KR900005328B1 - Spectrometer of inorganic matter analysis instrument - Google Patents

Spectrometer of inorganic matter analysis instrument Download PDF

Info

Publication number
KR900005328B1
KR900005328B1 KR1019870008369A KR870008369A KR900005328B1 KR 900005328 B1 KR900005328 B1 KR 900005328B1 KR 1019870008369 A KR1019870008369 A KR 1019870008369A KR 870008369 A KR870008369 A KR 870008369A KR 900005328 B1 KR900005328 B1 KR 900005328B1
Authority
KR
South Korea
Prior art keywords
light
spectrometer
detection
pmt
gdl
Prior art date
Application number
KR1019870008369A
Other languages
Korean (ko)
Other versions
KR890002658A (en
Inventor
양근영
Original Assignee
주식회사 금성사
최근선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 금성사, 최근선 filed Critical 주식회사 금성사
Priority to KR1019870008369A priority Critical patent/KR900005328B1/en
Publication of KR890002658A publication Critical patent/KR890002658A/en
Application granted granted Critical
Publication of KR900005328B1 publication Critical patent/KR900005328B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A glow discharge tube (1) atomises elements constituting a sample to be measured and emits a light. A spectrometer (8) forcuses the light emitted from te discharge tube by a lens, and diffracts the focused light using a hologram grating, depending upon the frequency and detects the strength of the diffracted light by a signle PM tube. The spectrometer determines the wavelength of the diffracted light by use of a laser beam generator and a number of photodiodes. An A/D converter (31) and amplifier convert an electric signal from the spectrometer into a digital signal. The signals from the photodiodes are amplified and then passed to a computer (4) for analysis.

Description

무기물 분석장치의 분광계Spectrometer of inorganic analyzer

제1도는 종래의 무기물 분석장치를 보인 블록도.1 is a block diagram showing a conventional inorganic analyzer.

제2도는 본 발명의 무기물 분석장치를 보인 블록도.2 is a block diagram showing an inorganic analysis device of the present invention.

제3a, b도는 본 발명의 분광계를 보인 평면도 및 측면도.3a and b are plan and side views showing the spectrometer of the present invention.

제4도는 본 발명의 분광계의 요부를 보인 제3a도의 A부분에 확대 분해사시도.4 is an enlarged exploded perspective view showing the main part of the spectrometer of the present invention in part A of FIG.

제5a-b도는 본 발명의 분광계로 원소의 농도를 측정시 검지센서 및 PMT가 검출한 신호의 파형도.5a-b is a waveform diagram of a signal detected by the detection sensor and PMT when measuring the concentration of the element in the spectrometer of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : GDL 4 : 컴퓨터1: GDL 4: Computer

5 : 고압공급부 6 : 아르곤가스공급부5: high pressure supply 6: argon gas supply

7 : 배기펌프 8 : 분광계7: exhaust pump 8: spectrometer

31 : 증폭 및 아날로그/디지탈변한기 81 : 구동모타31: Amplification and Analog / Digital Limiter 81: Driving Motor

81A : 회전축 82 : 회전원판81A: rotating shaft 82: rotating disc

82B,82C : 검지공 83 : 회전다면체82B, 82C: detection ball 83: rotating polyhedron

83A : 면 83B : 안내홈83A: Cotton 83B: Guideway

83C : 요입부 83E : 고정구83C: recessed portion 83E: fixture

84 : 밴드패스필터판 85 : PMT84: band pass filter plate 85: PMT

86 : 슬리트 87 : 집속렌즈86: Slit 87: Focusing Lens

88,89 : 고정구 88A,89A : 검지센서88,89 Fixture 88A, 89A: Detection sensor

본 발명은 무기물 원소의 농도(Concentration)를 측정 즉, 금속무기물을 분석하는데 적당한 무기물 분석장치에 관한 것으로, 특히 GDL(Glow Discharge Lamp)에 설치한 샘픔(sample)에서 발사된 빛을 스펙트럼(Spectrum) 분해하여 원소의 농도에 따른 강도(Intensity)를 측정하는 무기물 분석장치의 분광계(Spectrometer)에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mineral analyzer suitable for measuring the concentration of inorganic elements, that is, for analyzing metal minerals. In particular, the spectrum of light emitted from a sample installed in a glow discharge lamp (GDL) is specified. The present invention relates to a spectrometer of an inorganic analyzer for decomposing and measuring intensity according to an element concentration.

종래의 무기물 분석장치는 제1도에 도시한 바와 같이 샘플(11)을 분산시켜 발산 빛을 출력하는 GDL(1)과, 상기 GDL(1)에서 발산된 빛릉 스펙트럼 분해하여 각 원소의 공명주파수(resonance frequency)의 강도를 측정하는 분광계(2)와, 상기 분광계(2)의 출력신호를 증폭하고 디지털신호로 변한하여 컴퓨터(4)에 입력시키는 증폭 및 아날로그/디지탈변환기부(3)와, 상기 컴퓨터(4)의 제어로 상기 GDL(1)에 고압 및 아르곤가스를 각기 공급하는 고압공급부(5) 및 아르곤가스공급부(6)와, 상기 컴퓨터(4)의 제어로 상기 GDL(1) 및 분광계(2)의 공기를 배기시켜 진공상태로 만드는 배기펌프(7)로 구성되어 있다.The conventional inorganic analyzer has a GDL (1) for dispersing the sample 11 to output divergent light, as shown in FIG. 1, and the resonance frequency of each element by decomposing the light-refraction spectrum emitted from the GDL (1). a spectrometer 2 for measuring the intensity of a resonance frequency, an amplification and analog / digital converter unit 3 for amplifying the output signal of the spectrometer 2 and converting the signal into a digital signal and inputting the digital signal to the computer 4; High pressure supply unit 5 and argon gas supply unit 6 for supplying high pressure and argon gas to the GDL 1 respectively under the control of the computer 4, and the GDL 1 and spectrometer under the control of the computer 4; It consists of the exhaust pump 7 which exhausts the air of (2), and makes it into a vacuum state.

그리고, 상기한 GDL(1)은 샘플(11)과 윈도우(12)로 밀폐되고, 샘픔(11)과 윈도우(12)의 사이에는 캐소드(13), 절연체(14), 애노드(15) 및 절연체(16)가 순차적으로 개재되고, 상기한 분광계(2)는 GDL(1)에서 발산된 빛(17)을 통과시키는 윈도우(21)와, 상기 윈도우(21)를 통과한 빛(17)을 집속시키는 집속렌즈(22)와, 상기 집속렌즈(22)에 의해 집속되어 입구슬로트(23)를 통과한 빛(17)을 공명주파수에 따라 회절시키는 격자(Grating)(24)와, 상기 격자(24)에 의해 회절된 빛(17)을 검지하는 출구슬로트(25) 및 PMT(Photo Multiplier Tube)(26)로 구성되어 있다.The GDL 1 is sealed with the sample 11 and the window 12, and the cathode 13, the insulator 14, the anode 15, and the insulator are interposed between the sample 11 and the window 12. (16) is sequentially interposed, and the spectrometer (2) focuses the window (21) through which the light (17) emitted from the GDL (1) passes and the light (17) passing through the window (21). A grating 24 for diffracting the light 17 focused by the focusing lens 22 and passing through the inlet slot 23 according to a resonance frequency, and the grating ( It consists of an outlet slot 25 and a PMT (Photo Multiplier Tube) 26 for detecting the light 17 diffracted by 24).

이와 같이 구성된 종래의 무기물 분석장치는 GDL(1)의 샘플(11)의 위치에 측정할 원소의 농도를 알고있는 표준샘플을 설치하고, 컴퓨터(4)로 배기펌프(7)를 제어하여 GDL(1) 및 분광계(2)를 진공상태로 만듬과 아울러 고압공급부(5) 및 아르곤가스공급부(6)를 제어하여 GDL(1)에 고압을 인가하고, 아르곤가스를 유입시키면, GDL(1)의 캐소드(13)와 애노드(15)의 사이에는 공급된 고압에 의해 전기장이 형성되면서 아르곤 가스가 샘플(11) 즉, 표준샘플 방향으로 가속되어 충돌되고, 그 충돌에 따라 표준샘플에서 원소가 분리되며, 그 분리돈 원소는 GDL(1)내의 아르곤가스 및 전자이온등과 충돌되면서 여기(excit)되며, 그 여기된 원소들은 기저(Ground)상태로 환원되면서 원소의 공명주파수에 해당하는 빛(17)을 방출하게 되며, 이와 같은 동작은 샘픔(11)의 각 원소에 대해 반복하여 각 원소의 공명주파수를 포함한 빛(17)이 GDL(1)로부터 윈도우(12)를 통해 발산된다.In the conventional inorganic analyzer configured as described above, a standard sample which knows the concentration of an element to be measured is installed at the position of the sample 11 of the GDL 1, and the exhaust pump 7 is controlled by the computer 4 to control the GDL ( 1) and the spectrometer (2) in a vacuum state, while controlling the high-pressure supply section 5 and the argon gas supply section 6 to apply a high pressure to the GDL (1), when the argon gas is introduced, the GDL (1) As the electric field is formed between the cathode 13 and the anode 15 by the supplied high pressure, argon gas is accelerated and collided in the direction of the sample 11, that is, the standard sample, and the element is separated from the standard sample according to the collision. The separated element is excited as it collides with argon gas and electron ion in GDL (1), and the excited element is reduced to the ground state, and the light corresponding to the resonance frequency of the element (17) This operation is repeated for each element of spring 11 Light 17 including the resonance frequency of each element is emitted from the GDL 1 through the window 12.

그리고, GDL(1)에서 발산된 빛(17)은 분광계(2)의 윈도우(21)를 통하고, 집속렌즈(22)에 의해 집속되어 입구슬로트(23)를 통해 격자(24)에 입사되므로 격자(24)는 빛(17)을 공명주파수에 따라 회절시키고, 그 회절된 빛(17)은 측정하고자 하는 원소의 공명주파수의 강도를 측정하기 위하여 빛(17)의 진행경로에 설치된 출구슬로트(25) 및 PMT(26)에 의해 공명주파수별로 강도가 측정된다.Then, the light 17 emitted from the GDL 1 passes through the window 21 of the spectrometer 2, is focused by the focusing lens 22, and enters the grating 24 through the inlet slot 23. Therefore, the grating 24 diffracts the light 17 according to the resonance frequency, and the diffracted light 17 is an exit slot installed in the traveling path of the light 17 to measure the intensity of the resonance frequency of the element to be measured. Intensities are measured for each resonant frequency by the tread 25 and the PMT 26.

즉, 측정할 원소의 수가 N종류라 하고, GDL(1)에 설치한 표준샘플이 그 N종류의 원소를 포함한 합금이라고 가정하면, GDL(1)에서 발산된 빛(17)에 그 N종류의 공명주파수 υ1, υ2, …, υN을 포함하고 있고, 그 빛(17)은 분광계(2)의 격자(24)에 의해 공명주파수별로 각기 다른 각도로 회절되며, 이때 회절된 υ1, υ2, …, υN의진행경로에 설치된 PMT(26)가 υ1, υ2, …, υN의 강도 I1, I2, …, IN를 측정하게 된다.In other words, assuming that the number of elements to be measured is N kinds, and that the standard sample installed in the GDL 1 is an alloy containing the N kinds of elements, the light 17 emitted from the GDL 1 is divided into N kinds of elements. Resonant frequencies υ 1 , υ 2 ,. , υ N , and the light 17 is diffracted by the grating 24 of the spectrometer 2 at different angles for each resonant frequency, where the diffracted ν 1 , υ 2 ,... The PMT 26 installed at the path of ν N is υ 1 , υ 2 ,. , ν N intensities I 1 , I 2 ,. , I N is measured.

그리고, PMT(26)에 의해 측정된 공명주파수 υ1, υ2, …, υN의 강도 I1, I2, …, IN은 증폭 및 아날로그/디지탈변환기(31), (32),…,(3N)를 통해 증폭되고, 디지털신호로 변환된 후 컴퓨터(4)에 저장되고, 여기서, I1, I2, …, IN은 농도를 알고 있는 원소를 포함한 표준샘플에 의한 강도로서, 각 원소의 알려진 농도의 강도이다.And the resonance frequencies υ 1 , υ 2 ,... Measured by the PMT 26. , ν N intensities I 1 , I 2 ,. , I N is an amplification and analog / digital converter (31), (32),. (3N), which is converted into a digital signal and stored in the computer 4, where I 1 , I 2 ,... , I N is the intensity of the standard sample containing the element whose concentration is known, and is the intensity of the known concentration of each element.

이와 같이 하여 표준샘플의 측정이 완료되면, 샘픔(11)의 위치에 원소의 농도를 측정할 측정샘플을 놓고, 상기의 과정을 수행하여 측정하며, 그 측정샘플의 원소의 농도에 상당하는 강도 I1', I2', …, IN'이 측정되어 컴퓨터(4)에 입력되므로 컴퓨터(4)는 표준샘플의 강도 I1, I2, …, IN과 측정샘플의강도 I1', I2', …, IN'를 비교하여 측정샘플의 알려지지 않은 원소의 농도를 측정하게 된다.When the measurement of the standard sample is completed in this way, a measurement sample for measuring the concentration of the element is placed at the position of the sample 11, and the measurement is performed by performing the above procedure, and the intensity I corresponding to the concentration of the element of the measurement sample. 1 ', I 2 ',… , I N 'is measured and input to the computer 4, so that the computer 4 can measure the intensity I 1 , I 2 ,... , I N and the strengths of the measured samples I 1 ', I 2 ',. By comparing I N ', the concentration of unknown elements in the measurement sample is determined.

그러나, 이와 같은 종래의 무기물 분석장치는 측정할 원소의 수만큼 고가의 PMT를 필요로 함은 물론 PMT의 수만큼 증폭 및 아날로그/디지탈변환기를 필요로 하여 제품의 생산원가가 상승하고, 격자를 이용하여 GDL에서 발산된 빛을 각 공명주파수별로 회절시킨 후 측정하므로 높은 분해능을 가지고 측정하기 위해서는 분광계가 매우 넓은 공간을 필요로 하여 대형화됨은 물론 분석장치를 처음 구동시킬 때 분광계의 내부를 진공상태로 만드는데 많은 시간이 소요되며, 또한 분광계가 일단 제작되면, 제작시 측정이 가능하게 한 원소이외의 원소를 측정할 수 있도록 분광계를 개조하는 것이 어려운 결함이 있었다.However, such a conventional inorganic analyzer requires a PMT as expensive as the number of elements to be measured, as well as an amplification and an analog / digital converter as the number of PMTs increases the production cost of the product, using a grating Since the light emitted from the GDL is diffracted at each resonance frequency, it is measured. Therefore, in order to measure with high resolution, the spectrometer requires a very large space and becomes large, and the inside of the spectrometer is vacuumed when the analyzer is first driven. It takes a lot of time, and once the spectrometer is manufactured, it is difficult to modify the spectrometer to measure elements other than the elements that can be measured at the time of manufacture.

본 발명은 이와 같은 종래의 결함을 감안하여, 하나의 PMT와 하나의 증폭 및 아날로그/디지탈변환기만을 사용하여 원소의 농도를 측정하게 함은 물론 그 크기를 축소시키고, 측정할 원소에 따라 간단히 개조할 수 있게 창안한 것으로, 이를 첨부된 제2도 내지 제4도의 도면에 의하여 상세히 설명하면 다음과 같다.In view of such a conventional deficiency, the present invention allows one to measure the concentration of an element using only one PMT and one amplification and analog / digital converter, as well as to reduce its size and to simply modify it according to the element to be measured. Invented so as to be described in detail with reference to the accompanying drawings 2 to 4 as follows.

제2도 내지 제4도에 도시한 바와 같이 구동모타(81)의 회전축(81A)에 회전원판(82)을 측설하여 그 회전원판(82)의 상면에 회전다면체(83)를 고정하고,회전다면체(83)의 각면(83A)에는 안내흠(83B)을 가지는 요입부(83C)를 형성하여 그 요입부(83C)에 밴드패스필터판(84)이 끼워지게 함과 아울러 각면(83A)의 상면에 나흠(83D)을 형성하여 상기 밴드패스필터판(84)을 고정시키는 고정구(83E)를 보울트(83F)로 고정하게 하고, 회전다면체(83)의 중앙부에는 PMT(85)를 설치함과 아울러 슬리트(86)를 설치하여 집속렌즈(87)를 통과한 빛(17)이 슬리트(86)에 집속되게 하는 한편, 상기 회전원판(82)이 회전하는 방향으로 요입부(83C)의 전방 가장자리에 대향되는 회전원판(82)의 가장자리 즉, 회전원판(82)의 위치설정용 기준선(82A)의 전방에 검지공(82B)을 천공함과 아울러 하나의 검지공(82B) 내측의 회전원판(82)에 검지공(82C)을 천공하고, 회전원판(82)의 외측에는 상기 검지공(82B)(82C)을 검지하는 검지센서(88A)(89A)가 설치된 검지구(88)(89)를 고정하여 분광계(8)를 구성한 것으로, 도면의 설명 중 미설명부호 90은 윈도우이다.As shown in FIG. 2 to FIG. 4, the rotating disk 82 is staked out on the rotation shaft 81A of the driving motor 81 to fix the rotating polyhedron 83 on the upper surface of the rotating disk 82, and then rotates. The concave portion 83C having the guide flaw 83B is formed on each surface 83A of the polyhedron 83 so that the band pass filter plate 84 is fitted to the concave portion 83C, and the upper surface of the surface 83A. In order to fix the fasteners 83E for fixing the band pass filter plate 84 to the bolts 83F, a PMT 85 is provided at the center of the rotating polyhedron 83. The slits 86 are installed so that the light 17 passing through the focusing lens 87 is focused on the slits 86, while the front of the concave portion 83C is rotated in the direction in which the rotation disc 82 rotates. The detection hole 82B is drilled in front of the edge of the rotation disc 82 opposite to the edge, that is, in front of the positioning reference line 82A of the rotation disc 82, and one detection hole 82B. A detection hole (82C) is drilled into the rotating disk (82) on the side, and an detecting hole (88A) (89A) provided with detecting sensors (82B) and (82C) on the outer side of the rotating disk (82) ( The spectrometer 8 is constituted by fixing 88 and 89, and reference numeral 90 in the description of the drawings is a window.

이와 같이 구성된 본 발명의 분광계(8)는 배기펌프(7)를 구동시켜 진공상태로 만들고, 구동모타(81)를 구동시켜 회전원판(82) 및 회전다면체(83)를 회전시키면, GDL(1)에서 원소의 공명주파수를 가지고 발산된 빛(17)은 윈도우(90)를 통하고, 집속렌즈(87)에 의해 밴드패스필터판(84)을 통한 후 슬리트(86)에 집속되며, 그 집속된 빛(17)은 PMT(85)에 의해 검출된다.The spectrometer 8 of the present invention configured as described above drives the exhaust pump 7 to a vacuum state, and drives the driving motor 81 to rotate the rotating disk 82 and the rotating polyhedron 83, thereby to obtain a GDL (1). Light 17 emitted by the resonance frequency of the element in the through the window 90, and through the band pass filter plate 84 by the focusing lens 87 is concentrated to the slit 86, the The focused light 17 is detected by the PMT 85.

이때, 밴드패스필터판(84)을 측정하고자 하는 원소의 공명주파수만을 통과시키는 것을 사용하면, 회전다면체(83)가 회전함에 따라 각 원소의 공명주파수의 빛(17)만이 해당밴드패스필터판(84)을 통해 슬리트(86)에 집속되어(85)가 각 원소의 공명주파수를 순차적으로 검출하게 된다.At this time, if the band pass filter plate 84 is used to pass only the resonance frequency of the element to be measured, as the rotating polyhedron 83 rotates, only the light 17 of the resonance frequency of each element corresponds to the band pass filter plate ( 84 is focused on the slits 86 so that 85 sequentially detects the resonance frequencies of the elements.

즉, 측정하고자 하는 원소의 수가 N종류라 하고, 그 원소의 공명주파수가 υ1, υ2, …, υN이라 하며, 그 공명주파수 υ1, υ2, …, υN만을 통과시키는 밴드패스필터판(84)을 원판(83)의 회전 반대방향으로 순차적으로 요입부(83C)에 끼우며, 나머지의 요입부(83C) 즉, 밴드패스필터판(84)이 끼워지지 않은 요입부(83C)에는 밴드패스필터판(84)와 동일크기로 되어 빛(17)을 차단시키는 빛 차단판(도면에 도시하지 않았음)을 끼운 후 고정구(83E)를 보울트(83F)로 체결하여 고정시키면, 회전원판(83)이 회전함에 따라 검지구(89)에 설치된 검지센서(89A)가 검지공(82C)을 검지하여 제5(a)도에 도시한 바와 같이 검지신호(S11)를 검출 즉, 회전원판(83)이 1회전함에 따라 하나의 검지신호(S11)를 검출하고, 검지고(88)에 설치된 검지센서(88A)는 검지공(82B)을 검지하여 제5(b)도에 도시한 바와 같이 검지신호(S21,S22,…)를 순차적으로 검출하여 컴퓨터(4)에 입력되므로 컴퓨터(4)는 어느 밴드패스필터판(84)을 통해 슬리트(86)에 집속되는지를 알 수 있게 되고, 또한 GDL(1)에서 발산된 빛(17) 중에서 공명주파수 υ1, υ2, …, υN의 빛(17)은 회전다면체(83)가 회전함에 따라 그 공명주파수 υ1, υ2, …, υN만을 통과시키는 밴드패스필터판(84)을통해 슬리트(86)에 순차적으로 집속되어 PMT(85)는 제5(c)도에 도시한 바와 같이 공명주파수 υ1, υ2, …, υN의 강도 I1, I2, …, IN을 순차적으로 검출하고, 그 검출한 강도 I1, I2, …, IN은 증폭 및 아날로그/디지탈변환기(31)를 통해 증폭되고, 디지탈신호로 변환된 후 컴퓨터(4)에 입력된다.That is, let N be the number of elements to be measured, and the resonance frequencies of the elements are υ 1 , υ 2 ,. , υ N , and its resonance frequencies υ 1 , υ 2 ,. , the band pass filter plate 84 passing only υ N is sequentially inserted into the recessed part 83C in the direction opposite to the rotation of the original plate 83, and the remaining recessed part 83C, that is, the band pass filter plate 84 The uninterrupted inlet portion 83C has the same size as the band pass filter plate 84 and a light blocking plate (not shown) to block the light 17, and then bolts the fastener 83E. When it is fastened and fixed with 83F), as the rotating disc 83 rotates, the detection sensor 89A installed in the detection hole 89 detects the detection hole 82C and detects it as shown in FIG. 5 (a). Detection of the signal S 11 , that is, one detection signal S 11 is detected as the rotating disc 83 rotates one time, and the detection sensor 88A provided in the detection zone 88 detects the detection hole 82B. The detection signal S 21 , S 22 ,... Are sequentially detected and input to the computer 4 as shown in FIG. 5 (b), so that the computer 4 selects any band pass filter plate 84. barrel It is possible to know whether the sun is focused on the slit 86, and among the light 17 emitted from the GDL 1 , the resonance frequencies υ 1 , υ 2 ,. , the light 17 of ν N has the resonance frequencies υ 1 , υ 2 ,... as the rotating polyhedron 83 rotates. , the bands pass through the band pass filter plate 84 that passes only N, and are sequentially focused on the slit 86, so that the PMT 85 returns the resonance frequencies ν 1 , υ 2 ,... as shown in FIG. , ν N intensities I 1 , I 2 ,. , I N are sequentially detected and the detected intensities I 1 , I 2 ,... , I N is amplified and amplified by the analog / digital converter 31, converted into a digital signal, and then input to the computer 4.

이와 같은 동작을 M번 반복하면, 공명주파수 υ1, υ2, …, υN의 강도 I1, I2, …, IN을 순차적으로 검출하고, 그 검출한 강도 I1, I2, …, IN는 각기 더한 후 검지구(89)의 검지센서(89A)가 검지공(82C)을 검출한 검출신호(S11)의 수 즉, M으로 나누어 각 공명주파수 υ1, υ2, …, υN의 평균강도 I11, I21, …, IN1과 I11', I21', …, IN1'을 구하게 된다. 그 평균강도를 비교하여 측정샘플에 포함되어 있는 원소의 알려지지 않은 농도를 측정할 수 있게 된다.If this operation is repeated M times, the resonance frequencies υ 1 , υ 2 ,. , ν N intensities I 1 , I 2 ,. , I N are sequentially detected and the detected intensities I 1 , I 2 ,... , I N are added to each of the detection signals 89A of the detection unit 89, and the number of detection signals S 11 detected by the detection holes 82C is divided by M, that is, each resonance frequency υ 1 , υ 2 ,. , υ N mean strengths I 11 , I 21 ,. , I N1 and I 11 ', I 21 ',... , I N1 '. By comparing the average intensity, it is possible to determine the unknown concentration of the elements contained in the measurement sample.

이상에서 상세히 설명한 바와 같이 본 발명은 각 원소의 공명주파수를 통과시키는 밴드패스필터판을 사용함으로써 분광계를 소형화할 수 있고, 분광계를 짧은 시간내에 진공상태로 만들 수 있음은 물론 하나의 PMT와 증폭 및 아날로그/디지탈변환기를 사용하여 원가절감을 기할 수 있을 뿐만 아니라 측정할 원소가 바뀌어도 밴드패스필터판을 간단히 교체시켜 측정할 수 있는 효과가 있다.As described in detail above, the present invention can miniaturize the spectrometer by using a band pass filter plate through which the resonance frequency of each element is passed, and can make the spectrometer in a vacuum state within a short time, as well as one PMT and amplification and In addition to cost reduction using analog / digital converters, the bandpass filter plate can be easily measured even if the element to be measured changes.

Claims (1)

DGL(1)에서 발산되어 윈도우(90)를 통한 빛(17)을 집속렌즈(87)로 집속시키고, 그 빛(17)에 포함된 공명주파수의 강도를 PMT(85)로 검출하여 증폭 및 아날로그/디지탈변환기(31)를 통해 컴퓨터(4)에 입력시키는 무기물 분석장치의 분광계에 있어서, 구동모타(81)의 회전축(81A)에 회전원판(82)을 설치하여 그 회전원판(82)에 회전다면체(83)를 설치하고, 회전다면체(83)의 각면(83A)에 안내흠(83B)을 갖는 요입부(83C)를 형성하여 밴드패스필터판(84)이 끼워지게 함과 아울러 면(83A)의 상면에 고정구(83E)를 고정하며, 회전다면체(83)의 중앙부에는 PMT(85)를 설치함과 아울러 슬리트(86)를 설치하여 집속렌즈(87)를 통한 빛(17)이 그 슬리트(86)에 집속되게 하는 한편, 상기 요입부(83C)의 전방 가장자리에 대응되는 원판(82)의 가장자리에는 검지공(82B)을 천공하고, 하나의 검지공(82B)의 내측에는 검지공(82C)를 천공하며, 원판(82)의 외측에는 상기 검지공(82B)(82C)을 검출하는 검지센서(88A)(89A)가 설치된 검지고(88)(89)를 고정하여 구성함을 특징으로 하는 무기물 분석장치의 분광계.The light 17 emitted from the DGL 1 focuses the light 17 through the window 90 to the focusing lens 87, and the intensity of the resonance frequency included in the light 17 is detected by the PMT 85 to amplify and analog. In the spectrometer of the inorganic analyzer for inputting to the computer 4 via the digital converter 31, the rotary disk 82 is provided on the rotary shaft 81A of the drive motor 81, and the rotary disk 82 is rotated. The polyhedron 83 is provided, and the concave portion 83C having the guide flaw 83B is formed on each surface 83A of the rotating polyhedron 83 so that the band pass filter plate 84 is fitted and the surface 83A. Fixing the fastener 83E on the upper surface of the, and in the center of the rotating polyhedron 83, the PMT 85 is installed, and the slit 86 is installed so that the light 17 through the focusing lens 87 is the slip The detection hole 82B is drilled at the edge of the disc 82 corresponding to the front edge of the recessed portion 83C, while the detection hole 82B is focused. The detection hole (82C) is drilled on the side, and on the outside of the disc (82), the detection sensors (88A, 89A) for detecting the detection holes (82B) and (82C) are fixed, Spectrometer of the inorganic analyzer, characterized in that the configuration.
KR1019870008369A 1987-07-30 1987-07-30 Spectrometer of inorganic matter analysis instrument KR900005328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019870008369A KR900005328B1 (en) 1987-07-30 1987-07-30 Spectrometer of inorganic matter analysis instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019870008369A KR900005328B1 (en) 1987-07-30 1987-07-30 Spectrometer of inorganic matter analysis instrument

Publications (2)

Publication Number Publication Date
KR890002658A KR890002658A (en) 1989-04-11
KR900005328B1 true KR900005328B1 (en) 1990-07-27

Family

ID=19263448

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870008369A KR900005328B1 (en) 1987-07-30 1987-07-30 Spectrometer of inorganic matter analysis instrument

Country Status (1)

Country Link
KR (1) KR900005328B1 (en)

Also Published As

Publication number Publication date
KR890002658A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
EP0063431B1 (en) Spectroscopic analyzer system
US9157858B2 (en) Time-resolved spectroscopy system and methods for multiple-species analysis in fluorescence and cavity-ringdown applications
US4963023A (en) Correlational gas analyzer
US7170607B2 (en) Gas identification device
GB2077425A (en) Atomic fluorescence spectrometer
US3032654A (en) Emission spectrometer
Mitchell et al. Simultaneous multielement analysis using sequentially excited atomic fluorescence radiation
US3924950A (en) Atomic absorption spectroscopy with background correction
Adams et al. Analytical optoacoustic spectrometry. Part IV. A double-beam optoacoustic spectrometer for use with solid and liquid samples in the ultraviolet, visible and near-infrared regions of the spectrum
US4979123A (en) Apparatus for determining concentrations of mineral elements
KR900005328B1 (en) Spectrometer of inorganic matter analysis instrument
CN105527273B (en) The detection device and method of metal types in a kind of quick detection oil plant
US4178102A (en) Process and apparatus for measuring the concentration of a molecule of selective spectrum in a sample substance
JPH07280732A (en) Fluorescence spectrometer
CN112033539A (en) Novel transmission type fiber grating spectrometer
Kerkhoff et al. Rapid scanning constant energy synchronous fluorescence spectrometry: a comparison of flow cells
Melhuish et al. Double‐Beam Spectrofluorimeter
US3883248A (en) Method and apparatus for measuring concentration of substance in its gaseous phase
JPH05114586A (en) Detecting device for end point of dry etching
JP3324186B2 (en) Emission spectrometer
KR900005330B1 (en) Measuring method for inoragnic element
KR900005332B1 (en) Of inorganic element concentration analysis instrument
Fisher et al. The Use of Ensemble Averaging to Increase the Sensitivity of Measurements with Flame Photometers
JP2691124B2 (en) Optical gas analyzer
SU541093A1 (en) Photoelectric spectrum analyzer

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee