KR920008967B1 - Process for the preparation of shaped fibers - Google Patents

Process for the preparation of shaped fibers Download PDF

Info

Publication number
KR920008967B1
KR920008967B1 KR1019900012037A KR900012037A KR920008967B1 KR 920008967 B1 KR920008967 B1 KR 920008967B1 KR 1019900012037 A KR1019900012037 A KR 1019900012037A KR 900012037 A KR900012037 A KR 900012037A KR 920008967 B1 KR920008967 B1 KR 920008967B1
Authority
KR
South Korea
Prior art keywords
cross
fiber
section
sectional
heat treatment
Prior art date
Application number
KR1019900012037A
Other languages
Korean (ko)
Other versions
KR920004620A (en
Inventor
한동수
홍명선
나상현
Original Assignee
주식회사 선경인더스트리
이승동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 선경인더스트리, 이승동 filed Critical 주식회사 선경인더스트리
Priority to KR1019900012037A priority Critical patent/KR920008967B1/en
Publication of KR920004620A publication Critical patent/KR920004620A/en
Application granted granted Critical
Publication of KR920008967B1 publication Critical patent/KR920008967B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Abstract

polyester resin containing more than 85 % of reacted compn. of at least one sort of terephthalic acid or its ester and at least one sort of alkylene glycol with polamide resin; spinning the polymerized compn., solidifying, bundling by guide in a way the cross-sectional shape of a fiber among bundles of the same shape fibers satisfies equation of 3 x (A/π)0.5 <= P/π [A; cross sectional area of a fiber, P; length of fiber cross sectional circumference , while the cross-sectional shape of a fiber among bundles of different shape satisfies equation Ai; >= 1.5 x Aj [Ai=Aj= cross sectional area of a arbitrary fiber ; heat-treating at temp. of more than Tm-10 deg.C and less than Tm + 50 deg.C (Tm; melting temp.) for at least 0.001 sec. at the site within 140 cm from solidifying point.

Description

이형 단면 섬유의 제조방법Method of manufacturing a release cross section fiber

본 발명은 이형 단면 섬유의 제조방법에 관한 것이다. 좀더 자세히 설명하면 이형 단면 섬유를 방사함에 있어서 방사된 고분자 물질이 고화된 후 권취되기전까지의 임의의 단계에서 열처리를 함으로써 섬유의 물성과 제조공정성을 개선하는 방법에 관한 것이다.The present invention relates to a method for producing a release cross-section fiber. More specifically, it relates to a method of improving the physical properties and manufacturing process of the fiber by heat treatment at any stage from the spinning of the cross-sectional fiber until the spun polymer material is solidified before winding.

최근 합성섬유의 개발 동향은 고분자 개질에 의한 물성개선으로는 한계에 다다른 양상을 보이고 있으며 이미 개발된 다양한 개질섬유의 복합화 또는 섬유형태의 다양화로 활로를 모색하고 있는 형편이다.Recently, the development trend of synthetic fiber has reached the limit of improving the physical properties by polymer modification, and is seeking a way out by the complexation of various modified fibers or the diversification of fiber types.

이러한 현상은 소위 신합섬으로 일컬어지는 일련의 개발경쟁으로 나타나고 있으며 비용이나 성공율 등에서 경제적인 개발방법으로 널리 확산되고 있는 추세이다.This phenomenon is represented by a series of development competitions, which are called new synthetic islands, and are widely spread as economic development methods in terms of cost and success rate.

따라서 복합된 섬유 또는 이를 구성하는 이형 단면 섬유의 수요는 날로 증가되고 있으나 생산자의 측면에서는 아직 모든 문제점이 해결된 것은 아니다.Therefore, the demand for composite fibers or release cross-section fibers constituting them is increasing day by day, but not all problems have been solved from the producer's point of view.

즉, 섬유의 단면형태가 보다 특성적으로 변형되므로써 기존의 ○형이나 △단면 등에서는 문제가 적었던, 섬유단면에 있어서의 부위별 냉각 속도차이로 인한, 단면 방향의 배향도 차이가 커짐으로써 연신, 가연, 연사등의 후공정에서 섬유가 받는 힘의 분포가 고르지 못하게 되어 끊어지는 경우가 많아지게 된다.That is, because the cross-sectional shape of the fiber is more characteristically deformed, the difference in the orientation in the cross-sectional direction is increased due to the difference in cooling rate for each part in the fiber cross-section, which is less problematic in the existing ○ -shaped or △ cross-section. In the post-process such as twisting or twisting, the distribution of the force applied to the fiber becomes uneven, which is often broken.

결국 생산된 원사의 품질이 저하되며 심할 경우 정상적으로 사용할 수 있는 수율이 50%도 못되어 제조단가가 대단히 높아지는 단점을 갖게 된다. 그러나 기존의 생산방식에서는 관리수준을 엄격히 하는 것으로 어느정도 문제를 해결하고 있으나 대개 70~80%의 수율에 그치며 또한 계속적인 관리에 인력을 투여해야 하므로 일인당 생산성은 저하될 수밖에 없는 것이 현실이다.As a result, the quality of the produced yarn is degraded, and in severe cases, the yield that can be normally used is less than 50%, which leads to a disadvantage in that the manufacturing cost is greatly increased. However, the existing production method solves the problem to some extent by strict management level, but the productivity per person is inevitably reduced because it usually yields only 70 ~ 80% yield and manpower is continuously managed.

이러한 문제점을 해결하고자 본 연구자들은 이형단면사의 연신공정에서 파단된 부위를 세밀히 분석하여 연구, 검토한 결과 이형 단면사의 특성인 단면형태를 손상시키지 않으면서 단면 방향의 배향도 차이를 줄여주는 방법이 핵심적인 기술임을 발견하여 여러가지 기술적 가능성을 검토한 결과 방사와 연신공정 사이에서 단면 방향의 배향도 차이를 줄여주는 단계를 추가하는 본 발명에 도달하기에 이르렀다.In order to solve this problem, the researchers carefully analyzed and analyzed the fractured part of the stretched section yarn drawing process. As a result of discovering the technology and examining various technical possibilities, the present inventors have arrived at the present invention which adds a step of reducing the difference in the degree of orientation in the cross-sectional direction between the spinning and drawing processes.

즉, 이형 단면 섬유를 방사함에 있어서 방사된 고분자 물질이 고화되는 위치 하부로부터 열처리부 이전까지의 위치에서 가이드를 이용하여 단사들을 접속하고 고화점으로부터 140cm이내의 적정한 위치에서 사용한 고분자의 용융온도(Tm)을 기준으로 Tm-10℃이상 Tm+50℃이하의 온도로 적어도 0.001초 이상 열처리하는 것을 특징으로 하는 이형 단면 섬유의 제조방법으로 여기에서 거론되는 이형 단면 섬유로는 한 노즐로부터 방사되는 여러 단사의 형태가 모두 동일한 경우 섬유단면의 형태가 하기일반식(1)을That is, in spinning the cross-sectional fiber, the melting temperature (Tm) of the polymer used at a proper position within 140 cm from the freezing point by connecting single yarns using a guide from a position from the bottom of the position where the spun polymer material is solidified to before the heat treatment part. ) Is a method for producing a release cross-section fiber, characterized in that the heat treatment for at least 0.001 seconds at a temperature of Tm-10 ℃ or more Tm + 50 ℃ or less based on) When the forms of are all the same, the cross section of the fiber is represented by the following general formula (1).

Figure kpo00001
Figure kpo00001

(단, 여기서 A는 섬유의 단면적, P는 섬유단면 둘레의 길이)(Where A is the cross-sectional area of the fiber and P is the length around the cross-section of the fiber)

만족하는 범위에 있는 것을 의미하며, 한 노즐로부터 방사되는 여러 단사들의 형태가 서로 다른 것을 포함하는 경우에는 그중 적어도 하나이상이 하기 일반식(2)를It means that it is in the range which satisfies, and when the form of several single yarns radiate | emitted from one nozzle contains a different thing, at least 1 or more of them is represented by following General formula (2)

Figure kpo00002
Figure kpo00002

(단, 여기서 Ai,Aj는 임의의 단사의 단면적)Where A i and A j are the cross-sectional areas of any single yarn

만족하는 범위에 있는 것을 의미한다.It means that it is in the range to be satisfied.

본 발명에 의해 섬유를 제조함에 있어서 열처리부는 고화점으로부터 140cm이내의 위치에서 행하는 것이 필요하며 더욱 좋기로는 100cm이내가 바람직하다. 이 범위를 지나면 단사의 온도가 거의 상온 정도까지 떨어져 있으므로 열처리의 효과가 뚜렷하지 않으며 열처리부의 에너지가 표면에만 집중되어 다시 표면과 내부의 불균제도가 생기므로 좋지않다.In manufacturing the fiber according to the present invention, the heat treatment portion needs to be performed at a position within 140 cm from the solidification point, and more preferably within 100 cm. After this range, the temperature of the single yarn drops to about room temperature, so the effect of heat treatment is not obvious, and since the energy of the heat treatment part is concentrated only on the surface, the surface and the internal disproportionation agent are not good.

열처리부의 온도는 사용한 고분자의 Tm-10℃이상 Tm+50℃이하가 좋으며 더욱 좋기로는 Tm이상 Tm+30℃이하가 바람직하다. 이 범위를 벗어나면 온도가 낮을 경우 오히려 결정화를 촉진하여 단면의 중심과 외측간의 불균제도를 크게 하며, 온도가 높을 경우에는 에너지가 집중되는 부위가 용융되어 이형 단사면의 형태를 파괴하므로 좋지 않다.The temperature of the heat treatment portion is preferably Tm-10 ℃ or more Tm + 50 ℃ or less, more preferably Tm or more Tm + 30 ℃ or less of the polymer used. Outside this range, if the temperature is low, rather promote the crystallization to increase the disproportion between the center and the outside of the cross-section, when the temperature is high, it is not good because the site where the energy is concentrated melts and destroys the shape of the heteromorphic single-sided surface.

또 열처리는 적어도 0.001초 이상 실시될 수 있어야 하며 이보다 적을 경우 당연히 필요한 에너지를 공급할 수 없으므로 효과를 볼수 없다. 그러나 이형율이 적은 단면의 경우에는 일반적인 제조조건에서 부위별 냉각 속도의 차이는 그리 크지않으므로 본 발명의 방법으로도 개선점은 거의 나타나지 않으며 적어도 일반식(1) 또는 (2)를 만족하는 범위의 이형 단면사에서만 효과를 볼 수 있다.In addition, the heat treatment should be able to be carried out for at least 0.001 seconds, if less than that of course it can not supply the required energy is not effective. However, in the case of a section having a low release rate, the difference in cooling rate for each part in the general manufacturing conditions is not so large, so the improvement of the method of the present invention is hardly seen and at least a release in a range satisfying the general formula (1) or (2). The effect can only be seen in single-sided yarns.

이러한 이형단면 효과를 내는 고분자 섬유로는 폴리에스테르계 뿐만 아니라 폴리아마이드계 섬유에 있어서도 적용될 수 있다.The polymer fiber having such a sectional cross-sectional effect may be applied to not only polyester-based but also polyamide-based fibers.

이하 예를 들어 본 발명을 설명하기로 한다.For example, the present invention will be described below.

[실시예 1]Example 1

용융온도(Tm)가 265℃인 폴리에틸렌테레프탈레이트 수지를 통상의 방사설비와 이형단면섬유용 노즐을 이용하여 24개의 단섬유를 방사하고 고화점으로부터 80cm의 위치에서부터 285℃로 0.001초 열처리한 후 권취하였다.A polyethylene terephthalate resin having a melting temperature (Tm) of 265 ° C. was spun into 24 short fibers using a conventional spinning equipment and a nozzle for a release cross-section fiber, and after being heat-treated for 0.001 second at a position of 80 cm from a solidification point at 285 ° C. It was.

이렇게 권취된 섬유는 아직 충분한 결정과 섬유구조를 갖고 있지 않으므로 연신공정을 거쳐 75D/24F의 완전한 섬유를 얻었다.Fibers thus wound do not yet have sufficient crystals and fiber structure and thus have been drawn to obtain 75D / 24F complete fiber.

제조된 섬유는 400배의 현미경 사진으로 계산한 결과 평균 단면적(A) 0.0305mm2, 평균 단면둘레의 길이(P) 1.4237mm의 뚜렷한 Y형을 가진 이형 단면사로 평가되었다.The fiber produced was evaluated as a sectional cross-section yarn with a distinct Y-shape of average cross-sectional area (A) of 0.0305 mm 2 and average cross-sectional length (P) of 1.4237 mm.

제조공정성은 연신공정에서 24개의 단섬유중 적어도 하나라도 끊어지는 경우를 불량의 현상으로 보아 연신된 섬유 1kg을 감을 때까지 한번이라도 불량이 발생하면 정상품에서 제외하였다.The manufacturing processability was regarded as a defect phenomenon in which at least one of the 24 short fibers was broken in the drawing process, and when a defect occurred at least once until 1 kg of the stretched fiber was wound, it was excluded from the regular product.

이렇게 생산된 각 1kg인 제품 56개중 53개가 정상품으로 판정되어 제품의 수율은 94.6%로 매우 우수하였다.As a result, 53 out of 56 products of 1kg each were judged as regular products, and the yield of the product was 94.6%, which was very good.

[실시예 2]Example 2

고화점으로부터 130cm의 위치에서부터 열처리를 시작하는 것을 제외하고는 시시예 1에서와 동일한 조건으로 75D/24F의 섬유를 제조하였다. 제조된 섬유의 평균 단면적(A) 0.0306mm2, 평균단면 둘레의 길이 (P) 1.4582로 뚜렷한 Y 형을 가지며 1kg 제품의 수율은 64개 생산에 89.1%로 우수한 결과를 보였다.A 75D / 24F fiber was prepared under the same conditions as in Example 1 except that the heat treatment was started at a position of 130 cm from the freezing point. The average cross-sectional area (A) of the fabrics produced was 0.0306mm 2 , the length of the average cross-section (P) was 1.4582, and the yield of 1 kg product was 89.1% for 64 production.

[실시예 3]Example 3

열처리온도를 300℃로 하는 것을 제외하고는 실시예 1 에서와 동일한 조건으로 1kg 제품 55개를 생산하여 수율 90.9%의 정상품을 얻었다. 제조된 섬유의 평균 단면적(A) 0.0306mm2, 평균단면둘레의 길이 (P) 1.4104mm로 Y형이 양호한 이형단면을 가졌음을 알 수 있었다.Except for setting the heat treatment temperature to 300 ° C, 55 kg of 1 kg products were produced under the same conditions as in Example 1 to obtain a regular product having a yield of 90.9%. It was found that the Y-type had a good release cross section with an average cross-sectional area (A) of 0.040 mm 2 and a length (P) of 1.4104 mm of the prepared fiber.

[비교예 1]Comparative Example 1

본 발명의 열처리를 전혀 하지않는 것을 제외하고는 실시예 1에서와 동일한 조건으로 섬유를 제조하였다. 제조된 섬유의 평균 단면적(A) 0.0307mm2, 평균 단면둘레의 길이(P) 1.4573mm로 이형단면의 형태는 양호하였으나 수율은 1kg제품 70개를 생산하여 61.4%에 불과하였다.Fibers were prepared under the same conditions as in Example 1 except that the heat treatment of the present invention was not performed at all. The average cross-sectional area (A) of the fabrics produced was 0.0307 mm 2 , and the average cross-section length (P) was 1.4573 mm.

[비교예 2]Comparative Example 2

열처리부를 고화점으로부터 160cm하부로부터 시작되는 것을 제외하고는 실시예 1에서와 동일한 조건으로 섬유를 제조하였다. 제조된 섬유의 평균 단면적(A) 0.0306mm2, 평균 단면 둘레의 길이(P) 1.4604mm로 뚜렷한 Y형을 가지나 1kg 제품의 수율은 63개 생산에 65.1%로 향상된 결과를 보이지 않았다.Fibers were prepared under the same conditions as in Example 1 except that the heat treatment portion started from the bottom of 160 cm from the freezing point. The average cross-sectional area (A) of the fabrics produced was 0.0306 mm 2 , and the length of the average cross-section (P) was 1.4604 mm.

[비교예 3]Comparative Example 3

열처리 온도를 320℃로 하는 것을 제외하고는 실시예 1 에서와 동일한 조건으로 섬유를 제조하였다. 제조된 섬유의 단면형태는 일부분이 용융접착된 것 및 끝부분이 뭉개진 것등 원하는 형태가 아닌 것이 다수 존재하였으며 수율도 1kg제품 40개중 42.5%인 17개에 불과하였다.Fibers were prepared under the same conditions as in Example 1 except that the heat treatment temperature was 320 ° C. The cross-sectional shape of the manufactured fiber was not the desired shape, such as the part is melt-bonded and the end is crushed, and the yield was only 17, 42.5% of 40 1kg products.

[비교예 4][Comparative Example 4]

열처리부의 길이를 5cm로 조정하고 미연사의 권취속도를 6000m/min로 하여 열처리를 0.0005초로 한 것을 제외하고는 실시예 1 에서와 동일한 조건으로 1kg제품 46개를 제조하였으나 수율은 69.6%로 그리 좋지 못했다.46 1kg products were manufactured under the same conditions as in Example 1 except that the length of the heat treatment portion was adjusted to 5 cm and the heat treatment time was 0.0005 sec at a winding speed of 6000 m / min, but the yield was not very good at 69.6%. .

[비교예 5][Comparative Example 5]

실시예 1에서와 동일한 고분자를 이용하여 원형의 단면을 가진 75D/24F의 섬유를 제조하는데 있어서 본 발명의 열처리를 전혀 하지 않은 경우와 실시예 1에서와 같이 열처리한 경우 각각 1kg제품 58개에서 93.1% 및 94.8%의 수율을 얻었다.In the manufacture of 75D / 24F fiber having a circular cross section using the same polymer as in Example 1, the heat treatment of the present invention was not performed at all and the heat treatment was performed as in Example 1, respectively. Yields of% and 94.8% were obtained.

이렇게 볼때 단면이 원형인 경우에는 제품수율의 향상이 그리 현저하다고는 볼수 없는 수준으로 평가되었다.In this way, when the cross section is circular, the improvement of product yield is evaluated as a level that is not so remarkable.

Claims (5)

이형 단면섬유를 방지함에 있어서, 방사된 고분자 물질이 고화되는 위치 하부로부터 열처리부 이전까지의 위치에서 가이드를 이용하여 단사들을 접속하고 고화점에서 140cm이내의 위치로부터, 사용한 고분자의 용융 온도(Tm)을 기준으로 Tm-10℃이상 Tm+50℃이하의 온도로 적어도 0.001초 이상 열처리하는 것을 특징으로 하는 이형 단면섬유의 제조방법.In preventing the release cross-section fibers, the melting temperature (Tm) of the polymer used, from the position below the position where the spun polymer material is solidified, to the single yarns using a guide from a position from before the heat treatment portion and from within 140 cm from the freezing point Method for producing a release cross-section fiber, characterized in that the heat treatment for at least 0.001 seconds at a temperature of Tm-10 ℃ or more Tm + 50 ℃ or less on the basis of. 제1항에 있어서, 이형 단면섬유의 척도로써 한 노즐로부터 방사되어 접속되는 동일형태의 단사들 중 한가닥의 섬유단면의 형태가 하기식을The form of the fiber cross-section of one strand of single yarns of the same type which is radiated and connected from one nozzle as a measure of the cross-sectional fiber of claim 1 3×(A/π)0.5
Figure kpo00003
P/π
3 x (A / π) 0.5
Figure kpo00003
P / π
(단, 여기서 A는 섬유의 단면적, P는 섬유단면둘레의 길이)만족하는 것을 특징으로 하는 이형 단면섬유의 제조방법.(Wherein A is the cross-sectional area of the fiber and P is the length of the cross-sectional area of the fiber).
제1항에 있어서, 이형 단면섬유의 척도로써 한 노즐로부터 방사되어 접속되는 단사들의 형태가 서로 다를 경우 적어도 하나 이상의 단사가 하기 식을The method of claim 1, wherein at least one single yarn is formed by the following equation when the types of single yarns radiated from one nozzle are different from each other as a measure of the cross-sectional fiber. A
Figure kpo00004
1.5×Aj
A
Figure kpo00004
1.5 × A j
(단, 여기서 Ai,Aj는 임의의 단사의 단면적)만족하는 것을 특징으로 하는 이형 단면섬유의 제조방법.(Wherein A i and A j are the cross-sectional areas of any single yarn).
제1항에 있어서, 고분자 물질이 적어도 1종의 테레프탈산 또는 그의 에스테르 형성성 유도체와 적어도 1종의 알킬렌글리콜을 반응시킨 것을 성분의 85%이상으로하는 폴리에스터계 수지인 것을 특징으로 하는 이형 단면섬유의 제조방법.The release cross section according to claim 1, wherein the polymer material is a polyester-based resin having 85% or more of the components reacted with at least one terephthalic acid or ester-forming derivative thereof and at least one alkylene glycol. Method of making fibers. 제1항에 있어서, 고분자 물질이 폴리아마이드계 수지인 것을 특징으로 하는 이형 단면섬유의 제조방법.The method for producing a release cross-section fiber according to claim 1, wherein the polymer material is a polyamide-based resin.
KR1019900012037A 1990-08-07 1990-08-07 Process for the preparation of shaped fibers KR920008967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900012037A KR920008967B1 (en) 1990-08-07 1990-08-07 Process for the preparation of shaped fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900012037A KR920008967B1 (en) 1990-08-07 1990-08-07 Process for the preparation of shaped fibers

Publications (2)

Publication Number Publication Date
KR920004620A KR920004620A (en) 1992-03-27
KR920008967B1 true KR920008967B1 (en) 1992-10-12

Family

ID=19302066

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900012037A KR920008967B1 (en) 1990-08-07 1990-08-07 Process for the preparation of shaped fibers

Country Status (1)

Country Link
KR (1) KR920008967B1 (en)

Also Published As

Publication number Publication date
KR920004620A (en) 1992-03-27

Similar Documents

Publication Publication Date Title
EP0169415B1 (en) Polyester fiber
US6511747B1 (en) High strength polyethylene naphthalate fiber
JP2003520303A (en) High-speed spinning method of bicomponent fiber
US4457974A (en) Bicomponent filament and process for making same
KR920008967B1 (en) Process for the preparation of shaped fibers
JPS6269819A (en) Polyester fiber
JPH04333616A (en) Production of high-tenacity monofilament
US5009829A (en) Process for manufacturing yarns by meltspinning polyethylene terephthalate
JPS6147807A (en) Crimped porous hollow fiber and production therefor
JP2711169B2 (en) Production method of ultrafine fiber
EP0823500B1 (en) POY polyester fiber for draw texturing and process for its production
JPH0238686B2 (en)
JPS5966508A (en) Method for melt spinning
KR100231195B1 (en) Spinning spinneret device for fineness mono filament
JP2004052131A (en) Method for producing polyester undrawn fiber
JPH0455436A (en) Polyester conjugate fiber material
KR101142478B1 (en) Micro fiber using weak-alkaline soluble polyester resins and knitting or textile using the same and method for producing the same
KR940002378B1 (en) Method for preparing a conjugated spinning mixed fiber having different shrinkage yarn
CA1107471A (en) High speed spinning of large dpf polyester yarn
KR960012827B1 (en) Manufacturing method of high strong polyester fiber
JPH0321647B2 (en)
JPH03241061A (en) Production of polyester based tire fabric for tire cord
KR100364989B1 (en) Method for producing ultra-fine polyamide yarn
KR100652289B1 (en) Polyester filament yarn dyed under normal pressure, method and apparatus for preparation it
JPS59192721A (en) Production of polyester high-hollow fiber

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20041008

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee