JPS6147807A - Crimped porous hollow fiber and production therefor - Google Patents

Crimped porous hollow fiber and production therefor

Info

Publication number
JPS6147807A
JPS6147807A JP16557384A JP16557384A JPS6147807A JP S6147807 A JPS6147807 A JP S6147807A JP 16557384 A JP16557384 A JP 16557384A JP 16557384 A JP16557384 A JP 16557384A JP S6147807 A JPS6147807 A JP S6147807A
Authority
JP
Japan
Prior art keywords
porous hollow
cross
crimped
hollow
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16557384A
Other languages
Japanese (ja)
Other versions
JPH0252004B2 (en
Inventor
Mikio Tashiro
幹雄 田代
Shiro Murakami
村上 嗣郎
Tetsuya Motomiya
哲也 本宮
Kazunori Orii
折居 一憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16557384A priority Critical patent/JPS6147807A/en
Publication of JPS6147807A publication Critical patent/JPS6147807A/en
Publication of JPH0252004B2 publication Critical patent/JPH0252004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To enlarge the anisotropy of fiber cross-sectional direction and soften the feeling, by quenching the one side of porous hollow fibers extruded from slits connecting hollow extrusion holes. CONSTITUTION:Extrusion holes for forming the hollow part are connected in the form of a straight line or extrusion holes for forming the hollow part are connected in the form of a ring to extrude porous hollow fibers in the cross-sectional form having joined fibers having the hollow part, and one side thereof is quenched. Thus, the aimed cross-sectional anisotropy can be imparted to the resultant fibers, and crimped porous hollow fibers having improved three-dimensional crimps and good heat insulating properties and soft feeling are obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高度に優れた三次元ti縮を呈し、優れた嵩高
性、雪回復性、保温性及び柔軟な風合を呈する捲縮多孔
中空繊細及びその製造方法に関する。更に、詳細にはカ
ーペット。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a crimped porous hollow material that exhibits highly excellent three-dimensional shrinkage, excellent bulkiness, snow recovery performance, heat retention, and flexible texture. Concerning delicacies and their manufacturing methods. Furthermore, the carpet in detail.

ハイパイル−モケットや衣料用織I!吻等の他、特に詰
綿に用いたとぎに刺毛調の優れた特性を示す捲縮多孔中
空繊維及びその製造方法に関する。
High pile - moquette and clothing fabric I! The present invention relates to a crimped porous hollow fiber that exhibits an excellent prickly-like characteristic when used in stuffing, etc., and a method for producing the same.

(従来技術) 溶融紡糸方法によって繊維に三次元的捲縮を付与する方
法は従来から提案されているが、実用上滴定できるとは
いい石い。即ち、囚 収縮性の異なる二種のポリマーを
バイメタル型あるいは芯成分を偏心させた芯さや塁に複
合紡糸する方法がある。この方法は紡糸操作がかなり難
しく、品質の安定した製品を得にくく、また紡糸装置が
複雑であるため設i費が高い等の欠点を有する。
(Prior Art) Methods for imparting three-dimensional crimp to fibers by melt spinning have been proposed in the past, but it is difficult to achieve practical titration. That is, there is a method in which two types of polymers with different shrinkage properties are composite-spun into a bimetal type or a core sheath base with an eccentric core component. This method has the drawbacks that the spinning operation is quite difficult, it is difficult to obtain a product with stable quality, and the spinning equipment is complicated, so the installation cost is high.

(2)溶液紡出糸の片側“を加熱し、断面方向に異方性
を付与する方法、例えば(特公昭43−13351号公
報参照)がある。この方法は紡糸操作中に各単ta維間
の@着が起こるため満足な製品を得ることが困難である
(2) There is a method of heating one side of the solution-spun yarn to impart anisotropy in the cross-sectional direction, for example (see Japanese Patent Publication No. 13351/1983). This method involves heating each single ta fiber during the spinning operation. It is difficult to obtain a satisfactory product due to the occurrence of intermittent @ deposition.

(Q ポリマーがノズルから吐出される方向と吐出糸条
の引取方向との間にある角度をもたせ、繊維の断面方向
に不均一構造を生成させる方法(例えば特公昭43−2
7539号公報参照)がある。この方法はノズル出口で
のポリマーの流動状態を極度に乱すため紡糸調子が悪く
、操業性が非常に低い等の欠点を有する。
(Q) A method of creating a non-uniform structure in the cross-sectional direction of the fiber by creating a certain angle between the direction in which the polymer is discharged from the nozzle and the direction in which the discharged yarn is taken (for example, Japanese Patent Publication No. 43-2
(Refer to Publication No. 7539). This method has drawbacks such as extremely poor spinning performance and very low operability since the flow state of the polymer at the nozzle outlet is extremely disturbed.

■ 吐出直後の糸条に冷却用気流を吹gつもす、断面方
向に複屈折度の異方性を付与して三次元捲縮繊維を得る
方法(例えば特公昭38−7511号公報参照)があり
、この改良法として繊維横断面の実質的中央または偏心
した位置に単一の中空部を設けて、より異方性を高める
方法が特会1844−20497号会報、同45−36
330号公報、同56−29007号公報に記載されて
いる。
■ There is a method to obtain three-dimensional crimped fibers by blowing a cooling air stream onto the yarn immediately after discharge and imparting birefringence anisotropy in the cross-sectional direction (for example, see Japanese Patent Publication No. 38-7511). As an improvement on this, a method is proposed in which a single hollow portion is provided at the substantial center or eccentric position of the fiber cross section to further increase the anisotropy, as reported in Special Committee No. 1844-20497 Bulletin, No. 45-36.
It is described in Japanese Patent No. 330 and Japanese Patent No. 56-29007.

更に、横断面形状が略四角形であって。Furthermore, the cross-sectional shape is approximately quadrangular.

4ケの中空部を有するナイロン吐出糸条の断面を急冷す
る方法が特開昭54−112242号公報に記載されて
いる。
A method of rapidly cooling the cross section of a nylon discharged yarn having four hollow portions is described in Japanese Patent Laid-Open No. 112242/1983.

しかしながら、これらの方法によって得られる捲m繊維
では、充分に満足し得る嵩高性、嵩回復性、保温性、及
び風合を呈する捲mra維が得られず、しかも最適条件
の範回が非常に狭く、生産性も低い。
However, with the rolled fibers obtained by these methods, it is not possible to obtain rolled fibers that exhibit sufficiently satisfactory bulk, bulk recovery, heat retention, and texture, and the range of optimal conditions is extremely low. It's small and has low productivity.

(発明の目的) 本発明は以上の事情を背景として為されたものであり、
その目的とするところは、高度に優れた三次元捲縮を呈
し、優れた嵩高性、嵩回復性、保温性、及び柔軟な風合
を呈する捲縮多孔中空l!Ji維及びその1朶的り製造
方法を提供することにある。
(Object of the invention) The present invention has been made against the background of the above circumstances,
The aim is to create a crimped porous hollow lug that exhibits highly superior three-dimensional crimp, and exhibits excellent bulk, bulk recovery, heat retention, and flexible texture! An object of the present invention is to provide a Ji fiber and a method for producing it.

(構成) 本発明者等は、前記目的な構成すべく検討した結果、少
くとも1個の中空部を形成し得る中空吐出孔がスリット
を介して連結されているスリットから吐出された多孔中
空繊維の片面を急冷することにより、繊維横断面方向の
異方性が拡大されると共に、得られる捲縮Rmの風合が
柔軟となることを見い出し、本発明に到達した。
(Structure) As a result of studies to achieve the above-mentioned objective structure, the present inventors discovered that a porous hollow fiber is discharged from a slit in which hollow discharge holes capable of forming at least one hollow portion are connected via a slit. The inventors have discovered that by rapidly cooling one side of the fiber, the anisotropy in the cross-sectional direction of the fiber is expanded and the texture of the resulting crimp Rm becomes soft, and the present invention has been achieved.

即ち、本発明は、熱可塑性重合体から成り、且つ長手方
向に連続する中空部が複数個存在する捲縮多孔中空繊維
であって、該繊維の横断面において、外周部に曲線によ
って形成される複数個の凹部な有すると共に、[面異方
性を有することを4I徴とする捲縮多孔中空繊維であり
、熱可塑性重合体から成る多孔中空繊維を溶融紡糸する
に際し、該多孔中空gL維の少くとも1個の中空部を形
成する中空吐出孔がスリットを介して複数個連結されて
いるノズルが配置されている紡糸口金から吐出し、引続
ぎ吐出糸条の片側を、前記吐出糸条の走行方向に略直交
する方向から0.2m/秒以上の風速を有する冷却風を
吹き付けることによって冷却せしめ、次いで得られる多
孔中空未延伸糸を延伸した後に化ll熱処理することを
特徴とする捲縮多孔中空繊維の製造方法である。
That is, the present invention provides a crimped porous hollow fiber made of a thermoplastic polymer and having a plurality of hollow portions continuous in the longitudinal direction, which is formed by a curved line at the outer periphery in a cross section of the fiber. It is a crimped porous hollow fiber having a plurality of concave portions and having plane anisotropy as a 4I characteristic, and when melt spinning a porous hollow fiber made of a thermoplastic polymer, the porous hollow gL fiber is The yarn is discharged from a spinneret in which a nozzle in which a plurality of hollow discharge holes forming at least one hollow portion are connected via slits is disposed, and one side of the discharged yarn is then Crimp characterized by cooling by blowing cooling air having a wind speed of 0.2 m/sec or more from a direction substantially perpendicular to the running direction, and then stretching the obtained porous hollow undrawn yarn and then subjecting it to a heat treatment. This is a method for producing porous hollow fibers.

本発tJAにおいていう「vIr面異方性」とは、繊維
断面方向に複屈折率差等の物性差が存在することをいう
The term "vIr plane anisotropy" in this tJA refers to the existence of physical property differences such as birefringence differences in the fiber cross-sectional direction.

本発明について図面を用いて説明する。The present invention will be explained using the drawings.

第1図及び第2図は本発明において使用する紡糸口金の
ノズル断面形状、第3図は従来方法において使用する紡
糸口金のノズル断面形状、第4〜6図は第1〜3図に示
されている断面形状のノズルを用いて得られる本発明の
捲縮多孔中空繊維の夫々の横断面形状を夫々示す。
1 and 2 are cross-sectional shapes of the nozzle of the spinneret used in the present invention, FIG. 3 is the cross-sectional shape of the nozzle of the spinneret used in the conventional method, and FIGS. 4 to 6 are shown in FIGS. 1 to 3. The cross-sectional shapes of the crimped porous hollow fibers of the present invention obtained using the nozzles having the cross-sectional shapes shown in FIG.

第1図(&)において5l−5sはスリットを示し、中
空部の形成はスリットS、とSt を及びスリットS、
とSlで成されろう 本発明においては、かかるスリン)(81)(sm)、
及びスリット(S、 )(St )がスリット(S、)
で連結されていることが大切である。
In FIG. 1 (&), 5l-5s indicates a slit, and the hollow portions are formed by slits S, and St, and slits S,
In the present invention, such sulin) (81) (sm),
and slit (S, ) (St ) is slit (S, )
It is important that they are connected.

この第1図(&)に示すノズルから吐出された繊維は$
4図(−に示す様に単一中空部(も又は&)を有する繊
維があたかも接合している如き断面形状を呈し、かかる
断面形状を呈する繊維の片側を急冷することによって容
易に高度な断面異方性を付与することができるのである
The fibers discharged from the nozzle shown in Figure 1 (&) are $
As shown in Figure 4 (-), fibers with a single hollow part (also or This makes it possible to impart anisotropy.

これに対し、第3図kl K示す従来の丸中空繊維用ノ
ズルから得られる第6図ピ)に示す単一中空繊維では1
片面だけを冷却すべく冷却風を吹き付けても、冷却風は
風下側にも回り込むために均一に冷却され易く、高度な
断面異方性を付与できない。
On the other hand, the single hollow fiber shown in Figure 6, which is obtained from the conventional round hollow fiber nozzle shown in Figure 3, is 1
Even if cooling air is blown to cool only one side, since the cooling air also flows around to the leeward side, it tends to be uniformly cooled, and a high degree of cross-sectional anisotropy cannot be imparted.

また、第3図(−に示す特開昭54−112242号公
報に示されている多孔中空繊維用ノズルからは第6図(
ロ)に示す略四角形の断面形状を呈する多孔中空繊維が
得られる。
In addition, from the nozzle for porous hollow fibers shown in Japanese Patent Application Laid-Open No. 54-112242 shown in Fig. 3 (-), the nozzle shown in Fig. 6 (-) is
A porous hollow fiber having a substantially rectangular cross-sectional shape as shown in b) is obtained.

しかしながら、g3図(ロ)に示す様に略四角形の@面
形状が得られるならば、かかる繊維の片側に冷却風を吹
き付けても、風下側に回り込む冷却風を減少できるため
、かなり高度な断面異方性が付与できるものの、この様
に略四角形の断面形状を得ることは困難であって、実質
的に円形の断面形状となり易い。
However, if a substantially rectangular @ surface shape can be obtained as shown in Figure G3 (b), even if cooling air is blown onto one side of the fiber, the amount of cooling air that wraps around to the lee side can be reduced, resulting in a fairly advanced cross section. Although anisotropy can be imparted, it is difficult to obtain such a substantially rectangular cross-sectional shape, and a substantially circular cross-sectional shape is likely to be obtained.

本発明で用いるノズル形状としては、第1図(alの他
に、fs1図+b)〜(c)に示す如く中空部形成吐出
孔が直線状に連結されており、第4図(b)〜(c)に
示す断面形状を呈する本発明の捲縮繊維が得られるもの
、或いは第1図tdJ〜(g)に示す如く中空部形成吐
出孔が環状に連結されており、第4図(Φ〜(g)に示
す断面形状な呈する本発明の捲縮繊維が得られるものが
好ましい。中でも、算4図(dl〜(−に示す断面形状
を呈する本発明の捲m繊維では、中央部忙中空部(Eう
が形成されるため、極めて高度な断面異方性を付与でき
好ましい。
As for the nozzle shape used in the present invention, the hollow part forming discharge holes are connected in a straight line as shown in Fig. 1 (in addition to al, fs1 Fig. The crimped fiber of the present invention having the cross-sectional shape shown in (c), or in which hollow part forming discharge holes are connected in an annular manner as shown in FIG. It is preferable to obtain the crimped fiber of the present invention having the cross-sectional shape shown in Figure 4 (dl~(-)). Since a hollow portion (E) is formed, an extremely high degree of cross-sectional anisotropy can be imparted, which is preferable.

また、第1図(扮で示す如く、中空部形成吐出孔を環状
に連結し、これを更に複数個連結したノズルを月いても
よい。かかるノズルからは第4図(民で示す断面形状の
繊維が得られる。この様な断面形状を有する捲縮繊維は
従来の複合紡糸によっては得ることができない。
Alternatively, as shown in Fig. 1 (shown in Fig. 1), the hollow part forming discharge holes may be connected in a ring shape, and a plurality of such nozzles may be connected. A crimped fiber having such a cross-sectional shape cannot be obtained by conventional composite spinning.

更に、第2図(1>〜(k)に示す如く、複数個の中空
部を形成し得る中空吐出孔を連結したノズルを用いても
よい。これらノズルからは第5図(i)〜(鱒に示すF
r?Iff形状の繊維が得られる。
Furthermore, as shown in FIG. 2 (1> to (k)), a nozzle in which hollow discharge holes capable of forming a plurality of hollow parts are connected may be used. F shown in trout
r? If-shaped fibers are obtained.

次に、本発明におい【、第1図(&)に示すノズルから
吐出されたg4図(&)K示す断面形状の繊維の片側を
急冷すべく、吐出糸条の片側に対し、吐出糸条の走行方
向に直交する方向から0.2m/秒以上の風速を有する
冷却風を吹き付けることが大切である。
Next, in the present invention, in order to rapidly cool one side of the fiber having the cross-sectional shape shown in Figure 1 (&) and discharged from the nozzle shown in Figure 1 (&), the discharge yarn It is important to blow cooling air with a wind speed of 0.2 m/sec or more from a direction perpendicular to the running direction of the vehicle.

ここで、冷却風の吹き付1する方向が吐出糸条の走行方
向に対し著(傾斜していたり、或いは風速が0.2m/
秒未満である場合には、繊維の片側を急冷することがで
きず、高度な断面異方性を付与することができない。
Here, the direction in which the cooling air is blown is significantly (slanted) with respect to the traveling direction of the discharged yarn, or the wind speed is 0.2 m/min.
If the cooling time is less than seconds, one side of the fiber cannot be rapidly cooled and a high degree of cross-sectional anisotropy cannot be imparted.

かかる冷却風を吹ぎ付1する方向は、吐出糸条の走行方
向に対して直交する方向であればどの方向からでもよい
が、好ましくは第4図(mlに示す矢印の方向、即ち椴
ja [面における突起がある方向から吹き付けること
によって、断面異方性をより一層高めることができる。
The direction in which the cooling air is blown may be any direction as long as it is orthogonal to the running direction of the discharged yarn, but it is preferably in the direction of the arrow shown in FIG. [Cross-sectional anisotropy can be further enhanced by spraying from the direction in which the protrusions on the surface are present.

また、冷却風を吹き付ける位tは紡糸口金面に近い程効
果的であるが、良好な操業性を維持するためには紡糸口
金面下1〜35mが好ましい。
In addition, the cooling air is blown closer to the spinneret surface to be more effective, but in order to maintain good operability, it is preferably 1 to 35 m below the spinneret surface.

尚、冷却風用気体としては空気が最も経済的であるが、
高分子溶融体に対して不活性な気体であれば何でもよく
、その温度はできるだけ低温の方が好ましいが、経済的
見地から10〜40°0が好適である。
Although air is the most economical gas for cooling air,
Any gas may be used as long as it is inert to the polymer melt, and the temperature is preferably as low as possible, but from an economical point of view, a temperature of 10 to 40° is preferable.

かくして得られた糸条を叉に延伸し、弛緩熱処理ことに
よって、1@縮を発現することができる。
By stretching the yarn thus obtained and subjecting it to relaxation heat treatment, 1@ shrinkage can be achieved.

この際の延伸条件としては、紡糸工程で付与された高度
の断面異方性が充分に保持される条件、即ち低温低延伸
倍率を採用することが好ましい。
As the stretching conditions at this time, it is preferable to adopt conditions in which the high degree of cross-sectional anisotropy imparted in the spinning process is sufficiently maintained, that is, a low temperature and low stretching ratio.

かかる延伸栄件をポリエステルm維の場合について具体
的に述べると、延伸温度はTg±20 ’O(Tg :
ポリエステルのガラス転移点)の範囲内の温度が好まし
く、延伸倍率は最高延伸倍率の65〜95チが好適であ
る。
To specifically describe such stretching conditions in the case of polyester m-fiber, the stretching temperature is Tg±20'O (Tg:
The temperature is preferably within the range of the glass transition point of polyester), and the stretching ratio is preferably the highest stretching ratio of 65 to 95 inches.

延伸方法は液浴延伸、ピン延伸等いかなる方法によって
もよい。
The stretching method may be any method such as liquid bath stretching or pin stretching.

また、弛緩熱処理前ズルは、延伸後の糸条を構成する各
単ffl維を可能な限り無拘束状態とし、次いで熱処理
することによってなされる。熱処理温度は100〜23
0°Cが好ましい。かかる弛緩熱処理はトク状、マルチ
フィラメント状、ステーブル状等いかなる状態で行って
もよく、弛緩熱処理前に機械i縮を付与してもよい。
Further, the relaxation pre-heat treatment process is performed by making each single ffl fiber constituting the stretched yarn as unrestrained as possible, and then heat-treating it. Heat treatment temperature is 100-23
0°C is preferred. Such relaxation heat treatment may be performed in any state such as a filament shape, multifilament shape, stable shape, etc., and mechanical shrinkage may be applied before the relaxation heat treatment.

この様にして得られた捲縮多孔中空繊維の中空率は5〜
60チが好ましい。
The hollowness ratio of the crimped porous hollow fiber obtained in this way is 5~
60 inches is preferable.

ここで言う「中空率」とは、繊維横断面にお1する中空
部の総面積に対し、前記横断面の外周部で囲まれた面積
に対する比である。具体的に第4図(・)を用いて説明
すると、中空部総面積(Sg )とは中空部(E′、E
l−4)の合計面積であり、横断面の外周部に囲まれた
面積(ST )  とは前記中空部面積(Sv )  
及び高分子重合体が占める面積(SP )  との合計
である。即ち、中空率は下記式で表わされるものである
The term "hollowness ratio" as used herein refers to the ratio of the total area of the hollow portions in the cross section of the fiber to the area surrounded by the outer periphery of the cross section. To explain specifically using FIG. 4 (・), the total area of the hollow part (Sg) is
l-4), and the area surrounded by the outer periphery of the cross section (ST) is the hollow area area (Sv)
and the area occupied by the high molecular weight polymer (SP). That is, the hollowness ratio is expressed by the following formula.

R 中空率(1%)=6−+−5×100 かかる中空率が6096を越えると中空部が変形し易く
なる傾向があり、5チ未溝であれば断面方向の異方性を
充分に付与できなくなる傾向がある。
R Hollowness ratio (1%) = 6 - + - 5 × 100 If the hollowness ratio exceeds 6096, the hollow part tends to be easily deformed, and if there are no 5-inch grooves, the anisotropy in the cross-sectional direction cannot be sufficiently maintained. There is a tendency that it cannot be granted.

尚、本発明でい5熱可塑性重合体とは、溶融紡糸可能な
重合体のことであって、かかる重合体の例としては、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト等のポリエステル、ポリエチレン、ポリプロピレンな
どのポリオレフィンfAIナイpン6.ナイpン66な
どのポリアミド類およびこれらを主とする共重合物や重
合混合物である。特に、エチレンテレフタレート単位が
85モルチ以上であるポリエステルを用いると熱的性質
が良好で好ましい。そして、かかるポリエステルは25
°0−クローフェノール中で測定した粘度から算出した
rA限粘度が0.35〜0,90であるものが好ましい
In the present invention, the thermoplastic polymer refers to a polymer that can be melt-spun, and examples of such polymers include polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyolefins such as polyethylene and polypropylene. fAI knife 6. These are polyamides such as Naipun 66, and copolymers and polymer mixtures mainly made of these. In particular, it is preferable to use a polyester having 85 molti or more of ethylene terephthalate units because it has good thermal properties. And such polyester is 25
It is preferable that the rA limiting viscosity calculated from the viscosity measured in °0-chlorphenol is 0.35 to 0.90.

尚、前記重合体にはつや消削、接着剤、帯電防止剤、防
炎剤等の添加剤を含有していてもよい。
Incidentally, the polymer may contain additives such as a matting agent, an adhesive, an antistatic agent, and a flame retardant.

(作用) 従来より知られている第3図(イ)(ロ)に示すノズル
から吐出される繊維の片面を冷却する方法では、新面異
方性を充分に付与することができないため、スタッフィ
ングボックスや流体処理ノズル等の物理的なt8縮加工
を併用しなげれば、充分な捲縮が得られないのである。
(Function) The conventionally known method of cooling one side of the fiber discharged from the nozzle shown in Fig. 3 (a) and (b) cannot sufficiently impart new surface anisotropy, so stuffing Unless physical T8 crimp processing such as a box or a fluid treatment nozzle is used in combination, sufficient crimp cannot be obtained.

この点、本発明においては、吐出された繊維の断面形状
を冷却風によって均一に冷却され難い形状としたため、
冷却風が風下側に回り込み難いのでHl、維断面の風上
側と風下側との温度差を従来のものに比して著しく大き
くすることができ、従来のものに比較して高度な断面異
方性を有することができるのである。
In this regard, in the present invention, the cross-sectional shape of the discharged fibers is made into a shape that makes it difficult to be uniformly cooled by the cooling air.
Since it is difficult for the cooling air to go around to the leeward side, the temperature difference between the windward side and the leeward side of the fiber cross section can be made significantly larger than that of conventional ones, and the cross-sectional anisotropy is higher than that of conventional ones. It is possible to have a sexual nature.

そして、かかるamに弛緩熱処理を施して捲縮を発現す
る結果、大きな捲縮を呈し、優れた嵩高性、嵩回復性を
呈することができ。
Then, as a result of subjecting such am to relaxation heat treatment to develop crimp, it can exhibit large crimp and exhibit excellent bulkiness and bulk recovery properties.

多孔中空繊維であるため良好な保温性及び柔軟な風合も
呈することができる。
Since it is a porous hollow fiber, it can exhibit good heat retention and a soft texture.

しかも、均一性の良好な捲縮繊維を得るための最適条件
の範囲も従来の方法に比較して広くとれるため、生産性
が良好で生産=ストを低下することができる。
Moreover, since the range of optimal conditions for obtaining crimped fibers with good uniformity can be set wider than in conventional methods, productivity can be improved and production costs can be reduced.

(発明の効果) 本発明の製造方法によって得られる捲縮繊維は、カーペ
ット+/Sイパイル、モケットや衣料用紙絹物等の他、
特に語線に用いたときに刺毛調の優れた特性を示す製品
が得られる。
(Effects of the Invention) The crimped fibers obtained by the production method of the present invention can be used for carpet +/S pile, moquette, clothing paper, silk, etc.
Particularly when used for word lines, a product is obtained that exhibits excellent characteristics of prickly hair.

(実施例) 更に、実施例により本発明を更に説明する。(Example) Furthermore, the present invention will be further explained by examples.

実施例1〜3.比較例1 25°00−クーロフェノール中で測定した極限粘度が
0.65のポリエチレンテレフタレートを第1表に示す
断面形状のノズルから280°0で溶融吐出し、’15
0m1mで巻き取り、単繊atR度25デニールの未馬
伸糸を得た。吐出県東の冷却は、口金面下1.5〜1s
tM1の位置で25°0の冷却用空気を1.0 yt 
/ secの流速で糸条の進向方向に対して垂直な方向
から吹きつけることにより行った。このようにして得ら
れた未延伸糸を集束して70万デニールのトウにしたも
のを65°0の水浴中で3.5倍に延伸した後トク状で
乾燥して130°0雰囲気中で弛緩熱処理を行い、捲縮
発現後64襲に切断した。かくして得られたステープル
ファイバーわカードに通してクエツブをつくりふとん綿
としその性能を測定した。結果を第1表に併せて示す。
Examples 1-3. Comparative Example 1 Polyethylene terephthalate having an intrinsic viscosity of 0.65 as measured in 25°00-courophenol was melted and discharged at 280°0 from a nozzle having the cross-sectional shape shown in Table 1.
The yarn was wound in a length of 0 ml and 1 m to obtain a single fiber drawn yarn with an atR degree of 25 denier. Cooling in the east of the discharge prefecture is 1.5 to 1 s below the mouth surface.
1.0 yt of cooling air at 25°0 at position tM1
This was done by blowing from a direction perpendicular to the direction in which the yarn advances at a flow rate of /sec. The undrawn yarn thus obtained was bundled into a tow of 700,000 deniers, which was stretched 3.5 times in a water bath at 65°0 and then dried in a 130°0 atmosphere. A relaxation heat treatment was performed, and the fibers were cut at 64 points after the appearance of crimp. The thus obtained staple fiber was passed through the card to make a kuetsubu, which was used as futon cotton, and its performance was measured. The results are also shown in Table 1.

第1表に示す如く比較例1に比し、本発明の方法によっ
て得られた繊維を用いたふとん綿は比容fi110cd
/19以上、圧縮率60チ以上、回復率90%以上の優
れた嵩高性、酎へタリ性でソフトな風合を呈する。実施
例1〜3はいずれも紡糸調子は良好であったが、比較例
は紡糸単繊維切れが発生した。
As shown in Table 1, compared to Comparative Example 1, the futon cotton using the fiber obtained by the method of the present invention has a specific volume of fi110cd.
/19 or more, compression rate of 60 inches or more, recovery rate of 90% or more, excellent bulkiness, smooth texture and soft texture. In Examples 1 to 3, the spinning condition was good, but in the comparative example, spun single fiber breakage occurred.

尚、第1表に示す捲縮数はJIS−L1074により測
定した値であり、比容積、圧縮率、回復率はJIS−L
1097により測定した値である。
The number of crimp shown in Table 1 is the value measured according to JIS-L1074, and the specific volume, compression ratio, and recovery rate are according to JIS-L1074.
1097.

実施例4.比較例−2 25°Cm−クレゾール中で測定した極限粘度が1.1
のナイpン6を第1図(h)に示すノズルを通して26
0 ’Oで溶融吐出し、 1500H@/mt で引取
り、単繊#!繊度30デニールの未延伸糸を得た。この
未延伸糸の横断面は第4図(h)の如き多孔中空断面で
あった。吐出糸条の冷却は口金面下1.5〜10αの位
置で25°Cの冷却用空気を0.8m/s6cの流速で
糸条の進行方向に対して*直な方向から吹きつけること
により行った。
Example 4. Comparative Example-2 Intrinsic viscosity measured in 25°Cm-cresol is 1.1
26 through the nozzle shown in Figure 1(h).
Melt and discharge at 0'O, take off at 1500H@/mt, single fiber #! An undrawn yarn having a fineness of 30 denier was obtained. The cross section of this undrawn yarn was a porous hollow cross section as shown in FIG. 4(h). The discharged yarn is cooled by blowing 25°C cooling air at a flow rate of 0.8 m/s6c from a direction perpendicular to the yarn traveling direction at a position 1.5 to 10 α below the mouth surface. went.

紡糸調子は全(問題なかった。この未延伸糸条は単繊維
数70本からなり、この未延伸糸条を50°0の延伸温
度で3.5倍にピン活伸した後、130°0雰囲気中で
弛緩熱処理して連続的に巻取った。得られた延伸熱処理
系をJIS−L1074に従って捲縮性能を測定したと
ころ捲縮数12.5ケ/ 25 tx 、捲縮弾性y4
90チの良好な捲縮を有していた。尚、第3図(ロ)に
示すノズルを用いて同様に片面急冷し、延伸後弛緩熱処
理した場合の捲縮数及び捲縮弾性率はそれぞれ4.5ケ
ア 25 m t 55%となり非常に劣るものであっ
た。また紡糸時単QM切れが発生した。
The spinning condition was perfect (there were no problems. This undrawn yarn consisted of 70 single fibers, and after live-stretching this undrawn yarn by 3.5 times at a drawing temperature of 50°0, It was subjected to a relaxation heat treatment in an atmosphere and then wound up continuously.The crimp performance of the obtained stretching heat treatment system was measured according to JIS-L1074, and the number of crimps was 12.5/25 tx, and the crimp elasticity was y4.
It had a good crimp of 90 inches. Furthermore, when the nozzle shown in Fig. 3 (b) was used to similarly rapidly cool one side, and after stretching, the material was subjected to relaxation heat treatment. It was something. Furthermore, single QM breakage occurred during spinning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明において使用する紡糸口金の
ノズル断面形状、第3図は従来方法において使屈する紡
糸口金のノズル断面形状、第4〜6図は第1〜3図に示
されている断面形状のノズルを用いて得られる繊維の夫
々の横断面形状を夫々示す。 第1因 (CL>         (bj         
    (こ、(圧)(e)       (1) (cl)<h) 第8図 (−°) 第3図 (イ)           (O) 第4図 ())(h) 第5図 (k) 第6図
Figures 1 and 2 show the cross-sectional shape of the nozzle of the spinneret used in the present invention, Figure 3 shows the cross-sectional shape of the nozzle of the spinneret used in the conventional method, and Figures 4 to 6 show the nozzle shape shown in Figures 1 to 3. The cross-sectional shapes of the fibers obtained using the nozzles having the cross-sectional shapes shown in FIG. First cause (CL> (bj
(Pressure) (e) (1) (cl)<h) Fig. 8 (-°) Fig. 3 (a) (O) Fig. 4 ()) (h) Fig. 5 (k) Figure 6

Claims (9)

【特許請求の範囲】[Claims] (1)熱可塑性重合体から成り、且つ長手方向に連続す
る中空部が複数個存在する捲縮多孔中空繊維であつて、
該繊維の横断面において、外周部に曲線によつて形成さ
れる複数個の凹部を有すると共に、断面異方後を有する
ことを特徴とする捲縮多孔中空繊維。
(1) A crimped porous hollow fiber made of a thermoplastic polymer and having a plurality of hollow parts continuous in the longitudinal direction,
A crimped porous hollow fiber characterized in that a cross section of the fiber has a plurality of curved concave portions on the outer periphery and an anisotropic cross section.
(2)捲縮多孔中空繊維の横断面における中空部の総面
積が前記横断面の外周部に囲まれた面積に対して5〜6
0%である特許請求の範囲第(1)項記載の捲縮多孔中
空繊維。
(2) The total area of the hollow portion in the cross section of the crimped porous hollow fiber is 5 to 6 with respect to the area surrounded by the outer periphery of the cross section.
0% crimped porous hollow fiber according to claim (1).
(3)熱可塑性重合体がポリエチレンテレフタレートで
ある特許請求の範囲第(1)項記載の捲縮多孔中空繊維
(3) The crimped porous hollow fiber according to claim (1), wherein the thermoplastic polymer is polyethylene terephthalate.
(4)熱可塑性重合体から成る多孔中空繊維を溶融紡糸
するに際し、該多孔中空繊維の少くとも1個の中空部を
形成する中空吐出孔がスリツトを介して複数個連結され
ているノズルが配置されている紡糸口金から吐出し、引
続き吐出糸条の片側を、前記吐出糸条の走行方向に略直
交する方向から0.2m/秒以上の風速を有する冷却風
を吹き付けることによつて冷却せしめ、次いで得られる
多孔中空未延伸糸を延伸した後に弛緩熱処理することを
特徴とする捲縮多孔中空繊維の製造方法。
(4) When melt-spinning porous hollow fibers made of thermoplastic polymer, a nozzle is arranged in which a plurality of hollow discharge holes forming at least one hollow part of the porous hollow fibers are connected via slits. The yarn is discharged from a spinneret, and then one side of the discharged yarn is cooled by blowing cooling air having a wind speed of 0.2 m/sec or more from a direction substantially perpendicular to the running direction of the discharged yarn. A method for producing crimped porous hollow fibers, which comprises stretching the resulting porous hollow undrawn fibers and then subjecting them to relaxation heat treatment.
(5)捲縮多孔中空繊維の横断面における中空部の総面
積が前記横断面の外周部で囲まれた面積に対して5〜6
0%である特許請求の範囲第(4)項記載の捲縮多孔中
空繊維の製造方法。
(5) The total area of the hollow portion in the cross section of the crimped porous hollow fiber is 5 to 6 with respect to the area surrounded by the outer periphery of the cross section.
0% of the method for producing a crimped porous hollow fiber according to claim (4).
(6)中空吐出孔が直線状に連結されている特許請求の
範囲第(4)項記載の捲縮多孔中空繊維の製造方法。
(6) A method for producing a crimped porous hollow fiber according to claim (4), wherein the hollow discharge holes are connected in a straight line.
(7)中空吐出孔が環状に連結されている特許請求の範
囲第(1)項記載の捲縮多孔中空繊維の製造方法。
(7) A method for producing a crimped porous hollow fiber according to claim (1), wherein the hollow discharge holes are connected in an annular manner.
(8)中空吐出孔が複数個の中空部を形成し得る特許請
求の範囲第(4)項記載の捲縮多孔中空繊維の製造方法
(8) A method for producing a crimped porous hollow fiber according to claim (4), in which the hollow discharge hole can form a plurality of hollow parts.
(9)熱可塑性重合体がポリエチレンテレフタレートで
ある特許請求の範囲第(4)項記載の捲縮多孔中空繊維
の製造方法。
(9) The method for producing crimped porous hollow fibers according to claim (4), wherein the thermoplastic polymer is polyethylene terephthalate.
JP16557384A 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor Granted JPS6147807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16557384A JPS6147807A (en) 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16557384A JPS6147807A (en) 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor

Publications (2)

Publication Number Publication Date
JPS6147807A true JPS6147807A (en) 1986-03-08
JPH0252004B2 JPH0252004B2 (en) 1990-11-09

Family

ID=15814925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16557384A Granted JPS6147807A (en) 1984-08-09 1984-08-09 Crimped porous hollow fiber and production therefor

Country Status (1)

Country Link
JP (1) JPS6147807A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148809A (en) * 1987-11-13 1989-06-12 E I Du Pont De Nemours & Co Novel polyester fibrous filler
JPH0214032A (en) * 1988-06-28 1990-01-18 Toyobo Co Ltd Multi-layer structured yarn having heat retaining property
JPH07216629A (en) * 1993-12-28 1995-08-15 E I Du Pont De Nemours & Co Filament with crosssection projected in three direction and crosssection projected in four direction containing gap
US5997980A (en) * 1997-02-20 1999-12-07 Teijin Limited Hollow polyester fibers and textile articles comprising same
JP2002266163A (en) * 2001-03-05 2002-09-18 Teijin Ltd Polyester fiber having modified cross-section
JP2003055838A (en) * 2001-08-16 2003-02-26 Teijin Ltd Polyester-based hollow crimped fiber and method for producing the same
KR100423482B1 (en) * 2002-04-23 2004-03-18 도레이새한 주식회사 Spinneret for shaped fiber, manufacturing method of shaped filament yarn using there of
FR2902114A1 (en) * 2006-06-12 2007-12-14 Promiles Snc POLYMERIC FILAMENT HAVING AT LEAST ONE LONGITUDINAL ETOFFE CHANNEL COMPRISING THESE FILAMENTS, ARTICLE FORMED THEREFROM, AND METHOD OF MAKING SAID FILAMENT
CN115045021A (en) * 2022-07-14 2022-09-13 南通鑫利凯工贸有限公司 Preparation method of super-soft high-count high-density fabric

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936714A (en) * 1982-08-26 1984-02-29 Teijin Ltd Crimped modified hollow yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936714A (en) * 1982-08-26 1984-02-29 Teijin Ltd Crimped modified hollow yarn

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148809A (en) * 1987-11-13 1989-06-12 E I Du Pont De Nemours & Co Novel polyester fibrous filler
JPH03269114A (en) * 1987-11-13 1991-11-29 E I Du Pont De Nemours & Co Manufacture of novel polyester fibrous filling material
JPH0214032A (en) * 1988-06-28 1990-01-18 Toyobo Co Ltd Multi-layer structured yarn having heat retaining property
JPH07216629A (en) * 1993-12-28 1995-08-15 E I Du Pont De Nemours & Co Filament with crosssection projected in three direction and crosssection projected in four direction containing gap
US5997980A (en) * 1997-02-20 1999-12-07 Teijin Limited Hollow polyester fibers and textile articles comprising same
JP2002266163A (en) * 2001-03-05 2002-09-18 Teijin Ltd Polyester fiber having modified cross-section
JP2003055838A (en) * 2001-08-16 2003-02-26 Teijin Ltd Polyester-based hollow crimped fiber and method for producing the same
JP4574911B2 (en) * 2001-08-16 2010-11-04 帝人ファイバー株式会社 Polyester-based hollow crimped fiber and method for producing the same
KR100423482B1 (en) * 2002-04-23 2004-03-18 도레이새한 주식회사 Spinneret for shaped fiber, manufacturing method of shaped filament yarn using there of
FR2902114A1 (en) * 2006-06-12 2007-12-14 Promiles Snc POLYMERIC FILAMENT HAVING AT LEAST ONE LONGITUDINAL ETOFFE CHANNEL COMPRISING THESE FILAMENTS, ARTICLE FORMED THEREFROM, AND METHOD OF MAKING SAID FILAMENT
WO2007144535A1 (en) * 2006-06-12 2007-12-21 Decathlon Polymeric filament provided with at least one longitudinal canal, a material comprising said filaments, an item made from said material, and a manufacturing process for said filament
CN115045021A (en) * 2022-07-14 2022-09-13 南通鑫利凯工贸有限公司 Preparation method of super-soft high-count high-density fabric

Also Published As

Publication number Publication date
JPH0252004B2 (en) 1990-11-09

Similar Documents

Publication Publication Date Title
KR100671925B1 (en) Crimped Bicomponent Fibers and a Process for Preparing the Same
EP0169415B1 (en) Polyester fiber
MXPA02007125A (en) Method for high speed spinning of bicomponent fibers.
JP7319470B2 (en) Method for producing spontaneously crimping elastic mixed yarn used for knitting
JPS6147807A (en) Crimped porous hollow fiber and production therefor
US5733656A (en) Polyester filament yarn and process for producing same, and fabric thereof and process for producing same
JPS6317126B2 (en)
JPS62206008A (en) Crimped, porous hollow fiber and production thereof
JP4270734B2 (en) Method for producing biodegradable fiber having bulkiness
JPH03185103A (en) Conjugate fiber for artificial hair having thick single fiber and production thereof
JP3001539B1 (en) Method for producing polyester mixed fiber yarn
JPH06287809A (en) Production of potentially crimping polyester fiber
US5624752A (en) Spun yarn of polybenzazole fiber
JPH03185102A (en) Conjugate fiber for artificial hair and production thereof
JPH08260343A (en) Hollow polyester fiber and its production
JPH0214014A (en) Production of fine sized polyester yarn
JPH0342323B2 (en)
JPS62238818A (en) Production of polyester staple fiber
JPS5813647B2 (en) Manufacturing method of anti-building fiber
JP3346575B2 (en) Manufacturing method of high filament count fine filament polyester yarn
JPS58149318A (en) Polyester yarn and production thereof
JP3022586B2 (en) Method for producing polyester fiber
JPS621005B2 (en)
JP2003049325A (en) Method for producing polytrimethylene terephthalate fiber
JP3502686B2 (en) Biodegradable composite fiber