KR950002896B1 - Making method of hgih strength composition aluminium material - Google Patents

Making method of hgih strength composition aluminium material Download PDF

Info

Publication number
KR950002896B1
KR950002896B1 KR1019920026529A KR920026529A KR950002896B1 KR 950002896 B1 KR950002896 B1 KR 950002896B1 KR 1019920026529 A KR1019920026529 A KR 1019920026529A KR 920026529 A KR920026529 A KR 920026529A KR 950002896 B1 KR950002896 B1 KR 950002896B1
Authority
KR
South Korea
Prior art keywords
metal
alumina
fiber
composite material
coated
Prior art date
Application number
KR1019920026529A
Other languages
Korean (ko)
Other versions
KR940014862A (en
Inventor
백경호
이규창
성환진
Original Assignee
포항종합제철주식회사
박득표
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 박득표, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019920026529A priority Critical patent/KR950002896B1/en
Publication of KR940014862A publication Critical patent/KR940014862A/en
Application granted granted Critical
Publication of KR950002896B1 publication Critical patent/KR950002896B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The aluminum-based composite was manufactured by reinforcing the composite with metal-coated alumina short fiber. The alumina fiber coated with metal by the sol-gel method was processed to preform, in which aluminum flux was impregrated by pressing for manufacturing aluminum composite. The metal-coated alumina fiber was treated at 300-1400≰C for 30min-1hr in the over 10-5 torr vacuum atmosphere. The metal coat of alumina short fiber was formed by dipping the fiber in sol solution which was manufactured by solving the metal acetate compound such as Co, Ni or Cr in ethyl alcohol and adding the dehydrated water and acid to solution.

Description

고강도 알루미늄재 복합재료의 제조방법Manufacturing method of high strength aluminum composite material

본 발명은 금속피복된 알루미나(Al2O3) 단섬유를 보강시킨 알루미늄(Al)재(알루미늄 및 그 합금) 복합재료를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an aluminum (Al) material (aluminum and its alloy) composite material reinforced with metal-coated alumina (Al 2 O 3 ) short fibers.

Al재 복합재료는 기존 Al재에 세라믹 섬유나 휘스커를 첨가함으로써, Al재에 비하여 윌등히 우수한 비강도, 비강성, 그리고 고온물성 등을 가지고 있기 때문에 차세대 구조용 재료로서 많은 주목을 받고 있다. 이러한 Al재 복합재료의 물성은 세라믹 섬유와 기지금속간의 계면성질에 따라 크게 좌우되며, 우수한 물성을 나타내기 위해서는 계면성질의 향상이 우선되어야 한다.Al-material composite materials are attracting much attention as next-generation structural materials because they have a specific strength, non-stiffness, high temperature properties, etc. compared to Al materials by adding ceramic fibers or whiskers to the existing Al materials. The physical properties of the Al-based composite material greatly depend on the interfacial properties between the ceramic fiber and the base metal, and in order to exhibit excellent physical properties, the improvement of the interfacial properties must be prioritized.

섬유와 기지금속간의 계면성질을 개선하기 위해서는 근본적으로 취약한 서로간의 젖음성을 해결하여야만 하는데, 젖음성 향상을 위한 방안으로는 (1) 기지금속에 반응성이 강한 합금인 Mg, Ti의 첨가(J.A.Pask,et.al., J. of Amer. Ceram. Soc., Vol 45, 1962, P.5921), (2) 섬유표면의 선행열처리(P.K.Rohatgi,et. al., Int. Metals Rev., Vol 31, 1986, P. 115), 그리고 (3) 섬유의 금속피복(W.L.Lachmans, et. al., U.S.Patent No. 3,860,443, 1975) 등이 제시되고 있다. 이중 앞서 언급한 두 방법은 복합재료의 제조 또는 고온노출 기지금속과 섬유와의 심한 계면반응을 일으켜 복합재료의 물성에 악영향을 미칠수 있는 요인이 있기 때문에 섬유의 금속피복이 가장 효과적인 방법이라고 할 수 있다. 세라믹 섬유에 금속피복하는 방법으로는 화학 증착법, 스퍼터링(sputtering)법 등이 널리 어려져 있다. 그러나 이들 방법은 제조장치가 복잡하며 피복조건을 제어하기 어려운 단점이 있으며, 특히 단섬유 또는 입자의 피복에는 부적합한 문제점이 있다.In order to improve the interfacial properties between the fiber and the base metal, the wettability of each other, which is fundamentally weak, must be solved. To improve the wettability, (1) addition of Mg and Ti, a highly reactive alloy to the base metal (JAPask, et al., J. of Amer. Ceram. Soc., Vol 45, 1962, P. 5921), (2) Preheating of Fiber Surface (PK Rohatgi, et. al., Int. Metals Rev., Vol 31, 1986, P. 115), and (3) metal coating of fibers (WLLachmans, et. Al., US Pat. No. 3,860,443, 1975). Among the above two methods, metal coating of fiber is the most effective method because there are factors that can adversely affect the physical properties of composite material by producing composite material or causing severe interfacial reaction between high temperature exposed base metal and fiber. have. As a method of metal coating on ceramic fibers, chemical vapor deposition, sputtering, and the like have become widely difficult. However, these methods have a disadvantage in that the manufacturing apparatus is complicated and the coating conditions are difficult to control, and in particular, the coating of short fibers or particles is inadequate.

본 발명자는 상기한 문제점을 해결하기 위하여, 고가의 장비와 공정비를 요구함이 없이 졸-겔법에 의하여 Al2O3단섬유, SiC 휘스커 등에 금속(코발트, 니켈, 크롬)을 피복하는 방법을 제안하여 국내에 특허출원한 바 있다.(특허출원 제91-25142호)In order to solve the above problems, the present inventors propose a method of coating metal (cobalt, nickel, chromium) on Al 2 O 3 short fibers, SiC whiskers, etc. by a sol-gel method without requiring expensive equipment and process costs. Has filed a patent in Korea. (Patent Application No. 91-25142)

상기 방법은 (1) 금속아세테이트를 용매에 용해시킨 용액을 탈 이온수와 산을 첨가하여 교반한 후 금속산화물 졸 용액을 제조하는 과정, (2) 알루미나 단섬유를 침적, 건조시켜 강화재에 금슥산화물을 피복시키는 과정, (3) 이를 300℃의 수소분위기의 노에서 금속으로 환원하는 과정을 거쳐 금속피복된 알루미나 단섬유를 제조하는 방법을 그 요지로 한다.The method comprises the steps of (1) preparing a metal oxide sol solution by stirring the solution in which the metal acetate is dissolved in the solvent by adding deionized water and an acid, and (2) depositing and drying alumina short fibers to form a gold oxide in the reinforcing material. The method of manufacturing a metal-clad alumina short fiber through the process of coating | coating and (3) reducing this to metal in the furnace of 300 degreeC hydrogen atmosphere is made into the summary.

상기와 같이 금속피복된 Al2O3단섬유를 이용하여 Al재 복합재를 제조할 경우, Al재 용탕과 Al2O3간의 향상된 젖음성으로 인하여 주조결함이 없는 건전한 Al재 복합재료를 제조할 수 있다. 그러나 피복하는 온도가 300℃ 이하의 낮은 온도로 인해 피복층과 Al2O3간의 계면결합력이 취약하게 되어, 복합재료에 하중이 가해질때 낮은 하중하에서 피복층과 Al2O3단섬유간의 계면에서 파괴가 일어나 피복의 효과를 극대화할 수 없다.When the Al composite material is manufactured using the Al 2 O 3 short fibers coated as described above, it is possible to produce a healthy Al composite material without casting defects due to the improved wettability between the molten Al material and Al 2 O 3 . . However, due to the low temperature below 300 ° C, the interfacial bonding force between the coating layer and Al 2 O 3 is weak. When the load is applied to the composite material, the fracture occurs at the interface between the coating layer and Al 2 O 3 single fiber under low load. Wake up and the effect of the coating cannot be maximized.

한편, 피복온도를 높이기 위해서는 높은 온도에서 환원과정을 거쳐야 하지만, 이때 금속산화물 피복층의 산소와 환원분위기의 수소가 격렬히 반응하여 피복층의 표면굴곡이 심하여지고 피복입자가 부분적으로 크게 성장하는 문제점이 있다.On the other hand, in order to increase the coating temperature, a reduction process must be performed at a high temperature. At this time, the oxygen of the metal oxide coating layer and the hydrogen in the reducing atmosphere react violently to increase the surface curvature of the coating layer and to partially grow the coating particles.

본 발명은 상기의 문제점을 해결하기 위한 것으로, 기지금속 또는 강화재에 비해 상대적으로 취약한 피복층과 Al2O3섬유간의 계면결합력을 증가시켜 인장 강도 및 연신율이 우수한 Al재 복합재료를 제조하는데, 그 목적이 있다.The present invention is to solve the above problems, to increase the interfacial bonding strength between the coating layer and Al 2 O 3 fibers relatively weak compared to the base metal or reinforcing material to prepare an Al material composite material having excellent tensile strength and elongation, the object There is this.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 금속피복된 알루미나(Al2O3) 섬유로 예비성형제를 제조한 다음, 이 예비성형제어, 알루미늄(Al)재 용탕을 가압, 함침시켜 복합화하여 알루미늄재 복합재료를 제조하는 방법에 있어서, 예비성형에 앞서, 상기 금속피복된 알루미나 섬유를 10-5Torr 이상의 진공하에서 300-1400℃의 온도로 열처리하는 고강도 알루미늄재 복합재료의 제조방법에 관한 것이다.The present invention provides a method for producing an aluminum composite material by preparing a preforming agent from a metal-coated alumina (Al 2 O 3 ) fiber, and then composited by pressing and impregnating the preforming control, the aluminum (Al) melt. In the present invention, prior to preforming, the present invention relates to a method for producing a high-strength aluminum composite material, wherein the metal-clad alumina fiber is heat-treated at a temperature of 300-1400 ° C. under a vacuum of 10 −5 Torr or more.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

알루미나 단섬유의 금속피복은 Co, Ni, Cr 등의 금속아세테이트 화합물을 에칠알콜에 용해시킨 용액에 탈 이온수와 산을 첨가하여 제조한 졸 용액을 이용하여 알루미나 단섬유를 침적, 여과 그리고 건조시킨 후 300℃정도의 수소분위기 노에서 환원함으로써 100-150nm의 금속피복층의 형성된다.The metal coating of the alumina short fibers was deposited, filtered and dried after the alumina short fibers were prepared using a sol solution prepared by adding deionized water and an acid to a solution in which metal acetate compounds such as Co, Ni and Cr were dissolved in ethyl alcohol. The metal coating layer of 100-150 nm is formed by reducing in a hydrogen atmosphere furnace of about 300 degreeC.

상기 예비성형체는 금속피복된 알루미나의 집합체로, 통상은 바인더가 함유된 물 또는 유기용매에 금속피복된 알루미나를 분산시킨 후, 제조장치에 주입하여 강제적 방법으로 용매를 제거하여 건조시키는 방법으로 형성된다.The preform is a collection of metal-coated alumina, usually formed by dispersing the metal-coated alumina in water or an organic solvent containing a binder, and then injecting it into a manufacturing apparatus to remove the solvent and forcibly dry it. .

본 발명에서는 예비성형체를 구성하는 금속피복 알루미나를 예비성형하기 앞서, 미리, 진공 노에서 열처리를 행하게 되는데, 이때, 열처리는 10-5Torr 이상의 진공상태로 유지된 열처리 노에 장입하여 300-1400℃의 온도로 바람직하게는 900-1100℃로 가열하여 이 온도에서 30분-1시간 동안 행하는 것이 바람직하다.In the present invention, prior to preforming the metal-clad alumina constituting the preform, the heat treatment is performed in advance in a vacuum furnace, wherein the heat treatment is charged into a heat treatment furnace maintained in a vacuum state of 10 -5 Torr or higher to 300-1400 ° C. It is preferable to heat at 900-1100 degreeC and to carry out for 30 minutes -1 hour at this temperature.

상기와 같이 진공하에서 열처리하므로서, 피복층의 Co, Ni, Cr 등의 금속원자들은 알루미나의 결정립계를 따라 확산, 침투하며 결국 알루미나와 반응하게 되므로서 금속피복층과 알루미나간의 계면결합력이 크게 증진되며, 결과적으로 복합재료의 인장성질이 크게 향상된다.By heat treatment under vacuum as described above, the metal atoms of Co, Ni, Cr, etc. of the coating layer diffuse and penetrate along the grain boundaries of the alumina and eventually react with the alumina, thereby greatly increasing the interfacial bonding force between the metal coating layer and the alumina. Tensile properties of the composite material are greatly improved.

그러나, 진공도가 10-5Torr보다 낮은 경우에는 금속피복층이 대부분 쉽게 산화되어 피복층의 주된 효과인 젖음성 향상을 얻을 수 없다. 또한 열처리 온도가 300℃ 미만일 때는 피복 금슥의 알루미나로의 확산이 미약하게 되어 하중전달을 위한 충분한 계면결합력을 지니지 못하게 되며, 열처리 온도가 1400℃를 초과하였을 경우에는 인장성질의 향상을 보이지 않고, 피복금속의 융점 근처가 되어 피복금속이 휘발될 위험이 있으므로, 상기 열처리 온도는 300-1400℃로 제한하는 것이 바람직하다.However, in the case where the vacuum degree is lower than 10 -5 Torr, the metal coating layer is easily oxidized most of the time, and the wettability improvement, which is the main effect of the coating layer, cannot be obtained. In addition, when the heat treatment temperature is less than 300 ℃, the diffusion of the coated gold into the alumina is weak and does not have sufficient interfacial bonding force for load transfer, when the heat treatment temperature exceeds 1400 ℃ does not show an improvement in tensile properties, The heat treatment temperature is preferably limited to 300-1400 ° C. since the metal may be near the melting point of the metal and the volatilized metal may be volatilized.

또한, 상기 열처리 시간이 30분 미만이면, Al2O3와 금속피복층과의 반응에서 요하는 시간이 너무 부족하여 반응이 완전히 일어나지 않고, 1시간을 초과하면 반응에 대한 효과의 상승이 거의 나타나지 않으며, 경제적인 측면을 고려하여 그 상한값을 1시간으로 한정하는 것이 바람직하다.In addition, when the heat treatment time is less than 30 minutes, the time required for the reaction between Al 2 O 3 and the metal coating layer is so insufficient that the reaction does not occur completely, if more than 1 hour there is almost no increase in the effect on the reaction In consideration of economic aspects, the upper limit is preferably limited to 1 hour.

상기 복합화는 통상의 방법으로 행하여지는 것으로서 금속피복된 예비성형체를 미리 소정의 온도로 가열하고, 이것을 금형에 설치한 후 Al재 합금을 용해된 기지금속을 주탕하여 가압하므로써 예비성형체내의 기공에 용탕이 침투, 응고하여 완료된다. 상기 Al재로는 Al-Mg계, A1-Mg-Cu계, Al-Cu계, Al-Si계등의 대부분의 Al합금이 이용가능하다,The compounding is carried out in a conventional manner, and the metal-coated preform is heated to a predetermined temperature in advance, and after it is installed in a mold, the Al-based alloy is melted and pressed to melt pores in the preform by pouring molten base metal. It is complete by penetration, coagulation. As the Al material, most Al alloys such as Al-Mg-based, A1-Mg-Cu-based, Al-Cu-based, and Al-Si-based can be used.

Co, Ni, 또는 Cr과 같은 금속피복된 알루미나로 보강된 Al재 복합재료는 상대적으로 취약한 피복층과 알루미나의 계면결합력으로 낮은 하중하에서 쉽게 파괴되어 미세한 크랙(Crack)을 형성한다.Al-based composites reinforced with metal-coated alumina such as Co, Ni, or Cr are easily broken under low load due to the interfacial bonding force between the relatively weak coating layer and the alumina to form fine cracks.

본 발명에 의하면 금속피복된 알루미나를 300℃ 이상, 바람직하게는 1000℃ 이상의 고진공 노에서 열처리 함으로써 위의 문제점을 해결할 수 있었으며, 이로인해 복합재료의 인장강도 및 연신율이 크게 증가하게 된다.According to the present invention, the above problems can be solved by heat-treating the metal-clad alumina in a high vacuum furnace of 300 ° C. or higher, preferably 1000 ° C. or higher, thereby greatly increasing the tensile strength and elongation of the composite material.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

코발트 아세테이트와 에탄올을 섞어 만든 0.5M 용액과 증류수와 에탄올의 5M 수용액을 동일 양을 섞어 아세테이트 화합물과 증류수의 몰비가 1 : 10이 되게하여 60℃의 중탕에서 계속 교반하여 가수분해가 진행되도록 하었다. 이때 코발트 아세데이트는 증류수와의 급속한 가수분해로 흰색의 미세한 침전물을 생성하였으며, 이로인해 용액의 겔화는 더이상 진행되지 않았다. 이를 방지하기 위해 질산을 질산/코발트 아세테이트의 몰비가 1.5-2가 되게 첨가하였으며, 그 결과로 졸 용액의 투명도가 크게 증진되었다. 다음으로 용액을 가열, 교반하여 졸 용액의 점도를 2-5cps가 되게 하였다. 이와같은 졸 용액에 NaOH로 세척된 알루미나 단섬유(지름 3μm, 사로 세로비 20-30)을 주입한 후 초음파를 이용, 분산시킨다. 이어서 알루미나 단섬유를 용매에서 걸러내어 80℃ 오븐에서 12시간 이상 건조한 후, 300℃의 수소분위기 노에서 1시간 환원처리하여 순수한 코발트 피복층을 얻었다. 이와같이 피복된 알루미나를 10-5Torr의 진공상태로 유지된 노에서 장입하여 300, 500, 700, 1000, 1200℃ 온도에서 10분간 열처리 하였다. 얻어진 코발트 피복된 알루미나를 물에 분산시킨 후, 분산액을 직경 80mm의 틀에 흡입, 여과하여 부피분율 15%의 예비성형체를 성형하였다.0.5M solution made by mixing cobalt acetate and ethanol and 5M aqueous solution of distilled water and ethanol were mixed in the same amount so that the molar ratio of acetate compound and distilled water was 1:10, and the mixture was continuously stirred in a bath of 60 ° C for hydrolysis to proceed. . At this time, the cobalt acedate produced a white fine precipitate by rapid hydrolysis with distilled water, and thus the gelation of the solution did not proceed anymore. To prevent this, nitric acid was added so that the molar ratio of nitric acid / cobalt acetate was 1.5-2, and as a result, the transparency of the sol solution was greatly enhanced. The solution was then heated and stirred to bring the viscosity of the sol solution to 2-5 cps. The alumina short fibers (diameter 3μm, vertical ratio 20-30) washed with NaOH were injected into such a sol solution, and then dispersed using ultrasonic waves. Subsequently, the short alumina fibers were filtered out from a solvent, dried in an oven at 80 ° C. for at least 12 hours, and reduced in a hydrogen atmosphere furnace at 300 ° C. for 1 hour to obtain a pure cobalt coating layer. The coated alumina was charged in a furnace maintained at a vacuum of 10 −5 Torr and heat-treated at 300, 500, 700, 1000, and 1200 ° C. for 10 minutes. The obtained cobalt-coated alumina was dispersed in water, and the dispersion was sucked into a mold having a diameter of 80 mm and filtered to form a preform having a volume fraction of 15%.

이어서, 각 예비성형체를 300℃에서 10분간 가열한 후, 금형에 장착하여 2024Al 합금 용탕을 주입, 가압함으로써 복합재료를 제조하였다. 이와같이 제조된 Al재 복합재료의 인장강도와 연신율을 측정하고, 또한, 코발트 피복층의 효과를 알아보기 위해 코발트 피복을 하지 않은 알루미나 단섬유에 대해서도 동일한 복합화 과정을 거친 후 인장성질을 측정하고, 그 결과를 하기 표 1에 나타내었다.Subsequently, after heating each preform for 10 minutes at 300 degreeC, a composite material was manufactured by inject | pouring and pressurizing 2024Al alloy molten metal in a metal mold | die. In order to measure the tensile strength and elongation of the Al-based composite material thus prepared, and to examine the effect of the cobalt coating layer, the tensile properties were measured after the same compounding process for the alumina short fibers without the cobalt coating. It is shown in Table 1 below.

[표 1]TABLE 1

** 금속피복치 않은 알루미나를 보강한 2024 Al 복합재료(비교재)** 2024 Al composite material (comparative) reinforced with metal alumina

인장강도 : 270MPa, 연신율 : 0.2-0.3%Tensile Strength: 270MPa, Elongation: 0.2-0.3%

상기 표 1에 나타난 바와같이, 본 발명재(2-6)는 비교재 1에 비하여 모두 높은 인장강도와 연신율을 나타내고 있음을 알 수 있는데, 이는 알루미나 단섬유에 코발트를 피복함에 따라 Al재 용탕과 알루미나간의 젖음성의 향상으로 인하여 Al재 용탕이 예비성형체 내로 완전히 침투하여 건전한 주조복합재료를 제조할수 있었기 때문이다. 또한 본 발명의 효과인 열처리 온도에 따른 영향을 살펴보면, 1000℃ 이상에서 진공열처리한 No.5 및 No.6이 우수한 인장강도와 연신율을 나타내고 있는데, 이와같은 현상은 1000℃ 이상의 열처리 온도에서 코발트 피복층과 알루미나 섬유간의 계면반응이 크게 진행되어 Al9Co2및 Co3O4의 반응물을 생성하며 이에 따라 계면결합력이 크게 증가되었기 때문이다. 그러나, 1000℃ 미만의 온도에서 열처리한 경우, 낮은 계면결합력으로 인해 대부분의 파괴형태가 피복층과 알루미나간의 계면에서 시작되었으며,이로 말미암아 낮은 인장강도와 연신율을 나타냄을 확인하였다.As shown in Table 1, it can be seen that the present invention (2-6) all exhibit a higher tensile strength and elongation than the comparative material 1, which is coated with molten Al material as the alumina short fibers are coated with cobalt Due to the improved wettability between the alumina, the molten Al material could completely penetrate into the preform to produce a sound cast composite material. In addition, when looking at the effect of the heat treatment temperature which is the effect of the present invention, No. 5 and No. 6 subjected to vacuum heat treatment at 1000 ℃ or more shows excellent tensile strength and elongation, such a phenomenon is the cobalt coating layer at a heat treatment temperature of 1000 ℃ or more This is because the interfacial reaction between the alumina fiber and the alumina fiber is greatly progressed to generate a reactant of Al 9 Co 2 and Co 3 O 4 , thereby greatly increasing the interfacial bonding force. However, when heat-treated at a temperature of less than 1000 ℃, due to the low interfacial bonding force, most of the fracture forms started at the interface between the coating layer and the alumina, which showed low tensile strength and elongation.

상술한 바와같이, 본 발명은 금속피복된 알루미나를 고진공하에서 열처리 함으로써 인장강도 및 연신율이 크게 증가된 알루미늄 복합재료를 제공할 수 있는 효과가 있는 것이다.As described above, the present invention has an effect of providing an aluminum composite material having a greatly increased tensile strength and elongation by heat-treating the metal-coated alumina under high vacuum.

Claims (1)

졸-겔법에 의해 금속피복된 알루미나(Al2O3) 섬유로 예비성형체를 제조한 다음, 이 예비성형체에 알루미늄(Al)재 용탕을 가압, 함침시켜 복합화하여 알루미늄재 복합재료를 제조하는 방법에 있어서, 예비성형에 앞서, 상기 금속피복된 알루미나 섬유를 10-5Torr 이상의 진공하에서 300-1400℃의 온도에서 30분-1시간동안 열처리하는 것을 특징으로 하는 고강도 알루미늄재 복합재료의 제조방법.To prepare a preform from a metal alumina (Al 2 O 3 ) fiber coated with a sol-gel method, and then to the composite material by pressing and impregnating a molten aluminum (Al) material in the preform to produce an aluminum composite material in prior method for the preparation of the metal a coating of alumina fiber in vacuo over 10 -5 Torr, characterized in that the heat treatment for 30 min -1 at a temperature of 300-1400 ℃ high strength aluminum material in the composite material preformed.
KR1019920026529A 1992-12-30 1992-12-30 Making method of hgih strength composition aluminium material KR950002896B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920026529A KR950002896B1 (en) 1992-12-30 1992-12-30 Making method of hgih strength composition aluminium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920026529A KR950002896B1 (en) 1992-12-30 1992-12-30 Making method of hgih strength composition aluminium material

Publications (2)

Publication Number Publication Date
KR940014862A KR940014862A (en) 1994-07-19
KR950002896B1 true KR950002896B1 (en) 1995-03-28

Family

ID=19347673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920026529A KR950002896B1 (en) 1992-12-30 1992-12-30 Making method of hgih strength composition aluminium material

Country Status (1)

Country Link
KR (1) KR950002896B1 (en)

Also Published As

Publication number Publication date
KR940014862A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
EP0483190B1 (en) Method for the preparation of metal matrix composite materials
JP3856338B2 (en) Boron carbide cermet structural material with high bending strength at high temperature
US4818633A (en) Fibre-reinforced metal matrix composites
AU2022224725B2 (en) Preparation method of in-situ synthesized zirconia toughened alumina (ZTA) ceramic particles-reinforced steel matrix structural composite
CN112281086B (en) Preparation method of high-heat-resistance three-dimensional woven fiber reinforced magnesium-based composite material
CN110699567B (en) Silicon carbide particle reinforced aluminum matrix composite and preparation method thereof
JP3721393B2 (en) Porous preform, metal matrix composite and production method thereof
KR950002896B1 (en) Making method of hgih strength composition aluminium material
JPH0636984B2 (en) Method for manufacturing partial composite member
US5435374A (en) Fiber reinforced aluminum matrix composite with improved interfacial bonding
US4899800A (en) Metal matrix composite with coated reinforcing preform
JP3618106B2 (en) Composite material and method for producing the same
CN1061695C (en) Method for preparation of ceramic/aluminium composite material
KR950004230B1 (en) Method of manufacturing aluminium composite materials
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
KR20210122413A (en) Manufacturing method carbon fiber reinforced metal composites and carbon fiber reinforced aluminum composites manufactured thereby
JPH0635630B2 (en) Method for producing aluminum borate whisker reinforced metal matrix composite material
JPS6225737B2 (en)
Shaw et al. Control of the Interfacial Reactions in Nb‐Toughened MoSi2
CN108118269B (en) Metal-based silicon carbide composite material and preparation method thereof
JP2000017351A (en) Production of metal-ceramics composite material
JPS6151619B2 (en)
JP4279370B2 (en) Method for producing metal-ceramic composite material
JP2610265B2 (en) Manufacturing method of metal matrix composite material
JPH0636983B2 (en) Method for manufacturing partial composite member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000303

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee