KR940001908B1 - 비선형 및 쌍안정 광 장치 - Google Patents

비선형 및 쌍안정 광 장치 Download PDF

Info

Publication number
KR940001908B1
KR940001908B1 KR1019870700483A KR870700483A KR940001908B1 KR 940001908 B1 KR940001908 B1 KR 940001908B1 KR 1019870700483 A KR1019870700483 A KR 1019870700483A KR 870700483 A KR870700483 A KR 870700483A KR 940001908 B1 KR940001908 B1 KR 940001908B1
Authority
KR
South Korea
Prior art keywords
mqw
light
absorption
voltage
phototransistor
Prior art date
Application number
KR1019870700483A
Other languages
English (en)
Other versions
KR880700300A (ko
Inventor
앤드류 바클래이 밀러 데이비드
Original Assignee
아메리칸 텔리폰 앤드 텔레그라프 캄파니
오레그 이. 앨버
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아메리칸 텔리폰 앤드 텔레그라프 캄파니, 오레그 이. 앨버 filed Critical 아메리칸 텔리폰 앤드 텔레그라프 캄파니
Publication of KR880700300A publication Critical patent/KR880700300A/ko
Application granted granted Critical
Publication of KR940001908B1 publication Critical patent/KR940001908B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01716Optically controlled superlattice or quantum well devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/028Optical bistable devices based on self electro-optic effect devices [SEED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1016Devices sensitive to infrared, visible or ultraviolet radiation comprising transparent or semitransparent devices

Abstract

내용 없음.

Description

[발명의 명칭]
비선형 및 쌍안정 광 장치
[도면의 간단한 설명]
제1도는 본 발명을 도시한 개략도.
제2도 및 제3도는 본 발명의 동작 특성을 도시한 그래프.
제4도는 본 발명의 광 전송을 도시한 그래프.
제5도는 본 발명을 도시한 측면도.
제6도는 본 발명의 광 흡수 계수를 도시한 그래프도.
제7도 및 제8도는 본 발명을 도시한 등방성의 개략도.
제9도 및 제10도는 본 발명의 제조 과정을 도시한 측면도.
제11도는 불연속 장치의 배열로서 본 발명을 도시한 등방성의 도면.
제12도는 핀(pin) 다이오드 구조를 채택한 본 발명의 측면도.
제13도 및 14도는 본 발명의 동작 특성을 도시한 그래프.
제15도는 광 발진기를 제조하기 위해 인덕턴스 코일을 이용한 본 발명의 개략도.
제16도는 정전류원을 이용하는 본 발명의 개략도.
제17도, 제18도 및 제19도는 본 발명의 동작 특성을 도시한 그래프.
제20도는 트랜지스터를 이용한 본 발명의 개략도.
제21도는 광 다이오드를 이용하는 본 발명의 개략도.
제22도는 광 다이오드 또는 광 트랜지스터로 집적된 구조의 본 발명의 측면도.
제23도는 본 발명의 측면도.
제24도는 공간 광 변조기로서의 본 발명의 개략도.
제25도는 반도체내에 트랜지스터로 집적된 본 발명의 측면도.
제26도는 광 트랜지스터 및 MQW 변조기에 작용하는 동일한 광 빔을 가진 본 발명의 개략도.
제27도는 도파관을 가진 본 발명의 등방성의 도면.
제28도 및 제29도는 제각기 본 발명의 신규 실시예의 단면도 및 그에 대응하는 전기 회로도.
제30도 및 제31도는 제각기 신규 실시예의 배열을 포함한 장치의 단면도 및 평면도.
제32도 및 제33도는 제각기 신규 실시예를 포함하는 광 논리 장치의 단면도 및 그에 대응하는 전기 회로도.
[발명의 상세한 설명]
[기술분야]
본 발명은 비선형 광 장치(nonlinear optical devices)에 관한 것으로, 특히 다안정 광 상태(multistable optical states) 또는 다른 비선형 광 응답을 유발시키는 높은 이득 또는 피드백을 이용한 상기 장치에 관한 것이다.
[발명의 배경]
계산 및 스위칭 시스템에 이용되는 비선형 및 쌍안정 광 장치는 낮은 스위칭 에너지를 가져야 한다. 낮은 스위칭 에너지는 많은 유사한 장치가 병렬 처리를 위해 작은 체적내에 채워지도록 하며, 또한 고속 스위칭 실현되게 한다.
종래에는 비선형 및 쌍안정 광 장치가 높은 스위칭 에너지를 필요로 했다. 그래서, 상기 장치는 패브리 페롯 캐비티와 같은 아주 정밀한 광 캐비티의 높은 이득에 의해 비선형 또는 쌍안정 동작에 요구된 스위칭 에너지를 감소시킬 수 있다. 낮은 스위칭 에너지를 가진 쌍안정 광 장치는 미합중국 특허 제4,597,638호에 기술되어 있다. 이러한 장치의 쌍안정 상태 사이의 광 스위칭 에너지는 100펨토주울/제곱 미크론보다 약간 더 크다. 하지만, 쳄라 등에 의한 기술에 있어서 이렇게 낮은 값의 스위칭 에너지를 이루기 위해서 아주 정밀한 패브리 페롯 캐비니가 요구되어진다.
[발명의 요약]
본 발명은 낮은 스위칭 에너지를 가진 비선형 또는 쌍안정 광 장치를 제공하는 것으로, 광 스위칭 에너지는 대략 4펨토주울/제곱 미크론이고, 전기 에너지를 포함한 전체 스위칭 에너지는 대략 20펨토주울/제곱 미크론이다. 낮은 스위칭 에너지는 광을 흡수하여 광 전류를 발생시킬 수 있는 재질을 사용함으로써 성취되어진다. 광 전류에 응답하는 전압은 반도체 양자 웰 영역을 가진 구조체에 인가되어, 반도체 양자 웰 영역의 광 흡수가 광 전류의 변화에 응답하여 변하게 된다. 또한, 반도체 양자 웰 영역내의 흡수(absorption) 변화는 비선형 및 쌍안정 광 동작 상태를 유발하는 피드백 경로를 제공하기 위해 광 흡수가 가능한 재질의 흡수에 영향을 줄 수 있다.
[상세한 설명]
제1도는 본 발명의 한 실시예의 개략도이다. 광원(100)은 재질(104)상으로 입사하는 입력 광 빔(102)을 발생시킨다. 소량의 입력 광 빔(102)이 출력 광 빔(106)으로서 재질(104)로부터 방출된다. 재질(104)은 단일 물질 구조일 수 있으며, 또한 전자회로의 같은 다수의 소자를 가질 수도 있다.
재질(104)의 광 특성은 제2 및 3도에서 설명된다. 재질(104)에 의해 나타나는 광 흡수 원리는 다음과 같다 : 첫째로, 입력 광 빔(102)의 세기의 증가는 재질(104)에 의한 흡수 계수를 증가시키며, 둘째로, 포지티브 피드백 메카니즘은 재질(104)에 의한 광 에너지를 흡수의 증가가 광 흡수 계수를 증가시키는 재질(104)에 의해 나타난다. 이러한 두 원리에 따라, 재질(104)은 전송의 안정한 광 상태 사이를 스위치한다.
입력 광 빔(102)의 세기 변화에 따른 재질(104)의 동작 상태가 제2도에 도시된다. 하지만 다음의 설명에서는 세기보다는 오히려 빔 전력(beam power)의 단위가 이용된다.
빔 전력은 와트 단위로 표시되고, 빔 세기는 제곱 미터당 와트 단위로 표시된다. 빔 전력은 광 빔의 축과 수직인 단면상의 세기의 적분치이다. 전력 단위는 재질(104)이 빔 전력, 특히 재질(104)에 의해 흡수된 전력에 응답하기 때문에 다음의 설명에서 더욱 유용하게 이용된다. 제2도에서, 입력 광 빔(102)의 전력은 수평축을 따라 구획(plot)된다. 수직축을 따라서, 출력 광 빔(106)의 전력이 전송된 전력으로 구획된다. 값 A의 입력 전력에서, 전송된 전력은 제2도에 도시된 바와 같이 값 TA로 주어진다. 입력 전력이 값 B로 증가될 때, 전송된 전력은 값 TB1로 증가된다. 그러나, 재질(104)의 흡수 계수가 입력 전력의 증가에 따라 증가하므로, 입력 전력 A로부터 입력 전력 B로의 전송 곡선(109)은 선(110)과 같은 일정한 기울기의 선아래에 위치한다. 또한 값 B로부터 값 C로의 입력 전력의 증가로 흡수 계수가 증가하게 되어 재질(104)의 전송이 불안정하게 되고, 값 TC1로부터 값 TC2로 변경된다. 또한 값 D로의 입력 전력의 증가는 값 TD와 같은 전송값에 이르게 한다.
광 빔(104) 세기의 감소가 곡선(109)을 따라 전송된 입력 전력 B로 유발하므로, 재질(104)의 흡수 계수는 더욱 작은 값으로 스위치되고, 전송된 전력은 값 TB1로 증가한다. 광 입력 전력이 증가됨에 따라 재질(104)이 높은 전송 상태로부터 낮은 전송 상태로 스위치되고, 광 입력 전력이 감소됨에 따라 재질(104)이 다시 높은 전송으로 스위치됨으로써 재질(104)은 광학적 쌍안정(optical bistability)을 나타낸다. 하지만 광학적 쌍안정은 다른 스위치의 순차(sequences)에서도 존재할 수 있다.
제3도는 광학적 쌍안정을 나타내며 재질(104) 특성의 일례를 도시한 것이다. 광 흡수는 재질 여기(excitation)의 함수로 가정되며, 또한 재질 여기는 재질(104)에 의해 흡수된 광 전력의 함수로 가정된다. 이러한 두가지 가정은 그 그래프 풀이(graphical solution)가 제3도에 도시되어 있는 두 연립 방정식을 성립시킨다. A는 광 흡수를 나타내고, N은 재질 여기를 나타낸다. 제1가정은 일반적으로 식(1)으로 표시된다.
A=A(N) (1)
제3도에서, T로 표시된 전송이 구획되어, T는 아래와 같이 규정된다:
T=1-A (2)
식(1)에서 전송 T대 재질 여기 N의 구획이 곡선(120)으로 도시된다. 곡선(120)은 재질 여기 N이 증가함에 따라, 광 흡수가 증가하고 따라서 전송 T가 감소함을 나타낸다. 식(3)으로 표시된 제2가정은 여기 N이 흡수에 비례한다는 사실이다. 입사 광 전력은 P로 표시되며, 재질 흡수에 대하여 주어진 흡수된 광전력은 AP이다:
N=YAP (3)
기호 Y는 비례상수이다. 제3도에서, 직선들은 입력 전력 P의 고정값에 대한 전송 T대 재질 여기 N으로서 식(3)을 구획함에 의해 이루어진다. 직선들은 값 A, B, C 및 D로서 제2도에 도시된 입력 전력의 값에 대해 제3도에 구획되어, 제3도의 직선 A, B, C 및 D로 그에 대응하여 표시된다.
곡선(120)과 선 A의 교점(120A)은 제2도의 TA로 도시된 전송된 전력을 표시한다. 제3도의 곡선(120) 및 선 B의 두 교점은 제2도의 두점 TB1 및 TB2에 대응한다. 선 C는 제2도의 점 TC1로 표시된 곡선(120)의 상부에 접하여 (tangent) 그려지며(입력 전력의 값 C는 상기 정접(tangent) 조건에 맞도록 선택된다), 또한 선 C는 TC2에 대응하는 점에서 곡선(120)에 교차한다. 재질(104)은 입력 광 빔(102)의 세기가 값 C로 표시된 전력에 도달할때 불안정하여, 재질(104)은 전송된 전력 TC1로부터 값 TC2로 스위치한다. 또한 제3도의 선 D로 표시된 값으로의 입력 전력의 증가는 단지 제2도의 점 TD로 표시되는 곡선(120) 및 선 D 사이에 하나의 교점만을 제공한다.
쌍안정 스위칭 특성을 나타내고, 재질 여기 N으로서의 샘플 온도를 이용하는 재질의 한 실시예가 GaAs/GaAlAs 다중 양자 웰(MQW) 샘플이다. 이후에 설명되는 다중 양자 웰 구조체는 MQW 구조체가 언급된다. MQW 구조체는 미합중국 특허 제4,525,687호 및 제4,597,638호에 상세히 기술되어 있다. 상기 샘플은 85옹스트롬 두께의 GaAs층과 교번하는 87옹스트롬 두께의 Ga0.7Al0.3As층의 375주기를 포함하는데, 상기 전체 구조체는 대략 1.2미크론 두께의 Ga0.7Al0.3As 캡층 사이에 삽입되며, 전체 두께는 대략 9미크론이다. 상기 샘플은 낮은 열전도성으로 설치하기 위하여 유리 섬유로 에폭시된다. 입력 광 빔(102)은 레이저에 의해 공급된다. 레이저 파장은 여기자(excition) 공진 피크보다 더 낮은 광자 에너지로 선택되지만 피크에 아주 근접함으로써, 샘플의 온도 상승은 레이저 파장 영역으로 이동하는 여기자 피크를 유발하여 재질(104)의 흡수 계수를 증가시킨다. 따라서, 샘플의 온도 상승은 광 흡수를 증가시킨다. 흡수의 증가는 샘플 온도를 증가하여 광 흡수를 증가시킨다. 상기 샘플은 제2도에 도시된 바와 같은 광학적 쌍안정 스위칭을 나타낸다.
제4도는 곡선(124)에서의 방 온도 및 곡선(126)에 의해 상승된 온도에 대한 MQW 샘플의 광 전송 계수를 도시한 것이다. 상기 샘플은 입력 광 빔(102)으로 부터의 에너지 흡수에 의해 상승된 온도로 가열된다. 레이저 광자 에너지는 선(128)으로 도시된다. 곡선(124)에서 곡선(126)으로 광 흡수가 이동됨으로써, 샘플 전송 계수는 샘플 온도가 상승함에 따라 값(130)으로부터 값(132)으로 감소한다. 따라서, 샘플은 전술된 바와 같은 광학적 쌍안정성을 나타낸다.
제5도는 자기-전자 광 효과 장치(self-electro-optic effect device)(이하 SEED 장치라 칭함)로서 본 발명의 한 실시예의 개략도이다. 제5도의 소자들은 제1도에 따라 분류된다. 입력 광 빔(102)은 재질(104)로 향하게 되며, 재질(140)은 전자 회로(104C)와 전기 접속된 전기 접촉부(104A, 104B)를 가진 MQW 구조체를 포함한다. 전자 회로는 MQW 구조체 내의 광 흡수에 의해 발생된 광 전류에 응답하여 다음에 MQW로 전압을 인가하며, 그에 따라 MQW의 광 흡수 특성에 영향을 준다. MQW내에서 발생된 광 전류가 MQW의 특성에 영향을 주기 때문에 "자기(self)"전자 광 효과 장치라는 명칭 SEED가 제5도에 도시된 본 발명의 실시예에 이용된다. 전자 회로는 간단한 저항, 코일, 공급 인덕턴스, 광 다이오드, 광 트랜지스터, 정전류원, 또는 다른 유용한 전자 회로로 구성된다. 또한 전자 회로는 각 부품으로 구성되거나, MQW 구조체를 포함한 반도체 와이퍼로 집적될 수 있다. MQW 구조체를 이용하는 본 발명의 다수 실시예는 아래에 기술된다.
본 발명의 다음의 한 실시예는 광 흡수기로서 MQW 구조체를 포함한다. 광 흡수기로서 MQW 구조체를 이용하는 이유는 MQW 구조체에 부착된 전기 접촉부에 인가되는 소량의 전압이 MQW 구조체의 광 흡수 특성을 크게 변화시키기 때문이다. MQW 구조체의 광 특성상에 미치는 인가된 전압의 영향에 대해서는 전술된 쳄라 등에 의한 미합중국 특허출원 번호 제558,545호에 상세히 기술되어 있다. MQW의 특성에 따른 전기장의 영향에 대한 설명이 제6도를 참조하여 기술된다. 제6도의 곡선은 MQW에 인가된 전기장의 서로 다른 값을 가진 도핑되지 않은(고유한) MQW 구조체의 광 전송을 나타낸 것이다. MQW는 임의의 도핑되지 않으며, 백그라운드(background) 도핑 불순물 레벨은 대략 5×1015-3이하이다. 전기장은 P 도핑된 접촉부(104A)와 N도핑된 접촉부(104B) 사이에 도핑된 고유 MQW를 삽입함으로써 인가된다. 그때 MQW는 핀 다이오드(pin diode)의 고유(i) 영역으로서 제공된다. 상기 핀 다이오드는 "고유 전기장(built in field)" 다이오드를 MQW층 영역으로 완전하게 이동시키기 위해 역바이어스 된다. 곡선(140)에 도시된 바와 같이 0볼트 인가 전압에서의 낮은 전기장으로부터 P 및 n접촉부(104A 및 104B) 양단의 약 8볼트의 외부 적용에 의해 곡선(144)에 도시된 바와 같은 대략 7.3×104V/㎝의 전기장으로 광 활성 MQW 영역이 교환될 수 있다. 전기장이 MQW에 인가될 때, 광 흡수는 양자 에너지 A에서 선택된 일례의 동작점에서 극적으로 증가된다. 0 인가 전압에서의 대량의 정공 여기자 공진(heavy hole excition resonance; 146A)이 7.3×104V/㎝인가 전기장에서의 공진 피크(146B)로 이동된다.
제7 및 8도는 핀 다이오드의 고유 영역(i)으로서 MQW를 가진 본 발명의 한 실시예를 도시한 것인데, 전자 회로(104C)는 간단한 저항(150) 및 전압원(152)으로 구성된다. 전압원(152)은 선택적이며, 다음의 설명에서는 0볼트로 설정된다. 제7도에서 P 및 n전기 접촉층은 MQW의 층과 평행하다. 제8도에서, 전기 접촉층은 MQW층과 수직이다. MQW에 수직인 광을 가진 실시예에 대하여, 캡 층(cap layers)은 동작 파장에 투명해야 한다. MQW층과 평행한 광선 빔을 가진 실시예에 대하여, 다수보다는 단지 하나 또는 둘만의 양자 웰층을 가질 필요가 있다. 그러나, MQW는 단지 하나 또는 둘만의 양자 웰층을 가진 구조체를 포함한다. 동작시, 다이오드는 고유 전기장(built in electric field)을 가진다. 외부 인가 전압의 부재하에 MQW는 "고유 전기장"이 되도록 핀 구조체의 층이 배치된다. 따라서, 광 빔의 부재하에, MQW는 0 전기장 값으로부터 변경된 광 흡수를 가지게 된다. MQW층에 의해 부분 흡수된 광 빔을 인가함에 따라, 전자 및 정공이 발생된다. 전자 및 정공은 전기회로내에서 "고유 전기장"을 부분적으로 없애는 방식으로 이동한다. 따라서, 양자 웰 양단의 전기장은 감소된다. 양자 웰에 인가된 이러한 전기장 감소는 다음으로 양자 웰의 흡수 및 굴절율 변화시킨다. 본 발명의 실시예는 또한 MQW 구조체가 핀 다이오드 구조물내에 포함되지 않게 하는 것이 가능하며, 이 경우에 있어서 제7 및 8도 내의 접촉 영역은 P 및 n도핑될 필요가 없다.
1.5eV 광자의 1밀리와트 광 빔이 유닛 양자 효율(흡수된 모든 광)을 가정하여 대략 0.66㎃의 광 전류를 발생하는 제7 및 8도의 실시예에 의한 다수 예가 기술된다. 1000오옴의 저항에 대하여, 상기 전류는 0.66볼트의 전압 강하를 발생시킨다. 그런 전압은 대략(1.5-0.66)/1.5, 즉 대략 0.56인수에 의한 1.5전자 볼트 밴드갭을 가진 반도체에 대한 "고유 전기장"을 감소시킬 수 있다. MQW 구조체에 인가된 그러한 전기장의 큰 변화로 굴절율 및 광 흡수가 크게 변화된다. 10미크론 단면 및 MQW 평면과 평행한 전극으로 10미크론×10미크론×1미크론 체적을 가진 장치의 응답 시간은 측정될 수 있다. 상기 장치의 용량은 13의 유전 상수에 대해 대략 1.2×10-14패러드이다. 1000오옴 저항에 따라, RC 시정수는 대략 12피코초이고, 상기 시간은 1미크론 두께의 장치에 대한 스위프 아웃(sweep out) 시간과 비교 가능하다.
또한 직류 역 바이어스는 임의 전압원(152)을 이용함으로써 P 및 n접촉부에 인가될 수 있다. 광 전류는 "고유 전기장"을 변화시켜, MQW층의 광 흡수 및 전송을 수정할 수 있다.
본 발명의 한 실시예에 의한 흡수 광학적 쌍안정(absorptive optical bistability)의 일례가 제6도에 도시된 전자 광 흡수 특성을 가진다. 흡수 쌍안정은 광 세기의 증가에 따른 흡수의 감소에 의존한다. MQW 구조체는 예를 들어 미러 전극(mirrored electrodes)으로부터 형성된 패리브 페롯 캐비티내에 위치된다. 광빔의 세기가 0으로부터 증가됨에 따라 MQW 재질내에 흡수가 일어난다. 이런 흡수는 광 전류를 발생시킨다. 광 전류는 저항(150) 양단에 전압 강하를 제공하여, MQW 양단의 전압을 감소시킴으로써, MQW내의 인가된 전기장을 감소시키고, 곡선(144)으로부터 곡선(140)으로 흡수 스펙트럼을 이동시킨다. MQW 내의 흡수는 그에 의해 감소된다. 패브리 페롯 캐비티 내부의 흡수가 감소됨에 따라, 캐비티 양호도는 캐비티내의 광 전기장을 구성하는 공진을 더욱 증가시킨다. 포화 가능한 흡수기에 따라, 이러한 처리는 포지티브 피드백을 가지고, 처리가 재생되며, 캐비티는 입사 세기를 증가함에 따라 스위치된다. 본 발명의 상기 한 실시예를 이용하여, 흡수가 포화 가능하고, 쌍안정 스위칭이 발생한다.
제6도에 도시된 전자 광 흡수 특성을 가진 본 발명의 한 실시예에 의한 굴절 쌍안정의 일례는 다음과 같다. 굴절 쌍안정은 광 세기의 상승에 따른 굴절율의 변화에 의존한다. MQW 구조체는 예를 들어 미러 전극(mirrored electrodes)으로부터 형성된 패브리 페롯 캐비티내에 위치된다. 광 빔의 세기가 0으로부터 증가됨에 따라, 흡수가 MQW 재질 내에서 일어나게 된다. 이런 흡수는 광 전류를 발생기키며, 광 전류는 MQW 양단의 전압을 강하시켜, MQW 내의 인가된 전기장을 감소시키고, 곡선(144)으로부터 곡선(140)으로 흡수 스펙트럼을 이동시킨다. 흡수 스펙트럼의 변화로 크라머즈 크로닉 관계를 통해 기술되는 바와 같은 MQW의 굴절율이 역시 변화된다. 이러한 굴절율의 변화는 그것의 MQW 내부의 광 경로 길이를 변화시키기 때문에 캐비티의 공진 상태를 변화시킨다. 적절히 선택된 동작파장으로, 굴절율의 변화는 캐비티 내부의 광 세기의 연속적인 상승에 따른 공진 상태로 캐비티를 이동시킨다. 세기의 상승은 광 전류를 증가시켜, 굴절율을 변화시킴으로써, 장치는 그러한 재생 처리에 의해 거의 공진 상태로 스위치할 수 있다. 본 발명의 이러한 실시예를 이용하여, 굴절율은 입사 광 전력에 의존하게 되며, 쌍안정 스위칭이 일어난다.
장치가 흡수 또는 굴절 쌍안정을 통해 동작하거나, 상기 두 상태의 어떤 결합을 통해 동작하는가는 파장 또는 다른 파라미터의 선택에 의존한다.
임의 전지(152)에 의해 발생되는 인가 전압의 존재는 아래와 같은 것을 포함한 다수의 잇점을 갖는다: 즉, MQW로 부터의 전하 캐리어를 스위프 아웃하여, 더욱 빨리 스위칭하게 하는 전기장과, 곡선(140) 또는 곡선(144)으로 흡수 스펙트럼을 이동시킴으로써 동작점을 동조시킬 능력을 포함한다.
제9 및 10도는 본 발명의 한 합성된 실시예를 진행시키는 단계를 도시한 것이다. 제9도에서, 기판(160)은 그에 의해 양호하게된 도전 캡층(162)을 갖는다. 다음에 MQW 구조체(164)가 도전 캡층(162)상에 성장되며, 최종으로 제어된 두께의 저항 캡층(166)이 MQW 구조체(164)상에 성장된다. 제9도에 도시된 층의 메사(167)는 에칭에 의해 생성되며, 절연층(170)이 메사상으로 퇴적되어 있으며, 구멍(172)은 저항 캡층(166)의 최상부를 노출시키도록 절연층내에 생성된다. 메사내에서, 저항 캡층(166)은 저항 칼럼(166A)이 된다. 마지막으로, 도전 전극(174)이 절연층(170)상에 퇴적되며, 그에 따라 구멍(172)을 통하여 저항 칼럼(166A)에 전기 접촉된다. 전위는 도전층(174) 및 (162A)에 전기 접촉시킴으로써 MQW(164A)에 인가될 수 있다. 기판은 동작파장에 투명하지 않을 경우 제거될 수 있다. 저항성 컬럼(166A)은 길이 L 및 폭 W을 가지며, 그의 저항성은 L 및 W를 제어함으로써 쉽게 제어되며, 또한 도핑 농도는 층(166)을 제조할 때 이용된다. 저항성 칼럼(166A)은 제7 및 8도에 도시된 바와 같은 저항(150)으로 작용한다. 0바이어스를 이용하는 본 발명의 한 실시예는 도전층(162A)과 전극(174)을 간단히 전기 접속함으로써 제조될 수 있다. 선택적으로, 전지(152)와 같은 전압원은 도전 전극(174 및 162A) 사이에 접속된다.
제11도는 제10도에 도시된 바와 같은 장치의 배열(180)으로서 본 발명의 한 실시예를 도시한 것이다. 제10도에 도시된 한 장치를 제조하는 공정 단계는 특히 제11도에 도시된 바와 같은 장치를 배열하는데에 매우 적절하다. 제11도의 층은 제10도에 도시된 대응 층에 지정된 참조 번호로 주어진다. 180A와 같은 배열의 각 개별 장치는 다른 모든 장치의 배열과 무관하게 작동한다. 이것은 각 장치의 배열과 전기적으로 무관하고, 각 장치가 자체 부하 저항(166A)을 가지기 때문이다. 또한, 외부 전기 전압이 장치(180A), (180B), (180C), …에 인가될 경우, 단지 두 개의 접속부만이 배열(180) 형성에 필요하며, 모는 장치가 전극(174 및 162A)을 통해 접속된다. 장치(180A), (180B), (180C),…는 독립적인 광 빔상에서 병렬 처리를 실행하게 되며, 각 장치에 의해 수행된 논리는 어느 다른 장치에 의해 수행된 논리와 무관하다. 예를 들면, 하나이상의 독립적인 광빔은 쌍안정성이나 장치의 다른 성질을 이용하여 AND 또는 OR 논리를 실행하기 위해 각 장치(180A…)에서 지정될 수 있다. 또한 배열(180)은 다른 논리 동작을 수행하도록 다른 배열상에서 하나가 스택(stack)될 수 있다.
MQW 층면과 수직인 광 빔과, 제12도에 도시된 반도체를 이용하여, 본 발명의 한 실시예는 핀 다이오드를 역 바이어스시키도록 전지의 극성을 선택하는 제7도에 도시된 회로를 이용하여 실시될 수 있다. MQW층(190)은 98옹스트롬 GaAlAs 장벽층에 의해 분리된 95옹스트롬 두께의 50GaAs 양자 벽층이며, 상기 모든 층은 임의로 도핑되지 않는다. 전체 MQW 두께는 대략 28.5옹스트롬의 GaAs 층은 68.5옹스트롬 GaAlAs 층과 교류한다. MQW(190)에 인접한 층(192A)은 도핑되지 않으며, 즉, 고유 또는 배경(background) 도핑을 가진다. 층(192B)은 P 도핑된 접촉층(196)과 접촉하기 위한 P 도핑을 갖는다. 층(196)은 0.98미크론 두께의 Ga0.68Al0.32As이며, 대략 5×1018-3의 P 도핑 농도를 갖는다. 층(194A)은 도핑되지 않으며, 즉 MQW(190)과 접촉하기 위한 고유도핑을 가진 층(194B)은 n 도핑된 접촉층(198)과 접촉하기 위한 n 도핑을 갖는다. 층(198)은 또한 0.98미크론 두께의 Ga0.68Al0.32As이며, 대략 5×1018-1의 n도핑 농도를 갖는다. 고유층은 대략 2×1015-3의 P형 배경 도핑을 갖는다. 이런 장치는 (도시되지 않은) Si 도핑된[100]GaAs 기판상의 분자 빔 에피택시에 의해 형성된다. 상기 장치는 층으로부터 에칭된 대략 600미크론 직경의 메사에 의해 측면으로 한정된다. 작은 구멍이 선택적 에칭에 의해(도시되지 않은) 오페이크 기판(opaque substrate)을 통해 에칭된다. 금속접촉부는 도핑된 접촉층(196, 198)에 전기적으로 부착된다. 장치의 커패시턴스는 대략 20pF이다.
구조는 고유(i)층내의 MQW 층(190)을 가진 핀 다이오드를 형성한다. 활성층은 층(196, 198) 사이에서 대략 8볼트를 사용함으로써 낮은 전기장으로부터 대략 7.3×104V/㎝로 스위칭될 수 있다. 이러한 샘플은 1984년호의 응용물리학 44권 페이지 16에서 우드 등에 의한 논문에 상세히 기술된다.
역 바이어스가 제12도에 도시된 반도체 구조에 인가될 때, 전기장은 MQW 층(190)에 인가되고, 밴드갭 근처의 흡수 스펙트럼은 제6도에 도시된 바와 같이 여기자 피크를 약간 확장하는 더욱 적은 에너지를 시프트시킨다. 광 전류는 이러한 광 흡수에 의해 발생된다. 역 바이어스에서, 하나의 광 캐리어는 흡수된 매 광자에 대해 콜렉트된다. 단지 2볼트보다 적은 역 바이어스 전압에서만 양자 효율이 떨어지게 되는데, 공핍층 영역은 그때 MQW를 통해서까지 확장되지 않을 것이기 때문이다.
제12도에 도시된 반도체 구조의 응답 상태 S는 제13도의 곡선(200)으로 주어진다. 응답 상태 S는 입사광 전력 유닛당 발생되는 광 전류이며, 입사 광 전력 와트당 암페어의 유닛으로 표시된다. 곡선(200)은 광원으로 이용되며, 1.456eV(851.7㎚)의 광자 에너지로 동조된 레이저에 대한 응답상태 S를 도시한 것이다. 상기 광자 에너지는 대략 이용된 MQW 구조에 대한 0바이어스 상태에서의 대량 정공 공진에너지이다. 역바이어스가 증가함에 따라, 응답 상태는 먼저 광전류 콜렉션(photocurrent collection)이 완료될때까지 증가하여, 다음으로 여기자 흡수 피크가 제6도에 도시된 바와 같이 더욱 적은 에너지로 이동할때까지 감소한다. 곡선(200)내에서 8V 및 16V 사이의 연속적인 "범프(bump)"는 측정 파장을 지나 유사하게 이동하는 광 정공 여기자 공진에 기인한다.
제7도에 도시된 바와 같은 장치 및 전원 사이의 저항과 접속될 때 장치의 입출력 특성은 두 개의 연립 식을 그래프식으로 풀이하여 계산될 수 있다. 그래프식 풀이는 제2 및 3도에 도시된 바와 같이 전술된 식(1) 및 식(2)의 풀이와 유사하다. 제1식은 곡선(200)으로서 제13도에 도시된 바와 같은 MQW 구조의 측정된 응답 상태이며, 이 관계식은 아래와 같은 일반식인 형태로 기록된다.
S=S(V) (4)
제2식은 아래와 같이 기록될 경우 V=Vo-RSP인데, 여기서 P는 광 입력 전력이고, V는 다이오드 양단의 전압이다.
Figure kpo00001
(5)
식(5)에 의한 직선은 적(積) RP의 서로 다른 값에 대해 제13도의 점선으로서 구획된다. 직선 A 및 D는 단지 곡선(200)과의 한 교점을 가지며, 안정된 동작점을 나타낸다. 직선 B 및 C는 곡선(200)과의 탄젠트점(202 및 204)을 가진다. 탄젠트점(202, 204)은 불안정한 스위칭 점을 나타낸다. 선 B 및 C 사이의 모든 직선은 곡선(200)과의 세 교점을 가지며, 중심점을 불안정한 동작 상태를 나타낸다.
제14도에서, 장치의 쌍안정 스위칭이 도시된다. 입력전력이 증가됨에 따라, 출력 전력은 포인트(212)까지 곡선(210)을 따라 증가한다. 입력 전력이 포인트(212)를 지남에 따라, 동작점은 탄젠트점(204)에 도달하고, 장치는 불안정하게 되어, 포인트(214), 즉 낮은 전송 상태로 스위치한다. 더우기, 입력 전력의 증가는 출력전력을 증가시킨다. 입력전력 감소는, 동작점이 포인트(216)로 나타나는 입력 전력에서 장치가 높은 전송 상태로 스위치하는 다른 탄젠트점(202)에 도달할때까지 장치가 낮은 전송 상태에 있게 한다. 이러한 장치의 쌍안정 동작은 제1, 2 및 3도에서 나타나는 동작과 유사한데, 여기서, 재질 여기 N은 광 전류이다.
표 1은 제12도 및 7도에서 도시된 장치로 얻어지는 스위칭 전력값, 스위칭 시간, RC 시정수 및, 스위칭 에너지를 도시한 것이다.
[표 1]
Figure kpo00002
표 1에서와 같이, 장치는 광범위한 매개변수를 통해 동작한다. 스위칭 전력 및 속도는 표 1에 도시된 바와 같이 거의 104범위에 걸쳐 선택될 수 있다. 광학적 쌍안정은 15볼트에서 최고치 40볼트를 통한 전압의 범위에 걸쳐 발생한다. 장치의 동작은 10미크론 지름의 스폿 크기 이하로부터 최대 100미크론 지름의 스폿 크기까지 무관하다. 상기 스폿 크기에 대한 무관성은 일례의 장치에서와 같이 광 전력에 응답하는 장치에 기대되는 바와 같다. 또한 광학적 쌍안정은 850 내지 860㎜의 동작 파장의 범위에 걸쳐 지켜진다.
장치는 그이 동작을 위해 언제나 가변 전압을 필요로 하지는 않는다. 하지만, 대략 0.8볼트의 상승 및 감소는 제각기 20볼트 바이어스 근처에서 높은 전송으로 부터 낮은 전송으로 장치를 스위치시킬 수 있다.
장치는 광 표준만큼 크므로(600미크론), 결과적으로 큰 커패시턴스 및 적절하게 낮은 스위칭 에너지를 갖는다. 관측된 스위칭 에너지 값은 대략 1나노주울 입사 광 에너지를 가지며, 20볼트 바이어스에서 4나노주울 분산 전기 에너지 이하이다. 단위 영역당 스위칭 에너지는 대략 제곱 미크론 입사 광 에너지당 4펨토주울이고, 제곱 미크론 전기 에너지당 14펨토주울이다. 장치가 더욱 작아짐에 따라, 더욱 고속이고 더욱 적은 에너지로 동작 가능하다.
네가티브 저항 발진기로서 본 발명의 한 실시예가 제15도에 도시된다. 제12도에 도시된 반도체 구조(220)는 제15도에 도시된 바와 같이 대략 97밀리헨리의 유도 코일(222), 1마이크로패러드의 커패시터(224) 및, 100킬로오옴의 저항(225)을 포함한 회로에 접속된다. 97밀리헨리의 유도 코일(222) 및 다른 표유 커패시턴스와 함께 반도체 구조체의 대략 20PF의 고유 커패시턴스는 네가티브 저항 증폭기로서 반도체 구조체와 동작하는 LC 회로를 형성한다. 1마이크로패러드 커패시터(224)는 바이어스 공급 장치상에서 AC 단락 역할을 한다. 7볼트의 역 바이어스 전압과, 851.6나노미터에서의 70마이크로와트이 안정 레이저 전력으로, 회로는 대략 56킬로헤르쯔의 주파수에서 발진한다. 전송된 광 빔은 애벌란시(avalanche) 광 다이오드에 의해 검출된다. 전송된 광 빔의 세기는 발진 주파수로 변화되며, 도전 캡층(196, 198) 사이에 측정된 전기 신호도 발진 주파수로 변화된다.
정전류원을 이용하는 본 발명의 한 실시예가 제16도에 도시된다. MQW(230)는 광 변조기 및 광 검출기 양쪽 모두의 역할을 하며, MQW의 응답은 MQW 양단에 인가된 전압에 의존한다. A로 표시된 MQW의 흡수는 MQW 층에 인가된 증가전압으로 상승하거나 또는 감소할 수 있다. 흡수 A가 MQW에 인가된 전압에 따라 증가하거나 감소하는 것은 광 파장 동작점, MQW가 핀 다이오드 구조체에 설치될때의 "고유 전기장"의 위치와, 인가된 외부 전압의 영향하의 "고유 전기장"의 이동을 포함하는 많은 요소에 의존한다. 제6도는 MQW 층에 인가된 전기장의 증가에 따라 흡수가 증가하는 동작점 A의 일례를 도시한 것이다. 내부 전기장이 인가된 외부 전압에 따라 증가하는 경우에, 제6도의 일례의 동작점 A는 외부 전압의 증가에 따라 흡수를 증가시킨다. 그러나, 0전기장 여기자 피크(146A) 근처의 동작점(149)이 선택될 경우, 흡수는 인가된 전압의 증가에 따라 감소하게 된다.
제1실시예는 제17도에 도시된 바와 같이 광 흡수가 전압의 증가에 따라 감소하는 MQW 구조체를 가진다. 정전류원은 전류가 부하 양단의 전압과 무관한 전원이다. 상기 실시예의 부하는 MQW 구조체이다. 정전류원을 모델링하는 한 방식이 높은 저항 R에 높은 전압원 Vo를 직렬로 함으로써 접근된다. 부하 양단의 전압이 가상 전압 V에 비해 낮게 비교되는 경우, 부하를 통하는 전류는 대략 값 Ic=V/R로 일정하다, 상기 대략치는 V 및 R이 임의로 큰 수가 됨으로써 정확하게 된다. 그래서, 제16도의 정전류원은 전압 Vo의 전지 및, 저항 R의 저항으로서 접근될 수 있다. 그때 회로내의 전류 I의 함수로서의 흡수 A가 제18도의 곡선(240)으로 도시된 바와 같이 전류따라 증가하는데, 이는 회로에 흐르는 I가 광 전류이기 때문이다:
V=Vo-IR (6)
식(6)에서 V는 MQW(230)에 인가된 전압이고, Vo는 (도시되지 않음) 모델 전지인 정전류원(234)에 의해 공급된 전위이며, R은 모델 정전류원내에 이용된 저항이다. 회로내에 흐르는 광 전류 I는 아래와 같이 주어진다:
I=yAP (7)
식(7)에서, P는 입사 광 빔 전력이고, y는 비례상수이다. 식(7)을 이용한 A 대 I의 구획은 직선(242), (244), (246), (248) 및 (249)로서 제18도에 도시된다. 장치의 동작점은 곡선(240)에 의해 주어진 A 대 전류와, 식(7)에 의해 주어진 직선을 연립하여 풀이함으로써 결정된다. 라인(244)과 같은 라인은 곡선(240)과의 세 교점을 가짐으로써, 광학적 쌍안정에 이르는 불안정한 해답을 나타낸다. 라인(242 및 246)은 탄젠트점을 가져, 불안정 스위칭 점을 나타낸다. 라인(248, 249)은 곡선(240)과의 하나만의 교점을 가지므로, 안정 동작점을 나타낸다. Vo 및 R이 커지게 됨에 따라, A 대 I의 특성(240)은 Ic에서 매우 경사지게 된다. 값 Ic는 라인(250)으로 도시된다. 정전류원의 잇점은 곡선(240) 및 직선의 필요한 다중 교점을 얻기가 더욱 쉽다는 것이데, 이는 곡선(240)이 정전류원으로 얻어진 곡선에 비하여 매우 경사지기 때문이다. 따라서, 쌍안정은 MQW 구조체 양단의 전압 V에 따라 비교적 완만하게 변하는 흡수 A에 대해서 조차도 얻어질 수 있다.
제2실시예의 정전류 구동 MQW SEED 장치는 광 흡수 A가 전압의 증가에 따라 증가하는 구도체를 가진다. 광 흡수 A는 곡선(260)에 의해 제19도에서 도시된 바와 같이 전류 I의 함수로서의 일반적인 형태를 가진다. 직선(262), (264) 및 (266)은 제19도에서 식(7)으로부터 구획된다. 식(7)에서의 모든 라인은 곡선(260)과 하나만의 교점을 가지므로, 안정한 동작점을 나타낸다. MQW에 흡수된 전력에 의해 발생된 광전류는 정전류원(234)을 통과한다. 정전류원(234)은 "세트"전류 Ic가 MQW(230)를 통과하게 하도록 설정될 수 있다. 광 전력이 매우 적고, 광 전류가 세트 전류 이하일 경우, 정전류원은 광 전류를 증가시키도록 광 흡수를 조정하지만, 낮은 광 전력 때문에, 정전류원은 "세트"전류와 같도록 광전류를 상승시킬 수 없다. 광전력이 증가됨에 따라, 광 전류가 "세트"전류와 동일할 수 있는 광 전력이 통과된다. 더욱 높은 광 전력에 대하여, 정전류원은 광 전류 및 "세트"전류 사이에서 일정하게 유지시키도록 광 흡수를 감소시킨다. 그래서, 정전류원 MQW 내의 일정한 흡수 전력을 유지한다. 따라서 장치는 흡수가 "세트"전류와 선형적인 선형 반전 변조기로서 동작한다. "세트"전류가 증가됨으로 흡수된 전력을 증가시키기 위해 전송 세기가 감소되기 때문에 상기 변조기는 반전한다. 이상적인 정전류원의 범위내에서, 곡선(260)은 세트전류값 Ic(250)에 근접할수록 매우 경사지게 될 수 있다.
본 발명을 실시하기에 적당하고, 트랜지스터를 이용하는 일례의 정전류원이 제20도에 도시된다. 핀 MQW 다이오드 구조변조기는 접촉부(270, 272) 사이에서 역 바이어스 구성으로 접속된다. 전압원 Vo는 일정한 DC 전위를 제공한다. 핀 MQW 다이오드 구조내에서 발생된 광 전류가 입사 광 세기의 변화로 변하게 됨에 따라, 트랜지스터는 전류를 일정하게 유지하여, 그에 따라 접촉부(270, 272) 사이의 전압을 변화시킨다. 그때 핀 MQW 구조는 전술된 바와 같이 쌍안정이나 선형 반전 변조를 나타낸다. 접합 트랜지스터, 전계 효과 트랜지스터는 동일하게 정전류원 역할을 한다.
정전류 제한기로서의 광 다이오드를 가진 본 발명의 한 실시예가 제21도에 도시된다. MQW 변조기(281)는 핀 다이오드(280)의 고유층으로서 도시된다. 광 다이오드(282)는 임의 고유층(284)으로 도시된다. 고유층(284)은 선택적으로 공핍영역이 바이어스와 무관한 대략 동일 크기를 유지하도록 포함된다. 공핍 영역내에서 발생하는 광 흡수는 다이오드 광 전류를 발생시키는데, 공핍 영역의 크기는 바이어스와 거의 무관하며, 광 전류는 바이어스와 거의 무관하고 단지 흡수 광 전력에만 종속된다. 쌍안정 특성을 가진 핀 다이오드(280) 및 MQW 변조기(281)에 대하여, 동작점은 광 다이오드(282)에 의해 흡수된 광 전력에 의해 제어된다. 제1특정 합성물을 가진 제1광 빔(285)은 정전류를 제어하도록 광 다이오드(282)에세 지정된다. 제2특정 합성물을 가진 제2광 빔(287)은 핀 다이오드(280) 및 MQW 변조기(281)에 의해 제어될 수 있다. 동작상, 전원(286)에 의해 세트된 일정한 전위 Vo는 부분적으로 광 다이오드(282) 및 핀 다이오드(280)양단에서 발생한다. 두 합성물(280, 282)양단의 부분 전위 Vo는 광 다이오드(282)의 정전류에 대한 요구가 있을 경우 변하게 된다. 선형 반전 변조기 모드에서, 광 다이오드(282)에 의해 흡수된 광 빔 세기의 증가로, MQW 변조기를 통해 전류가 상승하며, MQW층(281)의 흡수도 증가한다. 따라서, 제어 광 빔 세기의 증가로, 핀 다이오드(280)를 통해 전송된 광 빔의 세기가 감소하고, 제어 빔 세기의 증가에 따라 선형으로 감소한다.
제22도는 핀 다이오드 MQW 변조기(292)와 전기적으로 직렬인 집적된 광 다이오드(290)로서 개선된 본 발명의 한 실시예를 도시한 것이다. 광 다이오드(290) 및 핀 MQW 다이오드(292)양자는 역 바이어스된다. 접합부(294)가 순방향 바이어스된 다이오드이므로, 광 다이오드(290)내에서 발생된 광 전류는 핀 MQW 다이오드(292)로 통과한다. 광 다이오드(290)는 광 전류가 거의 바이어스와 무관하도록 설계되며, (도시되지 않은) 고유층을 포함할 수 있다. 제1광 빔(296)은 일정한 "세트"전류를 형성하도록 광 다이오드(290)에 의해 흡수된다. 제2광 빔(298)은 출력 광 빔(300)이 되게 하도록 핀 MQW 다이오드(292)에 의해 전송된다. 제1광 빔(296)에 대한 파장 및 흡수가 통과하지 않고 MQW(293)에 흡수되도록 선택되고, 제2광 빔(298)이 광 다이오드(290)에 의해 적절히 흡수되지 않을 경우, 제22도에 도시된 반도체 구조는 전술된 바와 같이 핀 MQW 다이오드(292)와 무관하게 동작하는 광 다이오드(290)와 작동한다. 어느 한 광 빔(296, 298)이 광 다이오드(290) 및 MQW 다이오드(292)양자에 의해 흡수될 경우에 더욱 복잡한 상호 작용이 일어난다. 전체 구조를 예를 들어 GaAs 및 GaAlAs와 같은 단일족 재질과, 적절한 n 및 P도핑 재질로부터의 분자 빔 에피택시로 개선될 수 있다. 제22도에 도시된 반도체층은 트랜지스터 작용을 나타낸다. 의도치 않은 트랜지스터 작용을 "기생 트랜지스터 작용"이라 부르며, 포함된 층을 기생 트랜지스터라 부른다. 트랜지스터 작용은 한 반도체층으로부터 다른 층으로 전하 캐리어의 확산을 제어하기 위해 재질 두께의 선택으로 강화되거나 또는 억제된다.
예를 들면, 핀 MQW 다이오드(292)는 제7도, 제8도 또는 제22도에 도시된 바와 같이 층 평면과 수직 방향인 광 빔으로 동작될 수 있다. 광 다이오드(290) 및 P 및 n영역은 제1광 빔(296)으로부터의 에너지를 흡수하고, 제2광 빔(298)의 파장에 투명하다. GaAs/GaAlAs 시스템에 대하여, 이러한 투명도(transparency)는 제2광 빔(298)에서 이용된 광자 에너지보다 더 크게 되도록 선택된 밴드갭에 따라 GaAlAs에서 광 다이오드를 완전히 구성함으로써 이루어질 수 있다. 또한, 광다이오드(290)에 대한 초격자 재질의 이용으로, 광 다이오드(290)에 대해 더욱 큰 밴드갭이 유발된다. 제1광 빔(296)의 광자 에너지는 그때 제2광 빔(298)에 대한 광자 에너지보다 더 크게 된다. 유사한 기술이 다른 재질 시스템에 이용될 수 있다.
제23도는 집적된 광 다이오드 및 핀 MQW 다이오드 구조의 한 실시예이다. 층들이 분자 빔 에피택시에 의해 성장되고, 메사는 에칭되며, 절연층이 퇴적되고, 구멍은 메사 최상부에서의 절연체내에 형성되며, 그리고 도전층은 제9 및 제10도를 참조로 하여 기술된 바와 같이 메사의 최상부층에 접촉하도록 퇴적된다. 또한 제23도에 도시된 구조는 제11도를 참조로 하여 기술된 바와 같은 배열로 제조하기에 적당하다. 제23도에 도시된 바와 같은 구조의 배열은 다수의 평행 광 빔을 처리하고, 다른 광 평행 처리에 이용될 수 있다. 제23도에 도시된 구조 배열은 제11도를 참조로 하여 전술된 바와 같이 배열에 대해 단지 두개의 전기 접속을 필요로 한다.
제24도에서, 공간 광 변조기로서 이용된 본 발명의 한 실시예가 도시된다. 제23 및 11도에 도시된 자기 전자 광 효과 장치(SEED)에 배열(310)이 이용된다. 비간섭성 및 광대역인 조도(312)는 목적물(314)를 조사된다. 일부의 조도(312)는 목적물(314)로부터 반사되어, 필터(317)에 의해 키 파장을 여파한 후 광 빔(315)으로서 SEED 장치의 배열(310)상으로 접속된다. 광원(316)은 SEED장치의 배열(310)을 조사한다. 배열(310)의 각 SEED 장치의 전송은 목적물(314)에 의해 반사된 조도 세기에 의존한다. 광원(316)에 의해 이용된 파장은 필터(317)에 의해 광 빔(315)에서 여파된다. 출력 빔(321)은 배열(310)의 SEED장치에 의해 광원(316)으로부터 광을 전송함으로써 형성된다. SEED장치의 전송 상태는 각 SEED 장치상에 집속된 목적물(314)의 영상부의 세기에 의해 결정된다. 출력 빔(321)은 먼저 빔 스플리터(324)에 의해 편향되어, 형상(320)을 형성하도록 렌즈(322)에 의해 집속된다. 배열(310)은 SEED장치의 높은 세기의 조도가 광원(316)에서의 광에 대한 SEED장치의 낮은 전송을 유발할 경우, 그때 형상(320)은 조사된 목적물(314)의 네가티브(negative)가 된다. 형상(320)은 조도(312)내에 포함된 파장과 전혀 다른 파장에서 형성된다. 예를 들면, GaAs/GaAlAs를 이용하여, SEED장치는 가시 비간섭성 조도(312)를 이용할 수 있으며, 광원(316)에서의 간섭성 광원을 이용한 적외선 형상(320)을 발생시킨다.
제25도는 MQW변조기 구조로 집적된 광 트랜지스터를 가진 본 발명의 한 실시예를 도시한 것이다. 상기 장치는 단지 둘만의 전기 접속을 하게 된다. 베이스는 어느 외부 전기회로에 별도로 접속되지 않는다. 장치의 배열의 제11도를 참조로 기술된 바와 같이 전체 배열에 대해 둘이상의 전기 접속을 필요로 하지 않도록 장치에 대한 둘만의 전기 접촉으로 제한한다.
제25도는 반도체(332)내에 집적된 핀 다이오드 MQW구조(330)와, 반도체(332)내에 집적된 광 트랜지스터(334)를 가진 본 발명의 한 실시예를 도시한 것이다. 광 트랜지스터(334)는 핀 다이오드 구조(330)과 전기적으로 직렬이다. 동작상, 광 빔은 광 트랜지스터내에 흡수되어, 광 전류를 발생시킨다. 광 전류는 에미터 영역(338), 베이스 영역(336) 및, 콜렉터 영역(340)에서의 트랜지스터 작용으로 증폭된다. 증폭된 광 전류를 제20도에 도시된 트랜지스터 또는 제21도에 도시된 광 다이오드에서 공급되는 정전류이다. 제25도에 도시된 광 트랜지스터의 잇점은 광 흡수에 의해 발생된 광 전류가 증폭되어, 제21도의 간단한 광 다이오드 구조보다 광에 더 민감한 장치를 제공한다는 것이다. 광 트랜지스터(334)는 정전류원 역할을 하여, 제16 내지 19도를 참조로 하여 기술된 바와 같이 동작한다.
제22도에 도시된 반도체 구조는 전술된 광 다이오들 역할을 할뿐만 아니라 광 트랜지스터 역할도 할 수 있다. 제22도에서, n도핑된 층(294A)은 광 트랜지스터의 베이스 역할을 하며, 두 P도핑된 층(294B, 294C)은 제각기 에미터 및 콜렉터 역할을 한다. n 도핑된 층(294A)이 캐리어가 층(294B) 및 층(294C) 사이에서 확산할 수 없을 정도로 두껍거나, 그러한 캐리어 확산을 저지할 어떤 다른 수단이 층(294A)내의 캐리어 변환기로서 터널링 접합을 통합시키는 바와 같이 이용될 경우에, 제22도의 반도체 구조는 광 다이오드 역할을 한다. 그러나, 층(294A)의 두께가 매우 얇게 선택되어, 매우 많은 캐리어가 층(294B)에서 층(294C)으로 확산할 수 있을 경우에, 층(294A), (294B) 및 (294C)은 광 트랜지스터 역할을 한다. pnp 트랜지스터가 제25도와 같이 도시되지만, npn트랜지스터의 배치가 핀 MQW 변조기가 역 바이어스되는 한 동일한 역할을 한다. 예를 들면, 제25도에서, 각 n층은 P층으로 대체되고, 각 P층은 n층으로 대체되며, 공급 전압의 극성은 역으로 된다.
제22도에 도시된 반도체 구조가 광 트랜지스터 역할을 하도록 구성될때, 이는 MQW 변조기(293)와 직렬인 정전류원이며, 제16 내지 19도를 참조로 하여 기술된 바와 같은 역할을 한다.
제22 및 25도에 도시된 집적 반도체 구조는 특히 제11도에 도시된 각 장치의 배열로 제조하기에 매우 적절하다. 광 트랜지스터의 베이스 영역에 전기 접속이 이루어지지 않으므로, 배열은 둘만의 전기 접속을 필요로 한다. 예를 들면, 유사한 장치의 배열로 통합될때 제25도의 반도체 구조는 전기적으로 함께 접속된 모든 장치의 층(344) 및 층(338)을 가진다. 제9 및 10도에서 도시된 제조단계는 제25도에 도시된 바와 같이 장치의 배열을 제조하는데에 이용되고, 부가 단계는 제25도에 도시된 부가 층을 형성하는데 요구된다.
제26도는 동일한 광 빔에 응답하는 두 구조체를 가짐으로써 결합된 MQW 변조기 및 광 트랜지스터를 가진 본 발명의 한 실시예를 도시한 것이다. 제26도에 도시된 구성은 각 불연속 부품을 이용함으로써 이루어지고, 제22 및 25도에 도시된 바와 같은 집적된 반도체 구조를 이용하여 이루어진다.
작동에 대한 적어도 4개의 각 경우가 제26도에 도시된 본 발명의 실시예를 이용하여 가능하다. 상기 4개의 경우는 광 빔이 먼저 광 트랜지스터 또는 MQW 변조기를 통과하는 여부와, 그후 변조기의 흡수가 변조기에 인가된 외부 전압의 증가로 감소하거나 증가하는 여부를 선택함으로써 이루어진다.
제1경우에서, 광 빔은 빔(350)으로 도시된 바와 같이 광 트랜지스터를 통과하며, 변조기의 흡수는 전압의 증가로 증가한다. 광 빔(352)은 장치의 광 출력이다. 장치의 동작은 초기에 광 세기를 매우 낮게 함으로써 그에 따라 세기가 상승될 때 장치의 응답으로 해석된다. 낮은 세기로는 광 전류가 거의 흐르지 않으며, 대부분의 공급 전압은 광 트랜지스터 양단에 있다. 광 세기의 증가에 따라 광 전류가 증가하고, 광 트랜지스터 전류는 에미터-콜렉터 전압의 감소에 따라 증가하며, 변조기 양단의 전압도 증가한다. 변조기의 흡수는 변조기 전압의 증가에따라 증가하여, 출력 광 빔(352)의 세기를 감소한다. 그래서, 구획된 광 출력 전력 대 광 입력 전력은 상승하여, 변조기 흡수가 증가할 때 감소한다. 광 출력 전력이 광 입력 전력의 증가에 따라 감소하는 범위내에 있을 동작점을 조정함으로써, 장치는 반전 증폭기로서 이용될 수 있다.
제2경우에서, 광 빔은 광 빔(350)으로서 트랜지스터를 통과하지만, 변조기의 흡수는 전압의 증가에 따라 감소한다. 낮은 세기로 광 전류가 거의 흐르지 않으며, 대부분의 공급 전압은 광 트랜지스터 양단에 있어, 변조기는 그 양단의 전압이 낮기 때문에 흡수가 잘 된다. 그래서, 출력 광 빔(352)은 MQW 변조기에 의해 거의 차단된다. 빔(350)의 세기가 증가될 때 MQW 변조기 양단의 전압은 증가하여, 변조기는 흡수가 잘 안되고, 출력 광 빔(352)의 세기는 급속히 상승한다.
제3경우에서, 광 빔은 광 빔(360)으로 도시된 바와 같이 먼저 MQW 변조기를 통과하여, 광 트랜지스터를 통과시키며, MQW 흡수는 전압이 증가에 따라 증가한다. 광 빔(360)은 입력 광 빔이고, 광 빔(362)은 출력 광 빔이다. 낮은 세기에서, 공급 전압은 광 트랜지스터 양단에 있으며, MQW 변조기는 거의 투명(transparent)하다. 세기가 증가함에 따라, 광 트랜지스터는 전도하기 시작하여, MQW 변조기 양단의 전압이 증가하게 되고, 그리고 변조기는 더욱 잘 흡수하게 되어, 광 빔이 광 트랜지스터에 도달하지 못하게 한다. 동작 특성의 적당한 선택으로, 장치는 일정한 전송 전력에 도달한다. 이 경우에, 본 발명은 광 제한기 역할을 한다.
제4경우에서, 광 빔은 광 빔(360)으로서 MQW 변조기를 먼저 통과하고, MQW 변조기 흡수는 인가된 전압의 증가에 따라 감소한다. 매우 낮은 세기로, 대부분의 공급 전압은 광 트랜지스터 양단에 있다. 그래서, 변조기는 거의 불투명하여, 광 트랜지스터로 광이 거의 통과하지 않는다. 그러나, 광 세기가 상승될 때, 전력은 광 트랜지스터에 도달하기 시작하고, 광 트랜지스터 양단의 전압은 강하하기 시작하여, MQW 변조기 양단의 전압은 상승하기 시작한다. MQW 변조기는 전압의 증가에 따라 점점 투명하게 된다. 광 트랜지스터는 그때 급속히 상승한 광 세기에 접하여, 광 입력 전력이 증가될 때 급속히 상승한 광 출력 전력에 이르게 된다.
부가적인 특성을 가진 장치는 광 트랜지스터나(도시되지 않은) 부가적인 광 빔을 가진 MQW 변조기를 조사함으로써 형성된다. 동작점은 제어 소자로서의 광 빔 세기를 이용함으로써 조절된다.
광 경로 길이가 광 빔 세기에 응답하여 변하는 본 발명의 한 실시예가 제27도에 도시된다. 층(400 및 402)보다 더욱 높은 굴절율의 도핑된 고유 MQW층(404)주변의 낮은 굴절율 P 및 n접촉층(400 및 402)에 따라 형성된 변조기는 변조기 및 광 도파관 역할을 한다. 광 다이오드(406)상의 입사광 빔(410)은 MQW 영역(404)을 통한 전압이 변하여, 그 흡수 스펙트럼 및 굴절율 스펙트럼을 변화시키는 광 전류를 발생시킨다. 굴절율의 변화가 제6도의 일례의 동작점(147)에 근접하지만 그보다 낮은 광자 에너지에서와 같이 상당히 많은 특정 영역에 있도록 입사 광 빔(412)이 선택될 경우, 구조체를 통과함과 동시에 빔(412)에 의해 보여진 광 경로 길이가 매우 많이 변화하게 된다. 이런 성질은 광 제어 공진기, 간섭계, 방향 결합기 및, 광 경로 길이에 민감한 다른 장치로 개선될 수 있다. 제어 광 빔(410)이 구조체를 통해 하기 빔의 통과 전후나 통과시에 광 빔(412)으로부터 인출될 경우, 장치는 내부 피드백을 이용하여, 빔(412)이 비선형식으로 그의 자체 광 경로 길이에 영향을 줄 수 있게 구성될 수 있다.
선택적인 구조체는 광 트랜지스터나 다른 광 감용 재질을 이용하여 구성되고, 광 다이오드 및 광 트랜지스터는 광 빔의 방향이 제22 및 제25도에 도시된 것과 다를 경우를 제외하면 제22도 및 제25도에 기술된 바와 같은 구조체에 집적될 수 있다. 제22 및 제25의 구조를 이용하여, 도파관내의 광 모드의 프린지 필드는 광 트랜지스터 또는 광 다이오드내에 부분적으로 흡수되어, 구조체를 통해 입사 빔(412)의 통과시에 입사 광 빔으로부터 제어 빔을 인출할 수 있다.
광 도체는 MQW 구조의 광 흡수를 제어하기 위해 제21도, 제22도, 제23도, 제25도 또는 제27도에 도시된 바와 같이 광 다이오드나 광 트랜지스터보다 더 잘 이용된다.
MQW 구조체를 제조하기 위한 재질은 InGaAlAs, InGaAsP, InGaAs, InAl, As와 같은 3차원 구조나 4차원 구조와, InP와 같은 다른 반도체 재질을 포함한다. 예를 들면, 그룹 Ⅲ-Ⅴ원소 및 그룹 Ⅱ-Ⅵ원소로 구성된 합금 또는 화합물은 특히 MQW 구조 형성에 유용하다.
제22도 및 제25도에 기술된 본 발명의 실시예가 전술된 바와 같이 일반적인 방식으로 동작하지만, 서로 다른 잇점을 제공하는 서로 다른 특정 동작 특성을 나타낸다. 예를 들면, 제22도에 도시된 실시예의 동작에 있어서, 외부 전압은 (집적되고 직렬 접속된)광 다이오드(290) 및 MQW 변조기(292)양단에 인가된다. 이러한 전압의 영향으로, 제1광 빔(296)(제어 빔)은 광 다이오드(290)에 충돌되어, 그에 의해 상당한 양이 흡수된다. 게다가, 제어 빔(296)과 서로 다른 파장을 가진 제2충돌 광 빔(바이어스 빔)(298)이 광 다이오드(290)에 의해 상당량이 전송되지만, MQW 변조기(292)에 의해서는 부분적으로 흡수된다. 변조기에 의해 전송된 바이어스 빔(298)의 부분은 장치의 출력 빔(300)을 구성한다.
초기에 주지된 바와 같이, 제어 빔(296)의 전력 증가는 광 다이오드(290)의 광 도전성을 증가시킨다(그로인해 전기저항이 감소된다). 이것은 광 다이오드(290) 양단의 전합 강하를 감소시키고, 그에 대응하여 변조기(292) 양단의 전압 강하를 증가시킨다(광 다이오드(290) 및 변조기(292)가 직렬로 구성되기 때문에, 상기 회로 소자 양단의 전압 강하의 합산은 외부인가 전압과 동일해야 한다). 변조기 양단의 증가된 전압은 예를 들어 변조기의 흡수 계수를 증가시켜, 출력 빔 (300)의 세기를 감소시킨다.
광 다이오드(290)가 (초기에 기술된 바와 같이) 광 트랜지스터로 대체될 경우, 예를 들어 n 영역(294A)이 매우 얇게 되어, 영역(294A), (294B) 및 (294C)이 바이폴라 토랜지스토를 구성할 경우, 상당한 잇점을 갖게 된다. 즉, 직렬 접속된 광 다이오드(290) 및 변조기(292)를 동작시키는데에 있어서, 제어 빔(296)의 세기에 약간의 변화는 단지 광 다이오드(290)의 광 도전성을 작게 변화하고, 변조기(292)의 흡수 계수가 작게 변화되어, 전송된 빔(300)세기를 작게 변화시킨다. 광 다이오드(290)를 광 트랜지스터로 대체함으로써 트랜지스터에 의해 발생된 전류증폭은(제어 빔(296) 세기의 작은 증가에 응답하여) 광 다이오드에 의해 발생된 것보다 더 큰 광 도전성 증가를 유발시킨다. 따라서, 광 이득이 성취되며, 측 제어 빔(296)의 세기의 약간의 증가는 변조기(292)의 흡수 계수를 크게 변화시켜, 출력 빔(330) 세기의 변화를 크게 변화시킨다.
제25도에 기술된 본 발명의 실시예는 MQW 변조기(330)로 집적되고, 그와 직렬 접속된 광 트랜지스터(334)를 포함한다. 동작의 한 모드에 있어서, 단일 파장의 광 (또는 작은 범위의 파장)만이 장치와 충돌하며, 즉 제어 및 바이어스 빔은 동일 파장이다. 이런 형태는 잇점으로 다른 이유중에서 장치의 종속 접속, 즉 한 장치의 출력이 입력으로서 다는 장치에 쉽게 이용되기 때문이다(대조적으로, 제22도의 실시예에서 서로 다른 파장의 두 빔의 사용으로 종속 접속이 배제된다). 게다가, 광 트랜지스터는 광 이득을 발생시킨다. 그러나, 바이어스 빔의 작은(원치 않는) 세기 변동의 효과는 광 트랜지스터(334)에 의해 비교적 크게 증폭되어, 바람직하지 않게도 출력 빔 세기를 변동시킨다. 결과적으로, 입사 광 빔은 일반적으로 원치 않는 세기 변동을 방지하는 비교적 고가이고 복잡한 광 스그에 의해 발생된다.
기술된 바와 같이, 상기 실시예는 서로 다른 동작 특성, 및 그에 대응하는 서로 다른 잇점을 나타낸다. 불행하게도, 상기 실시예는 상기는 모든 잇점을 가질 수 없다.
제22도 및 제25도에 도시된 바와 같이, 상기 실시예는 또한 기생 트랜지스터를 포함한다. 예를 들면, 제25도의 실시예는 P 영역(340), n 영역(342) 및, P 영역(344)을 포함한 기생 pnp 트랜지스터를 포함한다. 대부분의 응용에 대해, 상기 기생 트랜지스터는 실시예의 성능에 거의 영향을 주지 않거나 역효과를 주지 않는다. 그러나, 일부 요구되는 응용에 있어서, 예를 들어 광 이득이 100 또는 그 이상의 많은 인수를 가진 응용에 있어서, 기생 트랜지스터는 성능을 저하시킬 수 있게 된다.
본 발명의 신규 실시예가 개발되어, 상기 실시예의 모든 잇점을 성취시키고, 또한 기생 트랜지스터 동작을 억제하거나 매우 감소시킨다. 상기 신규 실시예의 구조는 제28도에 도시되고 대응하는 전기 회로는 제29도에 도시된다.
제28도에 도시된 바와 같이, 신규 실시예(420)는 MQW 변조기(450)와 직렬로 구성된 광 트랜지스터(440)를 포함한다. 광 트랜지스터(440)는 예를 들어 n-p-n 바이폴라 트랜지스터 또는 p-n-p 바이폴라 트랜지스터이다. 설명을 위하여, 제28도에 도시된 광 트랜지스터는 노출된 상부면(422)을 가진 n형 재질 영역(424), P형 재질 영역(426) 및 n형 재질 영역(430)을 포함한 n-p-n 트랜지스터이다. 상기 영역은 제각기(동작상, 제28도에 도시된 바와 같이 바이어스되는) 광 트랜지스터(440)의 콜랙터, 베이스 및 에미터를 구성한다.
MQW 변조기(450)는 양호하게도 n형 재질 영역(430), (고유 반도체 재질의) 다중 양자 웰 영역(432) 및, P형 재질 영역(434)을 포함하는 p-i-n 다이오드 형태로 구성된다. 따라서, 광 트랜지스터(440)의 한 소자, 즉 n형 영역(430)(에미터)은 변조기(450)에 구성된다(광 트랜지스터(440)가 p-n-p 트랜지스터일 경우, 변조기(450)내의 P형 및 n형 영역의 위치가 상호 교환되어, 광 트랜지스터의 P형 영역은 변조기에 구성된다).
중요한 것은, 광 트랜지스터(440)가(아래에 상세히 기술되는 바와 같이) 베이스(426) 및 콜렉터(424)가 (변조기(450)에 구성되는) 에미터(430)의 상부면(428)의 일부에만(전체보다 적음) 놓여지도록(overlie) 제조된다는 것이다. 이것은 동작상 제어 빔(460)이(광 트랜지스터(440)로 통과되어, 그에 의해 흡수되도록) 콜렉터(424)의 노출된 상부면(422)과 쉽게 충돌한다. 게다가, 바이어스 빔(470)이 (MQW 영역(432)으로 통과하고, 적어도 일부분이 그에 의해 흡수되도록) 표면(428)의 노출부와 쉽게 충돌된다. 바이어스 빔(470)이 (제25도의 실시예에 따른 경우와 같이) 광 트랜지스터에 통과할 필요가 없기 때문에, 바이어스 빔의 파장은 제어 빔의 파장은 제어 빔의 것과 서로 다르지 않다. 따라서, 장치가 쉽게 종속 접속될 수 있다. 더우기, 제어 및 바이어스 빔의 이용으로, 실시예(420)는 기술된 바와 같이 모든 잇점을 가진다. 특히, 바이어스 빔내의 작은 변동은 광 트랜지스터에 의해 증폭되지 않는다.
제28도에 도시된 바와 같이, 실시예(420)는 P형 영역(426), n형 영역(430) 및, P형 영역(434)을 포함한 p-n-p 기생 트랜지스터를 포함한다(고유 MQW 영역(432)은 기생 트랜지스터 동작을 배제시키지 못한다). 상기 영역은 제각기 기생 트랜지스터의 에미터, 베이스 및 콜렉터로 구성된다. 전술된 바와 같이 필요한 응용내에서 불필요한 동작을 방지하기 위하여, 광 트랜지스터(440)의 전류 이득은 기생 트랜지스터의 전류 이득보다 크다(여기에 이용되는 바와 같이, 전류 이득은 통상 B라 칭하며, 상기 이득은 공통 에미터 구성의 dc 단락 회로 전류 이득이다). 공지된 바와 같이, 다른 트랜지스터에 대한 한 트랜지스터의 전류 이득을 증가시키거나 감소시키는 기술이 많이 있다. 제28도의 실시예에 있어서, 예를 들어 기생 트랜지스터의 에미터 분사율을 광 트랜지스터(440)의 상기 분사율 이하로 감소시킴으로써 기생 트랜지스터의 전류 이득을 광 트랜지스터(440)의 상기 이득 이하로 감소시키는데에 유용하다. 이것은 광 트랜지스터(440)의 베이스 영역(영역(426)) 보다 더 높은 밴드갭을 가진 베이스 재질 영역(영역(430))에 따른 기생 트랜지스터를 형성함으로써 쉽게 성취된다(밴드갭은 원자가와 도전 대역 사이의 에너지 갭을 나타낸다. 밴드갭이 클수록, 에미터에 의해 베이스내로 분사된 주 캐리어에 의한 전위 장벽이 크게 되어, 에미터 분사율은 더욱 낮아진다).
즉, 이것은 영역(430 및 426) 사이의 인터페이스에서 이질 접합을 유발함으로써 성취된다(이질 접합에 관해서는 예를 들어 1982년 2월 에이취. 크로우머에 의한 proc. IEEE, 70, No.1, 페이지 13 내지 25에 기술되어 있다). (전류 이득에 영향을 주는)모든 다른 요소가 동일할 경우, 기생 트랜지스터의 베이스의 밴드갭은 적어도 KT로 광 트랜지스터 베이스의 밴드갭보다 더 큰데, 여기서 K는 볼쯔만 상수이고, T는(켈빈 등급의) 장치의 바람직한 동작 온도이다. KT보다 작은 밴드갭 차는 이것이 기생 트랜지스터의 에이터 분사율을 특히 바람직하지 않게 약간 감소시키기 때문에 바람직하지 않다.
바람직한 밴드갭 차는 예를 들어(약 1.8eV의 밴드갭을 가진) 갈륨 알루미늄 비소화물로부터 기생 트랜지스터(영역(430))의 베이스를 제조함으로써 쉽게 성취된다. 더우기, 광 트랜지스터(440)(영역(426))의 베이스는 예를 들어(약 1.4eV의 밴드갭을 가진) 갈륨 비소화물로부터 제조된다. 편의상, 실시예(420)의 나머지는 또한 상기 동일 재질로부터 제조된다. 즉, 제28도에 도시된 바와 같이, 영역(424)은 갈륨 비소화물을 포함하고, 영역(434)은 갈륨 알루미늄 비소화물을 포함하는 반면에, MQW 영역(432)은(초기에 기술된 바와 같이) 갈륨 비소화물 및 갈륨 알루미늄 비소화물의 삽입 영역을 포함한다.
전술된 갈륨 비소화물 및 갈륨 알루미늄 비소화물의 영역은 예를 들어 종래의 분자 빔 에피택시 기술을 이용하여 서로간의 상부에 쉽게 성장된다. 더우기, 표면(428)부는 예를 들어 영역(424 및 426)의 선택적인 퇴적물에 의해 노출된다. 선택적으로, 영역(424 및 426)은 초기에 표면(428)을 완전히 덮어, 각 영역(424 및 426)부가 종래의 부식제를 이용하여 표면(428)부를 노출시키기 위해 에칭되도록 형성된다.
중요한 것은, 전술된 바와 같이, 서로 다른 밴드갭 재질의 이용이 또한 양호한 전송 및 흡수성을 유발시킨다는 것이다. 예를 들어, 영역(424 및 426)이 갈륨 비소화물로 구성되고, 표면(422) 상에서의 입자 제어 빔(460)이 예를 들어 850 나노미터의 파장을 가진 광을 포함할 경우, 상기 광은 광 트랜지스터(440)에 의해 흡수된다. 표면 (428)의 노출부상의 입사 바이어스 빔(470)이 또한 (종속 접속목적에 바람직한) 동일 파장 광을 포함하고, 영역(430 및 434)이 갈륨 알루미늄 비소화물로 구성될 경우, 상기 영역에 의한 상기 광의 바람직하지 않은 흡수가(갈륨 알루미늄 비소화물의 높은 밴드 갭에 의해) 방지된다. (영역(430 및 434)에 의한 바이어스 빔의 흡수로 출력 빔의 바람직하지 않은 감쇠가 유발된다). 그러나, MQW 영역(432)이 갈륨 비소화물 및 갈륨 알루미늄 비소화물의 보간 영역을 포함할 경우, 광은 MQW 영역에 의해 흡수되어, 흡수가 (간접적으로)제어 빔에 의해 제어된다.
실시예(420)가 (제28도에 도시된 바와 같이 (에미터)영역(424)의 최상부 및, 영역(434)의 최하부에)들만의 전기 접촉을 필요로 하기 때문에, 상기 실시예는 공통 상부 접촉부 및 공통 하부 접촉부를 가진 실시예의 배열을 포함하는 구조체의 형성에 상기 실시예 장치를 제공한다. 제30 내지 31도에 도시된 바와 같이, 상기 배열은 공통 기판내에 형성되고, 공통 영역(434)에 대한 공통 하부 전기 접촉부(462)에 따른 다수의 실시예(420)를 포함한다. 영역(434)이 예를 들어 갈륨 알루미늄 비소화물로 구성될 경우, 하부 접촉부는 예를 들어 영역(434) 그 자체를 포함한다.
배열의 영역(424)(에미터)에 대한 공통 상부 접촉부(472)는 (제어 및 바이어스 빔에 의해 충돌될) 표면(422 및 428)을 제외한 배열의 모든 상부면을 덮는 절연층 (488)을 형성하여, 퇴적시킴으로써 형성된다. 상기 절연층은 공통 상부 접촉부를 통해 배열의 에미터 영역에 인가된 전압으로부터 배열 소자를 차폐한다. 배열이 갈륨 비소화물 및 갈륨 알루미늄 비소화물로부터 제조될 경우, 유용한 절연 재질은 폴리아미드, 실리콘 산화물 및 실리콘 질화물로 구성된다. 그때 공통 상부 접촉부(472)는 각 에미터의 각 표면부(422)를 포함하여 배열의 모든 상부면상으로 접촉층(또는 층)을 퇴적시킴으로써 형성된다. 하지만, 각 표면(422)의 적어도 일부는 제어 빔에 의해 충돌하기 위해 노출된다. 게다가, 표면(428)은 바이어스 빔에 의해 충돌하기 위해 또한 노출된다.
본 발명의 신규 실시예는 잇점으로 광 논리장치의 이용에 매우 적합하다. 예를 들면, 제32도에 도시된 구조(485)는 실시예(420)와 직렬인 광 트랜지스터(490)를 포함하여, 광 NAND 게이트로 구성된다(대응 전기 회로는 제33도에 도시된다). 즉, 인가된 전압은 변조기(450) 양단에서 강하되어, 두 광 트랜지스터(490 및 440)가 제어 빔(500 및 460)에 의해 턴온될 경우에만 출력 빔(480)을 감쇠시킨다.
양호하게도, 전술된 필요한 응용에 대하여, 각 광 트랜지스터(490 및 440)의 전류 이득은 신규 실시예내의 고유 기생 트랜지스터의 전류 이득보다 크다. 그러나, 다른 불필요한 응용에 대하여, 이것은 반드시 필요치 않다.

Claims (6)

  1. 제1표면(428)상에 입사하는 전자기 방사를 흡수할 수 있는 상기 제1표면을 제1수단(450)으로서, 상기 제1수단의 흡수 및 굴절률이 상기 제1수단 양단에 전압을 인가하거나 상기 인가된 전압의 변경을 통해 변경 가능하게 되는 제1수단(450) 및, 상기 제1수단 양단에 전압을 발생시키기 위한 제2수단(440)으로서, 상기 전압이 상기 제2수단에 입사하여 흡수되는 전자기 방사에 응답하여 변경 가능하게 되는 제2수단(440)을 구비하는 광 장치(제28도, 420)에 있어서, 상기 제1수단은 양자 웰 영역(432)을 더 포함하고, 상기 제2수단은 상기 제1수단의 구성 요소인 제1성분(430) 및 상기 제1표면(428) 전체보다 작은 일부분 상에 놓여있는(overlying) 제2성분(424, 426)을 포함하는 광 트랜지스터(440)를 구비하는 것을 특징으로 하는 광 장치.
  2. 제1항에 있어서, 상기 적어도 하나의 광 트랜지스터의 전류 이득은 상기 장치의 고유 기생 트랜지스터의 전류 이득보다 큰 것을 특징으로 하는 장치.
  3. 제1 또는 2항에 있어서, 상기 제2수단은 제1 및 2 광 트랜지스터를 포함하는 것을 특징으로 하는 광 장치.
  4. 제2항에 있어서, 상기 각 광 트랜지스터 각각의 전류 이득은 상기 장치의 고유 기생 트랜지스터의 전류 이득보다. 큰 것을 특징으로 하는 광 장치.
  5. 제1 또는 2항에 있어서, 상기 광 트랜지스터 및 기생 트랜지스터 각각은 에미터, 베이스 및 콜렉터를 포함하고, 상기 기생 트랜지스터의 베이스의 밴드갭(bandgap)은 상기 광 트랜지스터의 베이스의 밴드갭보다 큰 것을 특징으로 하는 광 장치.
  6. 제4항에 있어서, 상기 광 트랜지스터의 에미터, 베이스 및 콜렉터는 제각기 갈륨 알루미늄 비소화물, 갈륨 비소화물 및, 갈륨 비소화물로 구성되는 반면에, 상기 기생 트랜지스터의 에미터, 베이스 및 콜렉터는 제각기 갈륨 비소화물, 갈륨 알루미늄 비소화물 및, 갈륨 알루미늄 비소화물로 구성되는 것을 특징으로 하는 광 장치.
KR1019870700483A 1985-10-08 1986-10-03 비선형 및 쌍안정 광 장치 KR940001908B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78554685A 1985-10-08 1985-10-08
US785,546 1985-10-08
PCT/US1986/002107 WO1987002478A1 (en) 1985-10-08 1986-10-03 Nonlinear and bistable optical device

Publications (2)

Publication Number Publication Date
KR880700300A KR880700300A (ko) 1988-02-22
KR940001908B1 true KR940001908B1 (ko) 1994-03-11

Family

ID=25135853

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870700483A KR940001908B1 (ko) 1985-10-08 1986-10-03 비선형 및 쌍안정 광 장치

Country Status (7)

Country Link
EP (1) EP0239635B1 (ko)
JP (2) JPS63501528A (ko)
KR (1) KR940001908B1 (ko)
CA (1) CA1281220C (ko)
DE (1) DE3683370D1 (ko)
HK (1) HK100493A (ko)
WO (1) WO1987002478A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754132A (en) * 1987-04-24 1988-06-28 American Telephone And Telegraph Company, At&T Bell Laboratories Symmetric optical device with quantum well absorption
US4751378B1 (en) * 1987-04-24 2000-04-25 Bell Telephone Labor Inc Optical device with quantum well absorption
US4800262A (en) * 1987-12-31 1989-01-24 American Telephone And Telegraph Company, At&T Bell Laboratories Tri-state optical device with quantum well absorption
GB8813483D0 (en) * 1988-06-08 1988-07-13 Gen Electric Co Plc Spatial light modulators
DE68926525D1 (de) * 1988-10-21 1996-06-27 Hitachi Ltd Halbleitervorrichtung
US4952791A (en) * 1988-12-12 1990-08-28 At&T Bell Laboratories Monolithic apparatus comprising optically interconnected quantum well devices
JP2692013B2 (ja) * 1990-07-09 1997-12-17 日本電信電話株式会社 光ゲートアレイ
JPH03216628A (ja) * 1990-01-23 1991-09-24 Nippon Telegr & Teleph Corp <Ntt> 光三端子素子
US5130528A (en) * 1991-03-01 1992-07-14 International Business Machines Corporation Opto-photo-electric switch
US11949036B2 (en) * 2022-04-11 2024-04-02 Ciena Corporation Suppression of phototransistor gain in an optical modulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525687A (en) * 1983-02-28 1985-06-25 At&T Bell Laboratories High speed light modulator using multiple quantum well structures
US4546244A (en) * 1984-03-14 1985-10-08 At&T Bell Laboratories Nonlinear and bistable optical device

Also Published As

Publication number Publication date
HK100493A (en) 1993-09-30
EP0239635B1 (en) 1992-01-08
DE3683370D1 (de) 1992-02-20
EP0239635A1 (en) 1987-10-07
WO1987002478A1 (en) 1987-04-23
JPH081252U (ja) 1996-08-09
JP2564264Y2 (ja) 1998-03-04
CA1281220C (en) 1991-03-12
KR880700300A (ko) 1988-02-22
JPS63501528A (ja) 1988-06-09

Similar Documents

Publication Publication Date Title
US4546244A (en) Nonlinear and bistable optical device
US4716449A (en) Nonlinear and bistable optical device
Miller Quantum-well self-electro-optic effect devices
US4525687A (en) High speed light modulator using multiple quantum well structures
CN106461987B (zh) 检测器再调制器
US4782223A (en) Optically bistable photodiode device with voltage control circuitry to change photodiode light absorption
Harder et al. High-speed GaAs/AlGaAs optoelectronic devices for computer applications
Miller Optoelectronic applications of quantum wells
DE10004398A1 (de) VCSEL mit monolithisch integriertem Photodetektor
KR940001908B1 (ko) 비선형 및 쌍안정 광 장치
US5210428A (en) Semiconductor device having shallow quantum well region
USRE32893E (en) Nonlinear and bistable optical device
JPS58156921A (ja) 光双安定デバイス
JP2674626B2 (ja) 量子井戸光デバイス
US5126553A (en) Bistable optically switchable resonant-tunneling device and its use in signal processing
Garmire Nonlinear optics in semiconductors
Yairi et al. High-speed, optically controlled surface-normal optical switch based on diffusive conduction
WO1986005598A1 (en) Nonlinear and bistable optical device
Pfenning et al. Photon counting with resonant tunneling diodes: Overview and recent developments
Malzer et al. Optical Nonlinearities in n–i–p–i and Hetero‐n–i–p–i Structures
Pfenning et al. Single-Photon Counting with Semiconductor Resonant Tunneling Devices. Nanomaterials 2022, 12, 2358
Unlu et al. Transient simulation of resonant cavity enhanced heterojunction photodiodes
NL8801561A (nl) Inrichting voor optische signaalverwerking met transistorwerking.
Figueiredo et al. Ultralow voltage resonant tunnelling diode electroabsorption modulator
Choi Analysis of switching dynamics of asymmetric Fabry–Perot symmetric self-electro-optic effect devices with extremely shallow quantum wells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010302

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee