사용하는 경우에는 잠수깊이가 최대 3,000m 정도이고, 또한 저온 인성의 저하없이 항복강도의 향상을 통한, 제품의 경량화 및 소형화가 요구되고 있다.However, when the above-mentioned yield strength of 70kgf / mm 2 high tensile strength steel is used for hull materials of deep sea probes, the diving depth is up to about 3,000m, and the product is lighter and smaller by improving yield strength without lowering low-temperature toughness. Is required.

본 발명은 통상의 항복강도 70kgf/mm2급 고장력강의 성분 및 조성을 엄격히 제어하고 또한 직접소입 공정을 도입하므로서 저온인성의 저하없이 항복강도를 20kgf/mm2정도 개선시키고자 하는데, 그 목적이 있다.The present invention is to improve the yield strength of about 20kgf / mm 2 without lowering the low-temperature toughness by strictly controlling the composition and composition of the conventional yield strength 70kgf / mm 2 high tensile strength steel and by introducing a direct quenching process, the object is.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은, 중량%로, C : 0.100-0.20%, Mn : 0.1-0.4%, Si : 0.15-0.35%, Cr : 1.0-1.8%, N : 2.25-3.50%, Mo : 0.20-0.60%, V : 0.05% 이하, P : 250ppm 이하, S : 150ppm 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 1150-1300℃의 온도범위에서 충분히 가열한 후, 각 압연패스(pass) 당 10-30%의 압하율로 750-900℃의 미재결정온도 영역에서 마무리 열간압연한 다음, 30초이내에 10-50℃/sec의 냉각속도로 상온까지 수냉한 후 Ac1점 온도 이하인 600-660℃에서 템퍼링하여 항복강도 90kgf/mm2급 고장력강을 제조하는 방법에 관한 것이다.The present invention, by weight, C: 0.100-0.20%, Mn: 0.1-0.4%, Si: 0.15-0.35%, Cr: 1.0-1.8%, N: 2.25-3.50%, Mo: 0.20-0.60%, Steel slabs composed of V: 0.05% or less, P: 250 ppm or less, S: 150 ppm or less, balance Fe and other unavoidable impurities are sufficiently heated in a temperature range of 1150-1300 ° C, and then 10- per each rolling pass. Finish hot rolling in the unrecrystallized temperature range of 750-900 ° C with a 30% reduction rate, and then water-cooled to room temperature at a cooling rate of 10-50 ° C / sec within 30 seconds, and then at 600-660 ° C below Ac 1 point temperature. It relates to a method of manufacturing a yield strength 90kgf / mm class 2 high tensile strength steel by tempering.

이하, 상기 성분 범위 및 제조조건의 한정이유에 대하여 설명한다.Hereinafter, the reason for limitation of the said component range and manufacturing conditions is demonstrated.

상기 C의 함량이 증가하면, 소입성이 향상되어 강도를 증가시킬 수 있지만, 용접성을 해치고, 반대로 C함량이 감소하게 되면, 소입성이 낮아 강도를 보증할 수 없으므로, 상기 C함량은 0.10-0.20%로 제한하는 것이 바람직하다.When the content of C is increased, the hardenability can be increased to increase the strength, but when the weldability is impaired, on the contrary, when the C content is reduced, the hardenability is low and the strength cannot be guaranteed, so the C content is 0.10-0.20. It is desirable to limit to%.

상기 Mn 역시 소입성을 증가시켜 강도를 개선시킬 수 있으나, 용접성을 해치는 원소이므로, Mn 함량은 0.1-0.4%로 제한하는 것이 바람직하다.The Mn may also improve the strength by increasing the hardenability, but since the element impairs the weldability, the Mn content is preferably limited to 0.1-0.4%.

상기 Si은 항복강도를 증가시킬 수 있지만, 충격천이온도를 상승시키므로, 그 함량은 0.15-0.35%로 제한하는 것이 바람직하다.The Si can increase the yield strength, but increases the impact transition temperature, the content is preferably limited to 0.15-0.35%.

상기 Cr은 소입성에 유효한 합금원소이지만 용접성을 해치므로, Cr 함량은 1.0-1.8%로 제한하는 것이 바람직하다.The Cr is an alloying element effective for quenching, but impairs weldability, so the Cr content is preferably limited to 1.0-1.8%.

상기 Ni은 저온인성을 개선할 수 있는 합금원소지만, 고가인 관계로 2.25-3.50%로 제한하는 것이 바람직하다.Ni is an alloying element capable of improving low temperature toughness, but is preferably limited to 2.25-3.50% due to its high price.

사이 Mo은 소입성을 개선시키지만, 그 양이 1% 초과시 심한 취성을 유발시킬 가능성이 있고 고가이므로, 그 함량은 0.20-0.60%로 제한하는 것이 바람직하다.Mo improves the hardenability, but if the amount exceeds 1%, it is likely to cause severe brittleness and is expensive, so the content is preferably limited to 0.20-0.60%.

상기 V은 소입성에 유효한 원소이지만, 용접성을 해치므로, 그 함량은 0.05% 이하로 제한하는 것이 바람직하다.Although V is an element effective for quenching property, it impairs the weldability, so the content thereof is preferably limited to 0.05% or less.

상기 P는 충격인성을 해치고 소려 취성을 유발시키는 원소이므로 그 함량은 250ppm 이하로 제한하는 것이 바람직하다.Since P is an element that impairs impact toughness and causes brittleness, the content thereof is preferably limited to 250 ppm or less.

상기 S는 충격인성과 용접성을 해치는 원소이므로, 그 함량은 150ppm 이하로 제한하는 것이 바람직하다.Since S is an element that impairs impact toughness and weldability, the content thereof is preferably limited to 150 ppm or less.

상기 슬라브 가열온도가 1150℃ 이하인 경우에는 압연종료 온도를 맞추기 어렵고, 1300℃ 이상인 경우에는 결정립의 이상성장을 가져오게 되므로, 슬라브의 가열온도는 1150-1300℃로 제한하는 것이 바람직하다.When the slab heating temperature is 1150 ℃ or less, it is difficult to match the end temperature of rolling, and when the slab heating temperature is 1300 ℃ or more, it leads to abnormal growth of the grain, it is preferable to limit the heating temperature of the slab to 1150-1300 ℃.

열간압연시 압하율이 높을수록 강도와 인성을 개선할 수 있지만, 30% 이상의 압하는 저온구역에서 압연설비의 과부하를 초래하므로 각 압연패스당 10-30%로 압연종료온도까지 연속압연하는 것이 바람직하다.The higher the reduction rate during hot rolling, the better the strength and toughness, but more than 30% of the rolling causes overloading of the rolling equipment in the low temperature zone, so it is desirable to continuously roll to the end of rolling temperature at 10-30% per rolling pass. Do.

750℃ 이하의 미재결정구역 압연은 압연설비의 과부하를 초래할 수 있고, 900℃ 이상은 재결정온도 구역이므로 상기 압연온도는 750-900℃로 제한하는 것이 바람직하다.Rolling of the unrecrystallized zone below 750 ° C. may cause overloading of the rolling equipment, and the rolling temperature is preferably limited to 750-900 ° C. since the recrystallization temperature zone is 900 ° C. or higher.

상기 열간압연종료후 유지시간이 짧을수록 미재결정 압하효과를 크게 할 수 있으며, 너무 긴 시간이면 미재결정 압하의 효과가 줄어들 수 있기 때문에 30초이내로 한정하는 것이 바람직하다.The shorter the holding time after the end of hot rolling can increase the effect of reducing the recrystallization of the recrystallization, and if it is too long, the effect of the recrystallization of the recrystallization can be reduced.

상기 냉각속도는 빠를수록 강도의 확보측면에서는 유리하지만 후판 냉각의 수냉 최대범위인 50℃/sec를 그 상한치로 하고, 10℃/sec 이하의 냉각속도에서는 상부 베이타이트 조직을 형성하여 강도와 인성을 확보할 수 없으므로, 냉각속도는 10-50℃/sec로 한정하는 것이 바람직하다.The higher the cooling rate, the more advantageous in terms of securing strength, but the upper limit is 50 ° C / sec, which is the maximum range of water cooling for thick plate cooling, and at the cooling rate of 10 ° C / sec or less, the upper baitite structure forms strength and toughness. Since it cannot be ensured, the cooling rate is preferably limited to 10-50 ° C / sec.

상기 템퍼링 온도는 강도와 인성의 확보에 상당히 중요한 인자이고 통상적으로 Ac1온도 이하에서 이루어지는데, 600℃ 이하인 경우에는 충격인성의 확보가 어렵고, 660℃ 이하인 경우에는 강도의 확보가 어렵기 때문에 600-660℃로 제한하는 것이 바람직하다.The tempering temperature is a very important factor in securing strength and toughness, and is generally made at Ac 1 or lower temperature. If it is 600 ° C. or lower, it is difficult to secure impact toughness, and if it is 660 ° C. or lower, it is difficult to secure strength. It is desirable to limit to 660 ° C.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

하기 표 1과 같은 조성을 갖는 종래의 항복강도 70kgf/mm2급 강과 발명강 슬라브를 1150-1300℃에서 충분히 가열하고, 하기 표 2와 같은 조건으로 10-30%의 범위내에서 연속적인 열간압연을 한 후, 직접 소입을 거쳐 템퍼링 과정을 실시하여 시편을 제조하고 각각에 대하여 기계적 성질을 평가한 다음, 그 결과를 하기 표 2에 나타내었다.To a continuous hot rolled in the range of 10 to 30% under the conditions as shown in Table 1 and a composition of a conventional yield strength of 70kgf / mm 2 grade steel invention steel slab to heat sufficiently in ℃ 1150-1300, and Table 2 having the same After that, the specimens were prepared by directly quenching and tempering, and the mechanical properties of the specimens were evaluated. The results are shown in Table 2 below.

[표 1]TABLE 1

[표 2]TABLE 2

* 비고 HT : 압연종료후 유지시간, CR : 냉각속도, FRT : 압연종료온도* Note HT: Holding time after finish rolling, CR: Cooling speed, FRT: Finishing rolling temperature

vE-18 : -18℃ 충격에너지 vE-85 : -85℃ 충격에너지vE-18: -18 ℃ Impact Energy vE-85: -85 ℃ Impact Energy

상기 표 2에 나타난 바와 같이, 본 발명강을 본 발명의 제조조건에 따라 제조한 본 발명재는 종래강을 본 발명의 범위를 벗어나는 조건에 따라 제조한 종래재와 거의 동일한 연신율과 저온 충격인성을 나타내고 있으나, 항복강도 및 인장강도에 있어서는 본 발명재가 종래재에 비하여 약 20kgf/mm2정도 상승됨을 알 수 있다.As shown in Table 2, the present invention produced the present invention steel according to the manufacturing conditions of the present invention exhibits almost the same elongation and low temperature impact toughness of the conventional steel produced according to the conditions outside the scope of the present invention However, it can be seen that the yield strength and tensile strength of the present invention are increased by about 20 kgf / mm 2 compared to the conventional materials.

따라서, 본 발명재가 종래재에 비하여 강도와 인성의 측면에서 훨씬 우수한 물성을 갖게 된다.Therefore, the present invention has much superior physical properties in terms of strength and toughness as compared with the conventional materials.

일반적으로 강의 강도와 인성의 관계는 서로 반비례 관계를 갖지만 본 발명강의 경우 직접소입에 의해 합금원소의 고용도의 증가와 압연후 곧바로 소입에 의한 전위 밀도의 증가 및 공공과 같은 내부결함의 증가에 기인한 강도의 상승을 가져왔으며, 또한 일반적으로 잘 알려져 있는 미재결정 압하에 의한 유효결정립의 미세화에 의한 저온 인성의 확보에 의해 좋은 강도-인성을 가지게 된다.In general, the relationship between the strength and toughness of the steel is inversely related to each other, but in the case of the present invention steel, due to the increase of the solubility of the alloying element by direct hardening, the increase of dislocation density due to hardening immediately after rolling and the increase of internal defects such as vacancy. It brought about an increase in strength, and also has good strength-toughness by securing low-temperature toughness by miniaturization of effective crystal grains by well-known recrystallization reduction.

상술한 바와 같이, 본 발명은 저온인성의 저하없이 항복강도를 20kgf/mm2정도 개선하여 잠수깊이를 최대 5000m까지 확보함은 물론 제품의 소형화 및 경량화를 가져올 뿐만 아나라 종래의 재가열 소입법에 의한 것보다 재가열 과정의 생략으로 인한 공정의 단순화로 제조비용을 절감할 수 있는 효과가 있는 것이다.  As described above, the present invention improves the yield strength by about 20kgf / mm 2 without lowering the low temperature toughness to secure the diving depth up to 5000m, as well as the miniaturization and lightening of the product, but also by the conventional reheat quenching method. Rather, it is possible to reduce manufacturing costs by simplifying the process due to the elimination of the reheating process.

Claims (1)

중량%로, C : 0.100-0.20%, Mn : 0.1-0.4%, Si : 0.15-0.35%, Cr : 1.0-1.8%, Ni : 2.25-3.50%, Mo : 0.20-0.60%, V : 0.05% 이하, P : 250ppm 이하, S : 150ppm 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 1150-1300℃의 온도범위에서 충분히 가열한 후, 각 압연패스(pass)당 10-30%의 압하율로 750-900℃의 미재결정온도영역에서 마무리 열간압연한 다음, 30초 이내에 10-50℃/sec의 냉각속도로 상온까지 수냉한 후, Ac1점 온도 이하인 600-660℃에서 템퍼링하는 것을 특징으로 하는 항복강도 90kgf/mm2급 고장력강의 제조방법.By weight, C: 0.100-0.20%, Mn: 0.1-0.4%, Si: 0.15-0.35%, Cr: 1.0-1.8%, Ni: 2.25-3.50%, Mo: 0.20-0.60%, V: 0.05% Below, P: 250ppm or less, S: 150ppm or less, steel slab composed of balance Fe and other unavoidable impurities is sufficiently heated in the temperature range of 1150-1300 ° C, and then reduced by 10-30% per each rolling pass. In the unrecrystallized temperature range of 750-900 ℃ at the rate of finishing hot rolling, and then cooled to room temperature at a cooling rate of 10-50 ℃ / sec within 30 seconds, then tempering at 600-660 ℃ below Ac 1 point temperature Yield strength 90kgf / mm 2 high tensile strength steel manufacturing method characterized by.
KR1019920024971A 1992-12-22 1992-12-22 Making method of high tensile strength steel KR950004678B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920024971A KR950004678B1 (en) 1992-12-22 1992-12-22 Making method of high tensile strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920024971A KR950004678B1 (en) 1992-12-22 1992-12-22 Making method of high tensile strength steel

Publications (2)

Publication Number Publication Date
KR940014847A KR940014847A (en) 1994-07-19
KR950004678B1 true KR950004678B1 (en) 1995-05-04

Family

ID=19346160

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920024971A KR950004678B1 (en) 1992-12-22 1992-12-22 Making method of high tensile strength steel

Country Status (1)

Country Link
KR (1) KR950004678B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325705B1 (en) * 1997-12-27 2002-06-26 이구택 Method of manufacturing high strength steel sheet

Also Published As

Publication number Publication date
KR940014847A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
US3951696A (en) Method for producing a high-strength cold rolled steel sheet having excellent press-formability
US4124412A (en) Columbium treated, non-aging, vacuum degassed low carbon steel and method for producing same
US3947293A (en) Method for producing high-strength cold rolled steel sheet
US3860456A (en) Hot-rolled high-strength low-alloy steel and process for producing same
US4981531A (en) Process for producing cold rolled steel sheets having excellent press formability and ageing property
KR950004678B1 (en) Making method of high tensile strength steel
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
EP0651060B1 (en) Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
US5827379A (en) Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
KR950004775B1 (en) Making mehtod of 150kg high strength steel
US4662950A (en) Method of making a steel plate for construction applications
EP0329220A1 (en) Non-ageing low-alloy hot-rolled strip-form formable steel
GB2204880A (en) Hot-rolled steel sheet enamelable on one side and process for producing the same
JPS6338520A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPS6367524B2 (en)
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
KR100256357B1 (en) The manufacturing method for high strength steel sheet with cu precipitation hardening type
KR100276312B1 (en) The manufacturing method of 80kg grade direct quenching type high strength steel sheet with excellent toughness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050502

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee