KR930004265B1 - Quantumized pulse width control circuit - Google Patents

Quantumized pulse width control circuit Download PDF

Info

Publication number
KR930004265B1
KR930004265B1 KR1019900016438A KR900016438A KR930004265B1 KR 930004265 B1 KR930004265 B1 KR 930004265B1 KR 1019900016438 A KR1019900016438 A KR 1019900016438A KR 900016438 A KR900016438 A KR 900016438A KR 930004265 B1 KR930004265 B1 KR 930004265B1
Authority
KR
South Korea
Prior art keywords
scaling factor
dct
quantization width
inputting
output
Prior art date
Application number
KR1019900016438A
Other languages
Korean (ko)
Other versions
KR920009073A (en
Inventor
김태응
Original Assignee
삼성전자 주식회사
강진구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사, 강진구 filed Critical 삼성전자 주식회사
Priority to KR1019900016438A priority Critical patent/KR930004265B1/en
Priority to JP26642791A priority patent/JPH05161016A/en
Priority to DE19914134554 priority patent/DE4134554A1/en
Publication of KR920009073A publication Critical patent/KR920009073A/en
Application granted granted Critical
Publication of KR930004265B1 publication Critical patent/KR930004265B1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/04Colour television systems using pulse code modulation
    • H04N11/042Codec means
    • H04N11/044Codec means involving transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/15Data rate or code amount at the encoder output by monitoring actual compressed data size at the memory before deciding storage at the transmission buffer

Abstract

The circuit for improving S/N rates and simplifying the image processing hardware uses discrete cosine transformation (DCT) signals with coefficients generated in a scaling process. The DCT section (10) for image data provides an output that is processed by a system having an absolute value converter (20), accumulator (30), scaling factor decision section (40), quantization width decision section (50) and linear quantization section (80). The quantization width decision section (50) operates upon the scaling factor data, while the linear quantization section (80) provides a linear operation on the output of the DCT (10).

Description

DCT 변환 AC 계수를 이용한 양자화폭 조정회로Quantization Width Control Circuit Using DCT Transformed AC Coefficient

제1도는 JPEG 권고 알고리즘 블럭 구성도.1 is a JPEG recommendation algorithm block diagram.

제2도는 본 발명에 따른 시스템 구성도.2 is a system configuration according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : DCT 20 : ABS10: DCT 20: ABS

30 : 누산기 40 : 스캘링 팩터 결정부30: accumulator 40: scaling factor determination unit

50 : 양자화폭 결정부 60 : 동작제어부50: quantization width determining unit 60: operation control unit

70 : 쉬프트 레지스터 80 : 리니어 양자회부70: shift register 80: linear quantum assembly

본 발명은 JPEG(CCITT와 ISO의 Joint Group)에서 권고하는 이미지 컴프레젼(Image Compression) 방식의 디지탈 영상처리 시스템에 있어서 양자회폭 조정회로에 관한 것으로 특히 화상을 여러개의 블럭으로 분리하여 각 블록별로 DCT 처리한 후 AC값을 이용하여 화상의 복잡성에 따라 양자화폭을 가변하여 S/N비를 높일 수 있는 조정회로에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantum amplitude adjustment circuit in a digital image processing system of an image compression method recommended by JPEG (Joint Group of CCITT and ISO). The present invention relates to an adjustment circuit capable of increasing the S / N ratio by varying the quantization width according to the complexity of the image using the AC value after the DCT process.

일반적으로 JPEG에서 권고하는 이미지 컴프레젼(Image Compression) 방식은 제1도에서 보는 바와 같이 디지탈 이미지 기록 재생장치내에서 데이타 압축을 위해 DCT 변환을 한 뒤에 양자화를 하게 된다.In general, the image compression method recommended by JPEG is quantized after DCT conversion for data compression in a digital image recording / reproducing apparatus as shown in FIG.

이때 양자폭은 인간의 시각특성을 고려한 8×8 블럭의 양자화 메트릭스와 일정한 스캘링 팩터(Scaling factor) S에 의해 결정되었다.In this case, the quantum width was determined by a quantization matrix of 8 × 8 blocks considering a human visual characteristic and a constant scaling factor S.

이와 같이 일정한 스캘링 팩터(Scaling factor) S에 의해 양자화폭이 결정되며 아주 복잡한 이미지(Image)는 재생시 정확하지 않고 단순한 이미지는 처리과정에서 많은 메모리가 필요로 하는 문제점이 있었다.As described above, the quantization width is determined by a constant scaling factor S, and a very complex image is not accurate at the time of reproduction, and a simple image requires a lot of memory in processing.

따라서 본 발명의 목적은 화상을 여러개의 블럭으로 분리하여 각 블럭별로 DCT 처리한 후 복잡한 이미지(Image)는 스캘링 팩터 S값을 크게 주어 양자화폭을 작게 하여 데이타 압축률을 줄이고 단순한 이미지(Image)는 스캘링 팩터 S값을 작게 주어 양자화폭을 크게 하여 데이타 압축률을 높게 함으로서 S/N비를 향상시킬 수 있는 양자화폭 조정회로를 제공함에 있다.Accordingly, an object of the present invention is to divide an image into blocks and perform DCT processing for each block, and then, for a complex image, the scaling factor S value is increased to decrease the quantization width, thereby reducing the data compression ratio and simplifying the image. The present invention provides a quantization width adjustment circuit capable of improving the S / N ratio by increasing the data compression ratio by increasing the quantization width by reducing the scaling factor S value.

본 발명의 다른 목적은 화상을 여러 블럭으로 나누어 DCT 처리를 한 후 AC 값을 이용하여 각 블럭별로 화상의 복잡성에 따라 양자화폭을 가변하여 하드웨어 구성을 간소화할 수 있는 양자화폭 조정회로를 제공함에 있다.Another object of the present invention is to provide a quantization width adjustment circuit that can simplify hardware configuration by dividing an image into blocks and performing DCT processing, and then varying the quantization width according to the complexity of the image for each block using an AC value. .

이하 본 발명을 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

블럭 포맷팅된 블럭별 8×8 데이타를 입력하여 1개의 DC 계수와 63개의 AC계수를 시리얼 출력하는 DCT(10)와, 상기 DCT(10)의 출력 AC 계수를 입력하여 절대값을 취하는 ABS(20)와, 상기 ABS(20)의 절대값을 취한 63개 AC 계수를 순차적으로 입력하여 누산하는 누산기(30)와, 상기 누산기(30)의 누산된 AC 계수를 입력하여 각 블럭의 이미지 복잡성 상태에 따라 스캘링 팩터를 결정하는 스캘링 팩터 결정부(40)와, 상기 스캘링 팩터 결정부(40)에서 출력된 스캘링 팩터값에 따라 양자화폭을 결정하는 양자화폭 조정부(50)와, 클럭신호를 받아 카운팅하여 상기 누산기(20) 및 스캘링 팩터 결정부(40)의 동작 제어신호를 발생하는 동작 제어부(60)와, 64개의 레지스터로 구성되어 상기 DCT(10)의 DCT 처리된 데이타를 순차적으로 쉬프트시켜 스캘링 팩터가 결정될때까지 지연시키는 쉬프트 레지스터(70)와, 상기 쉬프트 레지스터(70)에서 지연된 데이타를 입력하여 상기 양자화폭 조정부(50)에서 결정된 양자화폭에 따라 양자화를 수행하는 리니어 양자화부(80)로 구성된다.A DCT 10 for serially outputting one DC coefficient and 63 AC coefficients by inputting block-formatted block-by-block 8 × 8 data, and an ABS 20 having an absolute value by inputting an output AC coefficient of the DCT 10. ), An accumulator 30 for sequentially inputting and accumulating 63 AC coefficients taking the absolute value of the ABS 20, and the accumulated AC coefficients of the accumulator 30 are input to the image complexity state of each block. A scaling factor determining unit 40 determining a scaling factor according to the present invention, a quantization width adjusting unit 50 determining a quantization width according to the scaling factor value output from the scaling factor determining unit 40, and a clock signal; The control unit 60 generates an operation control signal of the accumulator 20 and the scaling factor determiner 40 and counts the received data, and comprises 64 registers to sequentially process the DCT processed data of the DCT 10. Shift to delay delay until scaling factor is determined Depending on the register 70, both the canvas delayed in the shift register 70 to input the data determined by the quantum canvas adjustment section 50 is composed of a linear quantizing unit 80 to perform quantization.

상기 구성중 누산기(30)는 클럭이 입력됨에 따라 상기 ABS(20)의 절대값을 취한 AC계수를 가산하는 가산기(31)와, 상기 가산기(31)에서 가산된 AC 계수값을 래치를 출력하는 래치(32)로 구성되고 상기 스캘링 팩터 결정부(40)는 상기 래치(32)의 출력신호를 입력한 후 제1레퍼런스 값과 비교하여 제1스캘링 팩터의 범위를 결정하는 제1스캘링 팩터 발생수단과 상기 래치(32)의 출력신호를 입력하에 제2레퍼런스 값과 비교한 후 상기 제1스캘링 팩터 발생수단으로부터 제1스캘링 팩터 범위 오버신호를 받아 논리조합한 후 제2스캘링 범위를 결정하는 제2스캘링 팩터 발생수단과, 상기 래치(32)의 출력신호를 입력하여 제3레퍼런스값과 비교한 후 상기 제2스캘링 팩터 발생수단으로부터 제2스캘링 팩터 범위 오버신호를 받아 논리조합하여 제3스캘링 팩터의 범위를 결정하는 제3스캘링 팩터 발생수단과, 상기 제3스캘링 팩터 발생수단으로부터 제3스캘링 팩터 범위 오버신호를 받아 논리조합하여 제4스캘링 팩터의 범위를 결정하는 제4스캘링 팩터 발생수단과, 상기 제1-4스캘링 팩터 발생수단으로부터 스캘링 팩터 범위 결정신호를 받아 엔코딩 출력하는 엔코더(44)로 구성되고, 동작제어부(60)는 클럭신호를 받아 카운트하여 출력(Q0-Q5)으로 카운팅값을 출력하는 링카운터(61)와, 상기 링카운터(61)의 출력단(Q0-Q5)으로 출력된 카운팅값을 입력하여 상기 누산기(30) 및 스캘링 팩터 결정부(40)의 리세트 신호를 발생하는 노아게이트(62)와, 상기 링카운터(61)의 출력단(Q0-Q5)으로 출력된 카운팅값을 입력하여 상기 스캘링 팩터 결정부(40)의 인에이블 신호를 발생하는 앤드게이트(63)로 구성된다.In the configuration, the accumulator 30 outputs a latch 31 which adds an AC coefficient taking an absolute value of the ABS 20 as a clock is input, and an AC coefficient value added by the adder 31. The first scaling is composed of a latch 32 and the scaling factor determiner 40 determines the range of the first scaling factor by comparing the first reference value after inputting the output signal of the latch 32 After comparing the factor generating means and the output signal of the latch 32 with the second reference value, and receiving the first scaling factor range over signal from the first scaling factor generating means and logically combining the second scaling values. A second scaling factor generating means for determining a range, an output signal of the latch 32 is input and compared with a third reference value, and then a second scaling factor range over signal is received from the second scaling factor generating means. Take a logical combination and determine the range of the third scaling factor. And a fourth scaling factor generating means and a fourth scaling factor generating means for receiving a third scaling factor range over signal from the third scaling factor generating means and logically combining the third scaling factor generating means to determine a range of a fourth scaling factor. And an encoder 44 which receives the scaling factor range determination signal from the first-fourth scaling factor generating means and encodes the output signal, and the operation control unit 60 receives the clock signal and counts it to output Q0-Q5. Resetting the accumulator 30 and the scaling factor determiner 40 by inputting a ring counter 61 for outputting a counting value and a counting value output to the output terminals Q0-Q5 of the ring counter 61. An AND gate for generating an enable signal of the scaling factor determiner 40 by inputting a NOA gate 62 for generating a signal and a counting value output to the output terminals Q0-Q5 of the ring counter 61. It consists of 63.

상기 구성에 의거 본 발명의 일실시예를 제2도를 첨조하여 상세히 설명한다.Based on the above configuration, an embodiment of the present invention will be described in detail with reference to FIG.

입력단(P1)을 통해 블럭 포맷팅된 8×8 데이타를 입력하는 DCT(10)는 클럭단(P2)를 통해 클럭이 입력됨에 따라 1개의 DC계수와 63개의 AC 계수를 시리얼로 출력하게 된다. 상기 DCT(10)에서 출력되는 AC 계수는 +, -값을 갖게 된다. 그러므로 상기 DCT(10)에서 출력되는 계수를 입력하는 ABS(20)는 절대값을 취하여 출력하게 된다. 상기 ABS(20)에서 출력되는 절대값을 취한 AC 계수를 순차적으로 입력하는 가산기(31)는 클럭신호에 의해 63개의 AC계수를 가산 출력하게 된다. 상기 가산기(31)에서 가산된 AC 계수를 입력하는 래치(32)는 클럭단(P2)를 통해 입력되는 클럭에 의해 래치 출력하게 된다.The DCT 10 inputting block-formatted 8x8 data through the input terminal P1 outputs one DC coefficient and 63 AC coefficients in serial as the clock is input through the clock terminal P2. AC coefficients output from the DCT 10 have + and − values. Therefore, the ABS 20 inputting the coefficient output from the DCT 10 takes an absolute value and outputs the absolute value. The adder 31 that sequentially inputs AC coefficients taking the absolute value output from the ABS 20 adds and outputs 63 AC coefficients by a clock signal. The latch 32 for inputting the AC coefficient added by the adder 31 is latched out by a clock input through the clock terminal P2.

또한 클럭신호를 입력하는 링카운터(61)는, 클럭단(Q0-Q5)으로 000000을 출력할때 노아게이트(62)는 하이신호를 출력하여 상기 래치(32)와 제1-3비교기(41-43) 및 엔코더(44)를 리세트시킨다. 또한 상기 링카운터(61)의 출력이 111111일때 앤드게이트(63)는 하이신호를 출력하여 상기 제1-3비교기(41-44) 및 엔코더(44)를 인에이블시킨다.In addition, when the ring counter 61 that inputs the clock signal outputs 000000 to the clock terminals Q0-Q5, the NOA gate 62 outputs a high signal so that the latch 32 and the first-to-three comparator 41 -43) and encoder 44 are reset. In addition, when the output of the ring counter 61 is 111111, the AND gate 63 outputs a high signal to enable the 1-3 comparators 41-44 and the encoder 44.

상기 래치(32)의 래치 출력된 값이 제1비교기(41)의 입력단(A)으로 입력되고 입력단(B)으로 입력된 제1레퍼런스 값과 비교하여 상기 제1레퍼런스 값보다 작은 경우에는 제1스캘링 팩터로 결정되어 엔코더(44)의 제1입력단(0)으로 인가된다.When the latched output value of the latch 32 is input to the input terminal A of the first comparator 41 and is smaller than the first reference value compared to the first reference value input to the input terminal B, the first reference value It is determined as a scaling factor and applied to the first input terminal 0 of the encoder 44.

그러나 상기 제1레퍼런스 값보다 상기 래치(32)에서 래치 출력된 값이 같거나 크게 되면 상기 래치(32)의 출력값이 제2비교기(42)의 입력단(C)으로 입력되어 입력단(D)을 통해 입력된 제2레퍼런스 값과 비교하여 상기 제2레퍼런스 값보다 작은 경우에는 상기 제1비교기(41)의 출력값이 오아게이트(OR1)를 통해 제2비교기(42)의 출력값과 앤드게이트(AN1)로 입력되어 논리조합함으로서 제2스캘링 팩터로 결정되어 엔코더(44)의 입력단(1)으로 인가된다.However, when the latch output value from the latch 32 is equal to or greater than the first reference value, the output value of the latch 32 is input to the input terminal C of the second comparator 42 and is input through the input terminal D. When the output value of the first comparator 41 is smaller than the second reference value compared to the input second reference value, the output value of the second comparator 42 and the AND gate AN1 are passed through the oragate OR1. By inputting and logical combination, the second scaling factor is determined and applied to the input terminal 1 of the encoder 44.

또한 상기 래치(32)의 출력값이 제2레퍼런스 값보다 같거나 큰 경우에는 상기 래치(32)의 출력값이 제3비교기(43)의 입력단(E)으로 입력되어 입력단(F)을 통해 입력된 제3레퍼런스 값과 비교하여 상기 제3레퍼런스 값보다 작은 경우에는 상기 제2비교기(42)의 출력값이 오아게이트(OR2)를 통해 제2비교기(42)의 출력값과 앤드게이트(AN2)로 입력되어 논리조합하므로서 제3스캘링 팩터를 결정되어 엔코더(44)의 입력단(2)으로 인가된다. 그러나 상기 래치(32)의 출력값이 제3레퍼런스보다 같거나 클경우에는 제3비교기(43)의 출력이 오아게이트(OR3)로 입력되는 논리조합함으로서 제4스캘링 팩터로 결정되어 엔코더(44)의 입력단(3)으로 인가된다.In addition, when the output value of the latch 32 is equal to or larger than the second reference value, the output value of the latch 32 is input to the input terminal E of the third comparator 43 and is input through the input terminal F. If the value is smaller than the third reference value compared to the 3 reference value, the output value of the second comparator 42 is input to the output value of the second comparator 42 and the AND gate AN2 through the ORA gate, and is logical. In combination, the third scaling factor is determined and applied to the input terminal 2 of the encoder 44. However, when the output value of the latch 32 is equal to or larger than the third reference, the output of the third comparator 43 is determined by the fourth scaling factor by performing a logical combination that is input to the OR gate OR3. Is applied to the input terminal 3 of.

이로 인해 상기 엔코더(64)는 이미지의 복잡성에 따라 출력된 스캘링 팩터를 엔코딩 출력하게 된다. 상기 엔코더(64)의 출력인 스캘링 팩터는 양자화폭 결정부(50)로 인가되어 양자화폭을 결정하게 된다.As a result, the encoder 64 encodes the output scaling factor according to the complexity of the image. The scaling factor, which is the output of the encoder 64, is applied to the quantization width determiner 50 to determine the quantization width.

또한 DCT(10)에서 DCT 처리된 데이타를 순차적으로 입력하는 쉬프트 레지스터(70)는 64개의 레지스터로 구성되어 쉬프트시키게 되는데 DCT 변환계수들은 양자화하기 위하여 필요한 스캘링 팩터가 결정될때까지 지연시키게 된다. 상기 쉬프트 레지스터(70)에 쉬프트 출력된 데이타를 입력하는 리니어 양자화부(80)는 상기 양자화폭 결정부(50)에서 결정된 양자폭에 의해 양자화를 하게 된다.In addition, the shift register 70 for sequentially inputting DCT-processed data from the DCT 10 consists of 64 registers for shifting. The DCT conversion coefficients are delayed until a scaling factor necessary for quantization is determined. The linear quantizer 80 inputting the shifted output data to the shift register 70 performs quantization by the quantization width determined by the quantization width determiner 50.

상술한 바와 같이 블럭 포맷팅된 8×8 데이타를 DCT 처리한 후 화상신호의 이미지가 복잡한 블럭은 양자화폭을 적게하여 압축률을 줄이고 이미지가 간단한 블럭은 양자화폭을 넓게 하여 압축률을 높임으로서 S/N 비를 향상시킬 수 있으며 하드웨어의 구성을 간소화하여 비용을 절감할 수 있는 잇점이 있다.As described above, after DCT processing block-formatted 8 × 8 data, a block having a complex image of an image signal has a small quantization width to reduce a compression rate, and a block having a simple image has a large quantization width to increase a compression ratio, thereby increasing the S / N ratio. The cost savings can be improved by simplifying the configuration of the hardware.

Claims (4)

블럭 포맷팅된 블럭은 8×8 데이타를 입력하여 1개의 DC 계수와 63개의 AC계수를 시리얼 출력하는 DCT(10)와 스캘링 팩터를 입력하여 양자화폭을 결정하는 양자화폭 결정부(50)와, 상기 DCT(10)에서 DCT 처리된 데이타를 입력하여 상기 양자화폭 결정부(50)의 양자화폭에 따라 양자화를 수행하는 리니어 양자화부(80)를 구비한 양자화폭 조정회로에 있어서 상기 DCT(10)에서 처리된 출력계수를 입력하여 절대값을 취하는 ABSS(20)와, 상기 ABS(20)의 절대값을 취한 63개 AC 계수를 순차적으로 입력하여 클럭에 동기를 맞추어 누산하는 누산기(30)와, 상기 누산기(30)의 누산된 AC 계수를 입력하여 각 블럭의 이미지 복잡성 상태에 따라 스캘링 팩터를 결정하는 스캘링 팩터 결정부(40)와, 클럭신호를 받아 카운팅하여 상기 누산기(20) 및 스캘링 팩터 결정부(40)의 동작제어 신호를 발생하는 동작제어부(60)와, 상기 DCT(10)에서 DCT 처리된 데이타를 입력하여 순차적으로 쉬프트시켜 스캘링 팩터가 결정될때까지 지연시키는 쉬프트 레지스터(70)로 구성됨을 특징으로 하는 양자화폭 조정회로.The block-formatted block includes a DCT 10 for serially outputting one DC coefficient and 63 AC coefficients by inputting 8 × 8 data and a quantization width determination unit 50 for inputting a scaling factor to determine the quantization width; The DCT (10) in the quantization width adjustment circuit having a linear quantization unit 80 for inputting the DCT processed data from the DCT (10) to perform quantization according to the quantization width of the quantization width determiner 50 An ABSS 20 that takes an absolute value by inputting an output coefficient processed by the controller, an accumulator 30 that sequentially inputs 63 AC coefficients taking an absolute value of the ABS 20 and accumulates in synchronization with a clock; A scaling factor determiner 40 for inputting an accumulated AC coefficient of the accumulator 30 to determine a scaling factor according to the image complexity state of each block, and receiving and counting a clock signal to count the accumulator 20 and the accumulator. The operation control signal of the call factor determination unit 40 A quantization width adjustment circuit, comprising: a motion controller 60; and a shift register 70 for inputting the DCT processed data in the DCT 10 to sequentially shift the delayed signal until a scaling factor is determined. . 제1항에 있어서, 동작제어부(60)는 클럭신호를 입력하여 카운팅하여 출력단(Q0-Q5)으로 카운팅값을 출력하는 링카운터(6)와 상기 링카운터(61)의 출력단(Q0-Q5)으로 출력된 카운팅값을 입력하여 상기 가산기(30)와 스캘링 팩터 결정부(40)의 리세트 신호를 발생하는 수단과, 상기 링카운터(61)의 출력단(Q0-Q5)으로 출력된 카운팅값을 입력하여 상기 스캘링 팩터 결정부(40)의 인에이블 신호를 발생하는 수단으로 구성됨을 특징으로 하는 양자화폭 조정회로.2. The ring counter 6 of claim 1, wherein the operation controller 60 inputs and counts a clock signal to output a counting value to the output terminals Q0-Q5, and an output terminal Q0-Q5 of the ring counter 61. Means for generating a reset signal of the adder 30 and the scaling factor determination unit 40 by inputting a counting value outputted to the counting value, and a counting value output to the output terminals Q0-Q5 of the ring counter 61. And means for generating the enable signal of the scaling factor determiner (40). 제1항에 있어서, 스캘링 팩터 결정부(40)가 상기 양자화폭 결정부(50)에 연결됨을 특징으로 하는 양자화폭 조정회로.The quantization width adjustment circuit of claim 1, wherein a scaling factor determination unit (40) is connected to the quantization width determination unit (50). 제1항에 있어서, 쉬프트 레지스터(70)가 리니어 양자화부(80)에 연결됨을 특징으로 하는 양자화폭 조정회로.The quantization width adjustment circuit according to claim 1, wherein the shift register (70) is connected to the linear quantization unit (80).
KR1019900016438A 1990-10-16 1990-10-16 Quantumized pulse width control circuit KR930004265B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019900016438A KR930004265B1 (en) 1990-10-16 1990-10-16 Quantumized pulse width control circuit
JP26642791A JPH05161016A (en) 1990-10-16 1991-10-15 Quantized width adjusting circuit utilizing dct conversion ac coefficient
DE19914134554 DE4134554A1 (en) 1990-10-16 1991-10-15 Digital image quantisation width adjustment circuit - uses digital cosine transformation signals with coefficients generated in scaling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900016438A KR930004265B1 (en) 1990-10-16 1990-10-16 Quantumized pulse width control circuit

Publications (2)

Publication Number Publication Date
KR920009073A KR920009073A (en) 1992-05-28
KR930004265B1 true KR930004265B1 (en) 1993-05-22

Family

ID=19304730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900016438A KR930004265B1 (en) 1990-10-16 1990-10-16 Quantumized pulse width control circuit

Country Status (3)

Country Link
JP (1) JPH05161016A (en)
KR (1) KR930004265B1 (en)
DE (1) DE4134554A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285402A (en) * 1991-11-22 1994-02-08 Intel Corporation Multiplyless discrete cosine transform
CN107105245B (en) * 2017-05-26 2019-08-06 西安电子科技大学 High speed JPEG method for compressing image based on TMS320C6678 chip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698689A (en) * 1986-03-28 1987-10-06 Gte Laboratories Incorporated Progressive image transmission
JPH02202271A (en) * 1989-01-31 1990-08-10 Konica Corp Picture data compressor

Also Published As

Publication number Publication date
DE4134554A1 (en) 1992-05-07
JPH05161016A (en) 1993-06-25
KR920009073A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
KR940006737B1 (en) Picture image coding and decording apparatus
JP2969867B2 (en) High-efficiency encoder for digital image signals.
EP0759678B1 (en) Method and device for encoding picture signal
US5491519A (en) Pre-processing filter apparatus for use in an image encoding system
JP2003032677A (en) Compressive coder for moving image
US5508745A (en) Apparatus for controlling a quantization level to be modified by a motion vector
KR100254402B1 (en) A method and a device for encoding picture signals by run-length coding
KR930004265B1 (en) Quantumized pulse width control circuit
JP2629409B2 (en) Motion compensated prediction interframe coding device
KR0178746B1 (en) Half pixel processing unit of macroblock
KR100237636B1 (en) Apparatus for improving blocking effect
JP3107676B2 (en) Quantization circuit
JP3049265B2 (en) Image data coding circuit
KR100242832B1 (en) Apparatus for generating quantization step value
JP3191433B2 (en) High efficiency coding device
JP3414901B2 (en) Method and apparatus for performing quantization / inverse quantization and quantized data transmission system
KR960003093B1 (en) Coder with information control
JPH0761153B2 (en) Motion compensation prediction interframe coding device
JP2623555B2 (en) Transform encoding device and encoding method
KR100195692B1 (en) An apparatus for calculating addresses by multi-loop
JPH04268891A (en) Encoding device between movement compensation predicting frames
JPH08294118A (en) Image signal processor and its method
JP3313911B2 (en) Quantizer
KR0157503B1 (en) 16:9 image display apparatus in 4:3 scrren
JPH07131787A (en) Method and device for coding picture data

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020429

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee