KR900004064B1 - Process for production of magnesium oxide - Google Patents

Process for production of magnesium oxide Download PDF

Info

Publication number
KR900004064B1
KR900004064B1 KR1019870015092A KR870015092A KR900004064B1 KR 900004064 B1 KR900004064 B1 KR 900004064B1 KR 1019870015092 A KR1019870015092 A KR 1019870015092A KR 870015092 A KR870015092 A KR 870015092A KR 900004064 B1 KR900004064 B1 KR 900004064B1
Authority
KR
South Korea
Prior art keywords
mgo
particle size
seawater
less
caa
Prior art date
Application number
KR1019870015092A
Other languages
Korean (ko)
Other versions
KR890009766A (en
Inventor
최규승
신정철
김의훈
이상완
Original Assignee
포항종합제철 주식회사
정명식
재단법인 산업과학기술연구소
박태준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식, 재단법인 산업과학기술연구소, 박태준 filed Critical 포항종합제철 주식회사
Priority to KR1019870015092A priority Critical patent/KR900004064B1/en
Publication of KR890009766A publication Critical patent/KR890009766A/en
Application granted granted Critical
Publication of KR900004064B1 publication Critical patent/KR900004064B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

The process for producing magnesium oxide as anneal separating agent for directional electric steel plate, comprises the step of precipitating magnesium hydroxide by the reaction of seawater and calcium hydroxide, the step of cleaning magnesium hydroxide to include max. 0.1 wt.% total weight of K, Na and Cl and 0.5-3.0 wt.% other impurities, the step of crushing the dried magnesium hydroxide to under 3 micron meter average particle size, and the step of baking the crushed magnesium hydroxide at 950-1050 deg.C.

Description

방향성 전기강판 소둔분리제용 MgO 제조법Method for manufacturing MgO for oriented electrical steel sheet annealing separator

제 1 도는 소성시간 및 온도에 따른 MgO의 활성화 능력을 나타내는 CAA도의 변화를 나타내는 그래프.1 is a graph showing a change in the degree of CAA showing the activation ability of MgO with the firing time and temperature.

제 2 도는 MgO의 CAA도에 따른 수화정도변화를 나타내는 그래프.2 is a graph showing the degree of hydration according to the CAA diagram of MgO.

제 3 도는 소성전 Mg(OH)2의 입도 및 소성후 MgO의 입도분포의 누적합을 나타내는 그래프.3 is a graph showing the cumulative sum of particle size distribution of Mg (OH) 2 before firing and particle size distribution of MgO after firing

본 발명은 방향성 전기강판 표면에 도포되어 절연성 및 자기적 특성이 우수한 그라스 피막층을 형성시킬수 있는 방향성 전기강판 소둔분리제용 MgO의 제조방법에 관한 것이다. 일반적으로, 방향성 전기강판 제조에 있어서 소둔분리제 도포는 탈탄소둔후 소재표면에 MgO 현탁액을 도포하여 고온소둔시 코일상호간의 융착을 방지하고, 소재표면의 산화물(주로 FeO, SiO2)과 반응하여 절연성이 우수한 그라스피막을 형성시키기 위함이며, 여기에 사용되는 소둔분리제로는 통상 MgO가 사용되고 있다. MgO는 돌로마이트등 광석을 소성하여 제조하거나 해수중의 Mg 이온을 Ca(OH)2등의 알카리 수산화물들에 의해 침전시킨후, 세정, 건조, 파쇄 및 소성하여 제조하는 방법이 있으나, 통상 전기강판용에 사용되는 MgO는 해수로부터 제조되는 것으로 이의 대부분 수요를 차지하는 고밀도, 비활성의 내화물용(통상 마그네시아라함)과는 달리 저밀도, 활성 MgO가 사용되는데 이것은 고온소둔시 소재표면의 산화물층과 반응하여 포오스테라이트(2MgO, SiO2)의 내화물층 형성이 요구되기 때문이다. 소둔분리제 도포공정은 MgO 분말을 물과 혼합하여 현탁물을 만들고 이것을 고무코타로 도포한 후 소재표면에 부착된 현탁물을 건조하여 이후 고온소둔에 의해 절연피막을 형성하므로, 소둔분리용 MgO는 현탁시 점성이 좋아 소재에 견고하게 잘 부착하여야하고 또한 형성된 피막이 치밀하고 균일하게 주요 요구특성인 절연성, 밀착성과 소재의 자기적 특성에도 양호하여야 한다. 통상사용되는 MgO는 대부분이 고활성(구연산 활성화도임, CAA도 100이하)이고 일부 저활성(CAA도 100이상)이 사용되고 있으며, 고활성을 사용시 혼합액 도포공정에서 쉽게 수화되어 Mg(OH)2로 변하여 도포부착성은 양호하나 이 수화수분은 고온소둔공정에서 분해되어 피막형성을 방해, 차단함으로서 형성피막이 불안정하여지며, 저활성 사용시 형성피막 특성은 양호하나 도포부착성이 나빠 작업성이 불량해지는 문제점이 있다.The present invention relates to a method for producing MgO for grain-oriented electrical steel sheet annealing separator that can be applied to the surface of the grain-oriented electrical steel sheet to form a glass coating layer having excellent insulation and magnetic properties. In general, in the production of grain-oriented electrical steel sheet, the annealing separator is coated with MgO suspension on the surface of the material after decarbonization annealing to prevent fusion between coils at high temperature annealing, and reacts with oxides (mainly FeO, SiO 2 ) on the surface of the material. In order to form the glass film excellent in insulation, MgO is used normally as an annealing separator used here. MgO is produced by calcining ore such as dolomite or by precipitating Mg ions in seawater with alkali hydroxides such as Ca (OH) 2, and then washing, drying, crushing and calcining. Unlike the high density, inert refractory materials (usually called magnesia), which are manufactured from seawater, which are mostly made of seawater, MgO is used for low density and active MgO. This is because the formation of a refractory layer of (2MgO, SiO 2 ) is required. In the annealing separator application process, MgO powder is mixed with water to make a suspension, and this is coated with rubber coat, and then the suspension attached to the surface of the material is dried to form an insulating film by high temperature annealing, so that the annealing separation MgO is suspended. It should be well adhered to the material because of its good point of view, and the film formed should be good for the main characteristics such as insulation, adhesion and magnetic properties of the material. Most commonly used MgO is high activity (citric acid activation, CAA is less than 100) and some low activity (CAA is more than 100) is used. When high activity is used, MgO is easily hydrated in the mixed solution coating process, and thus Mg (OH) 2 However, the coating adhesion is good, but this hydration water is decomposed in the high temperature annealing process to prevent and block the film formation, resulting in unstable film formation. There is this.

본 발명자는 이의 제문제를 해결하기위해 MgO의 제특성을 검토하고, 이에 근거하여 본 발명을 제안하게 된것으로서, 본 발명은 적정범위의 활성화능, 함유성분 및 입도를 조정하므로서, 혼합액의 도포부착성이 우수하면서도 피막특성이 양호한 방향성 전기 강판의 소둔분리제용 MgO를 제조하고자 하는데, 그 목적이 있다.The present inventors have studied the characteristics of MgO in order to solve this problem, and proposed the present invention based on the present invention. The present invention adjusts the application ability of the mixed liquid by adjusting the appropriate range of activating ability, content of component and particle size. The purpose of the present invention is to prepare MgO for annealing separator of a grain-oriented electrical steel sheet having excellent coating properties and good coating properties.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 해수중의 Mg이온을 Ca(OH)2등의 알칼리수산화물과 반응시켜 Mg(OH2)를 침전시킨 후, 세정, 건조, 소성하여 방향성 전기강판 소둔분리제용 MgO를 제조하는 방법에 있어서, 해수와 Ca(OH)2와의 반응에 의하여 Mg(OH)2를 석출, 침전시키는 단계 ; Mg(OH)2이외의 함유성분중 K, Na 및 Cl의 합을 0.lwt% 이하로 하고 기타성분을 포함하여 총성분이 0.5-3.0wt%가 되도록 Mg(OH)2를 세정하는 단계 ; 세정된 Mg(OH)2를 건조하는 단계:입경이 50μm 이상인 입자가 5%이하이면서 평균입경이 3μm이상인 입자가5%이하이면서 평균입경이 3μm이하가 되도록 건조된 Mg(OH)2를 파쇄하는 단계 : 및 파쇄된 Mg(OH)2를 950-1050℃의 온도에서 소성하는 단계를 포함하여 CAA도 250-450초의 저활성을 갖는 방향성 전기강판소둔분리제용 MgO를 제조하는 방법에 관한 것이다.In the present invention, Mg ions in seawater are reacted with alkali hydroxides such as Ca (OH) 2 to precipitate Mg (OH 2 ), and then washed, dried and calcined to produce MgO for grain-oriented electrical steel sheet annealing separator. , Precipitation and precipitation of Mg (OH) 2 by reaction of seawater with Ca (OH) 2 ; Mg (OH) comprising: a component of the sum of K, Na and Cl containing other than 2 to less than 0.lwt% and by washing the Mg (OH) 2 has a total of components such that 0.5-3.0wt% including other components; Drying the washed Mg (OH) 2 : Crushing the dried Mg (OH) 2 to 5% or less of the particles having a particle size of 50 μm or more and 5% or less of the particles having an average particle size of 3 μm or less and 3 μm or less of the average particle size. Step: and calcining the crushed Mg (OH) 2 at a temperature of 950-1050 ℃ CAA also relates to a method for producing MgO for a grain-oriented electrical steel sheet annealing separator having a low activity of 250-450 seconds.

본 발명의MgO를 사용하는 대상소재로는 2.8-3.2wt%의 Si를 함유하고 결정방위가 (110)[001]인 방향성 전기강판을 들 수 있으며, 이 탈탄소둔판에 소둔분리제로 MgO를 제조하여 사용하는 기술이 포함된다.The target material using the MgO of the present invention is a oriented electrical steel sheet containing 2.8-3.2wt% Si and the crystal orientation is (110) [001], to prepare MgO as an annealing separator in the decarbonized annealing plate It includes techniques to use.

그라스 피막을 균일하고 치밀하게 형성시키는 가장 중요한 요인은 MgO 자체의 활성화 능력으로 이것은 구연산 용액에 의한 수화속도를 나타내는 CAA도로 표시하며, CAA도는 소성조건에 의하여 좌우되고 있는데 소성온도와 시간에 따른 CAA도를 제 1 도에서 보면 소성시간에 따른 영향은 크지않고 소성온도가 중요하며 소성온도가 높을수록 CAA도는 증가하여 저활성화 즉 활성화능력을 상실함을 알 수 있다.The most important factor in forming the glass film uniformly and densely is the ability of MgO itself to be activated, which is expressed as a CAA which indicates the rate of hydration by citric acid solution, and the degree of CAA depends on the firing conditions. In Figure 1 it can be seen that the effect of the calcination time is not significant, the calcination temperature is important, and as the calcination temperature is higher, the CAA degree increases to lose low activation, that is, the activation ability.

공지기술인 고활성 MgO는 수화속도가 빠르다는 것이며 활성화도인 CAA와 이것을 30℃ 물에서 한시간 정치시의 수화정도를 제 2 도에 나타내고 있는데 CAA도가 작을수록 수화정도는 크고 특히 CAA도 250초이상에서는 수화능력이 거의 없으므로 본 발명의 목적을 충분히 만족하며, 450이상에서는 혼합현탁액의 점성이 너무 작아 소재에의 부착성이 불량하고 피막형성 속도가 너무 늦어서 생산공장에서의 적용이 어려운 문제점이 있어 초적 CAA도인 250-450초를 가질 수 있는 최적 소성온도는 950-1050℃임을 제 1 도에서 확인할 수 있다.The well-known high-activity MgO has a high hydration rate and shows the activation degree of CAA and the degree of hydration at 30 ° C. for one hour in water. The smaller the degree of CAA, the greater the degree of hydration, and in particular, CAA is more than 250 seconds. Since there is little hydration ability, it satisfies the object of the present invention, and at 450 or more, the viscosity of the mixed suspension is so small that the adhesion to the material is poor and the film formation rate is too slow, making it difficult to apply in the production plant. It can be seen in Figure 1 that the optimum firing temperature, which can have a degree of 250-450 seconds, is 950-1050 ° C.

후술하는 실시예에서 볼 수 있는 바와같이 저활성 MgO 사용에 따른 도포작업시 부착성 악화를 해결하고자 해수를 사용 MgO 제조시 불가피하게 함유되는 Mg이외의 원소를 조사한 바 Ca, Si, Al, Fe, K, Na, Cl, S, B가 대부분이며 이 성분함유는 모두가 혼합현탁액의 점성을 증가시켜 도포작업성을 향상시킴이 확인되였으며, 그중 K, Na, Cl은 그라스 피막형성에 악영향을 끼쳤지만 Ca, Si등 기타 성분은 피막형성을 촉진하여 절연성 및 밀착성등 피막특성뿐만 아니라 제품의 자기적 특성도 향상시킴이 확인되었다.As can be seen in the examples below, in order to solve the deterioration of adhesion during the application of low activity MgO, seawater was used to investigate elements other than Mg inevitably contained in the production of MgO. K, Na, Cl, S, and B are the majority, and all of these components have been found to increase the viscosity of the mixed suspension to improve the coating workability, of which K, Na, Cl have an adverse effect on the glass film formation. However, it was confirmed that other components such as Ca and Si promoted the film formation to improve the magnetic properties of the product as well as the film properties such as insulation and adhesion.

따라서, 본 발명에서는Mg(OH)2에 함유되는 기타원소함량을 0.5-3.0wt%로 제한하였으며, 이 기타원소중 K, Na 및 Cl의 합은 0.1wt% 이하로 제한하였다. 상기와 같이 기타원소의 함량을 제한한 이유는 기타원소함량이 0.5wt% 이하인 경우에는 도포작업성 향상에 도움이 않되고, 3wt% 이상인 경우에는 형성피막이 불균일해질 염려가 있기때문이며, 이러한 성분조성은 MgO 제조공정에서의 성분관리가 용이하여 제조원가를 낮추는데 유용하게 작용하게 될 것이다.Therefore, in the present invention, the content of other elements contained in Mg (OH) 2 was limited to 0.5-3.0 wt%, and the sum of K, Na, and Cl in these other elements was limited to 0.1 wt% or less. The reason for limiting the content of other elements as described above is that when the other element content is 0.5wt% or less, it does not help to improve the coating workability, and when 3wt% or more, the forming film may become uneven. It is easy to manage the ingredients in the manufacturing process will be useful to lower the manufacturing cost.

또한, 해수와 Ca(OH)2와의 반응에 의하여 침전된Mg(OH)2내에 함유된 기타 성분을 본 발명에 부합되는 범위로의 조성은 통상적인 해수세정 및 순수(정수)세정에 의하여 달성될 수 있는데, 이를 하기 표 1 를 통해 설명한다.In addition, the composition of the other components contained in Mg (OH) 2 precipitated by the reaction of seawater with Ca (OH) 2 to a range consistent with the present invention can be achieved by conventional seawater washing and pure water (clean water) cleaning. It can be described through Table 1 below.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

Mg(OH)2의 함유불순물에 있어서 통상방법인 해수세정 및 정수세정에 의해 본 발명의 함유범위로 쉽게제조되는데, 상기 표 1 에서 알수 있는 바와같이 K, Na 및 Cl의 합을 0.1wt%로 억제하는 것은 해수세정후, 정수세정 3, 4회 정도에서 또한 기타 성분 0.5-3wt%는 해수세정만으로도 가능함을 알 수 있다.For impurities containing Mg (OH) 2 , it is easily prepared in the range of the present invention by seawater washing and water purification, which are common methods, and as shown in Table 1, the sum of K, Na, and Cl is 0.1 wt%. It can be seen that after washing seawater, at about 3 or 4 times of water purification, 0.5-3wt% of other components can be only washed with seawater.

본 발명에서는 상기 세정방법만에 한정되는 것은 아니며, 어떠한 세정방법을 사용하더라도 상기와 같은 기타성분을 함유하는 경우에는 모두 적용된다.In the present invention, the present invention is not limited to the above-mentioned cleaning method, and any cleaning method may be used in the case of containing any other components as described above.

한편, 도포작업성 향상을 위해서는 사용 MgO의 입자크기 제어가 필요한데 초기Mg(OH)2및 950℃,3시간 소성후 MgO의 입자크기를 누적합으로 제 3 도에 나타내고 있는데 초기 Mg(OH)2는 소성에 의하여 수분휘발 및 내부기공 축소등에 의해 MgO의 입자크기가 감소함으로 나타나므로 초기 Mg(OH)2의 입자크기를 제어할 필요가 있다.On the other hand, there coating operation to the improvement requires the particle size control of the use MgO Initial Mg (OH) 2 and 950 ℃, 3 sigan shows a particle size of the fired MgO as the cumulative sum to a third the initial Mg (OH) 2 Since the particle size of MgO decreases due to moisture volatilization and internal pore reduction by sintering, it is necessary to control the initial particle size of Mg (OH) 2 .

후술의 실시예에서 보면 Mg(OH)2의 입자가 3μm이하가 부착성 및 이후 피막형성에 우수하며 그 이상시부착성 불량에 의한 작업관리가 어려워 본 발명의 조건에서는 제외한다.In the examples described below, the particles of Mg (OH) 2 are 3 μm or less, which are excellent in adhesion and subsequent film formation, and are excluded from the conditions of the present invention due to difficulty in managing work due to poor adhesion.

이상 제특성 향상을 위한 요인을 종합하여 최적소둔분리제 도포는 Mg(OH)2의 성분 및 입도관리, 소성조건관리에 의하여 특정 MgO를 제조함으로서 가능하게 되었다.The application of the optimum annealing separator in combination with the factors for the improvement of the above-described determinants has been made possible by the preparation of specific MgO by the composition of Mg (OH) 2, the particle size management and the firing condition management.

이하, 실시예를 통하여 설명하기로 한다.Hereinafter, a description will be given through Examples.

[실시예 1]Example 1

해수와 Ca(OH)2의 반응에 의하여 제조된 Mg(OH)2을 상기 표 1 에서와 같이 통상의 해수 및 정수세정에 의해 Mg(OH)2에 함유된 K:Na:Cl의 합을 0.02-0.3wt%로 하고, 기타성분을 포함하여 총함유원소량을 1.75-l.77wt%로 한 후 건조, 파쇄하여 입자와 평균크기를 2μm으로하여 이것을 980℃에서 3시간 소성하여 CAA도 410초의 MgO를 만들었다.Mg (OH) 2 prepared by the reaction of seawater with Ca (OH) 2 is 0.02, and the sum of K: Na: Cl contained in Mg (OH) 2 by ordinary seawater and water purification as shown in Table 1 is 0.02. It is -0.3wt%, and the total content of elements including other components is 1.75-l.77wt%, dried and crushed to make particles and average size 2μm, and calcined at 980 ℃ for 3 hours, and the CAA is 410 seconds. MgO was made.

상기MgO를 MgO:H2O=12:88로 혼합하여 교반기로 교반하여 완전히 분산액을 만들고 이것을 도포하고,600℃에서 건조후 1200℃, H2분위기에서 20시간 고온소둔하여 유리질 절연피막을 얻었다.The MgO was mixed with MgO: H 2 O = 12: 88, stirred with a stirrer to form a dispersion completely, and then coated, and dried at 600 ° C., followed by annealing at 1200 ° C. and H 2 for 20 hours to obtain a glassy insulating coating.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

이때 혼합액의 액특성 고온소둔후의 피막특성 및 자기적 특성을 측정하고, 그 결과를 하기 표 3 에 나타내었다.At this time, the film properties and magnetic properties of the liquid mixture after high temperature annealing were measured, and the results are shown in Table 3 below.

여기서, 특히, 부착량은 건조후 무게인 g/㎡이고 절연성은 ASTM A715-15에 따른 Franklin 절연치인 Amp.로 밀착성은 180굴곡시 피막박피가 없는 최소직경인 mmΨ, 자성은 단판측정기로 측정한 W17/50의 철손 및 B10의 자속밀도를 나타내었다.Here, in particular, the adhesion amount is the weight g / ㎡ after drying, the insulation is Franklin insulation value Amp. According to ASTM A715-15, the adhesion is 180 mm bend the minimum diameter without film peeling, magnetic properties W17 measured by a single plate measuring instrument Iron loss of / 50 and magnetic flux density of B10.

[표 3]TABLE 3

Figure kpo00003
Figure kpo00003

상기 표3에서 나타난 바와같이, K, Na, Cl의 양이 높아지면 점도 및 부착량이 증가하여 작업성을 향상시키지만 절연성 및 밀착성이 열화되고 외관형성에 반점 및 얼룩이 나타나므로 0.1% 이하로 관리를 요하며 본 발명의 범위인 0.1%이하 관리로 액특성이 우수하고 피막특성이 양호한 방향성 전기강판의 제조가 가능함을 알 수 있다.As shown in Table 3, when the amount of K, Na, Cl is increased, the viscosity and adhesion increase to improve workability, but the insulation and adhesion deteriorate, and spots and stains appear on the appearance, which requires management to 0.1% or less. And it can be seen that the management of less than 0.1% of the scope of the present invention can produce a grain-oriented electrical steel sheet having excellent liquid properties and good film properties.

[실시예 2]Example 2

상기 실시예 1과 동일하게 제조된 Mg(OH)2의 K, Na, Cl의 양을 0.08%로 하고 기타성분을 포함하여 총 함유원량을 0.2-3.5%로 조정한 후 제조건을 동일하게 처리하여 MgO를 제조하였으며 이때 CAA는 390초이었다.The amount of K, Na, Cl of Mg (OH) 2 prepared in the same manner as in Example 1 was adjusted to 0.08%, and the total content was adjusted to 0.2-3.5% including other components. MgO was prepared, with a CAA of 390 seconds.

이것을 실시예 1과 동일시편에 동일처리후 이때의 액특성, 피막특성 및 자기적특성을 조사하고, 그 결과를 하기표 4 에 나타내었다.This and the same specimen as in Example 1 after the same treatment, the liquid properties, coating properties and magnetic properties were investigated, and the results are shown in Table 4 below.

[표 4]TABLE 4

Figure kpo00004
Figure kpo00004

상기 표4에 나타난 바와같이, 함유원소가 증가하면 점도 및 부착량이 증가하여 작업성이 향상되고 절연성과 밀착성이 양호하며 특히 자속밀도 및 철손의 자기적 특성이 향상되어 우수한 품질의 제품생산이 가능하며 3%이상 첨가시 작업성은 좋으나 피막특성이 열화되어 본 발명의 범위에서 제외하였다.As shown in Table 4, when the content of the element is increased, the viscosity and adhesion amount is increased, the workability is improved, the insulation and adhesion is good, and in particular, the magnetic properties of magnetic flux density and iron loss are improved, which enables the production of excellent quality products. When added more than 3% workability is good but the film properties are deteriorated and excluded from the scope of the invention.

[실시예 3]Example 3

해수와 Ca(OH)2와의 반응에 의하여 제조된Mg(OH)2의 총함유성분을 1.53-1.55%로 하고 건조파쇄후 입자크기가 1.6μm인 Mg(OH)2를 소성조건을 700-1200℃로 변화시켜 CAA도가 80-800초의 MgO를 제조하였고 이것을 실시예 1과 동일하게 처리후 제특성의 변화를 조사하고, 그 결과를 하기 표 5 에 나타내었다.The total content of Mg (OH) 2 prepared by the reaction of seawater with Ca (OH) 2 is 1.53-1.55%, and Mg (OH) 2 having a particle size of 1.6 μm after drying and crushing is 700-1200 MgO of 80-800 seconds was prepared by changing the temperature to ℃, and the change of various properties after the treatment was the same as in Example 1, and the results are shown in Table 5 below.

[표 5]TABLE 5

Figure kpo00005
Figure kpo00005

상기 표 5 에 나타난 바와같이, CAA도가 증가하여 활성을 소실할 수록 점도 및 부착성 저하로 작업성은 열하되지만 절연성 및 밀착성등 피막품질 특성이 극히 우수하며 600초 이상에서는 피막형성속도가 늦어져 피막특성이 향상이 불가능하며 250-450초 사이에서, 최적의 피막특성이 가능함을 알 수 있다.As shown in Table 5, as the CAA degree increases and the activity is lost, the workability is deteriorated due to the decrease in viscosity and adhesion, but the film quality characteristics such as insulation and adhesion are extremely excellent, and the film formation rate is slowed over 600 seconds. This improvement is not possible and it can be seen that between 250 and 450 seconds, optimum film properties are possible.

[실시예 4]Example 4

예 3의 Mg(OH)2를 건조후 파쇄하여 입자크기를 0.5-22.0μm로 조정후 l000℃에서 3시간 소성하여 CAA도 400초의 MgO를 제조한 후 예 1의 조건으로 처리하여 고온소둔을 실시하여 제특성 변화를 표 6 에 나타내었다.Mg (OH) 2 of Example 3 was dried and crushed to adjust the particle size to 0.5-22.0 μm, and then calcined at l000 ° C. for 3 hours to prepare MgO having a CAA degree of 400 seconds, and then subjected to high temperature annealing by treating under the conditions of Example 1. The various characteristics are shown in Table 6.

[표 6]TABLE 6

Figure kpo00006
Figure kpo00006

Claims (1)

해주중의 Mg이온을 Ca(OH)2등의 알칼리 수산화물과 반응시켜 Mg(OH)2를 침전시킨 후, 세정, 건조, 소성하여 방향성 선기강판 소둔분리제용 MgO를 제조하는 방법에 있어서, 해수와 Ca(OH)2와의 반응에 의하여 Mg(OH)2를 석출, 침전시키는 단계:Mg(OH)2이외의 함유성분중 K, Na 및 Cl의 합을 0.1wt% 이하로 하고 기타성분을 포함하여 총성분의 0.5-3.0wt%가 되도록 Mg(OH)2를 세정하는 단계 : 입경이 5μm 이상인 입자가 5%이하이면서 평균입경이 3μm 이하가 되도록 건조된Mg(OH)2를 파쇄하는 단계 : 및 파쇄된 Mg(OH)2를 950-1050℃의 온도에서 소성하는 단계를 포함하여 CAA도 250-450초의 저활성의 MgO를 제조하는 것을 특징으로 하는 방향성 전기강판 소둔분리제용 MgO의 제조방법.In the method of producing MgO for an aromatic steel sheet annealing separator by reacting Mg ions in seawater with alkali hydroxides such as Ca (OH) 2 to precipitate Mg (OH) 2, and then washing, drying and firing. Precipitating and precipitating Mg (OH) 2 by reaction with Ca (OH) 2 : The sum of K, Na and Cl among the components other than Mg (OH) 2 is 0.1wt% or less and includes other components. Washing Mg (OH) 2 to 0.5-3.0 wt% of the total ingredients: crushing the dried Mg (OH) 2 so that the average particle size is 3 μm or less while the particles having a particle size of 5 μm or more are 5% or less: and Method for producing MgO for grain-oriented electrical steel sheet annealing separator comprising the step of calcining the crushed Mg (OH) 2 at a temperature of 950-1050 ℃ MCAO also low activity 250-450 seconds.
KR1019870015092A 1987-12-28 1987-12-28 Process for production of magnesium oxide KR900004064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019870015092A KR900004064B1 (en) 1987-12-28 1987-12-28 Process for production of magnesium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019870015092A KR900004064B1 (en) 1987-12-28 1987-12-28 Process for production of magnesium oxide

Publications (2)

Publication Number Publication Date
KR890009766A KR890009766A (en) 1989-08-03
KR900004064B1 true KR900004064B1 (en) 1990-06-11

Family

ID=19267446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870015092A KR900004064B1 (en) 1987-12-28 1987-12-28 Process for production of magnesium oxide

Country Status (1)

Country Link
KR (1) KR900004064B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155606B1 (en) * 2012-02-22 2012-06-13 삼화화학공업주식회사 Manufacturing process of magnesia for annealing separator of grain oriented electrical steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600804B1 (en) * 2005-04-25 2006-07-18 주식회사 포스렉 Method for manufacturing magnesia for annealing separator of oriented electrical steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155606B1 (en) * 2012-02-22 2012-06-13 삼화화학공업주식회사 Manufacturing process of magnesia for annealing separator of grain oriented electrical steel

Also Published As

Publication number Publication date
KR890009766A (en) 1989-08-03

Similar Documents

Publication Publication Date Title
US4249966A (en) Method of forming a forsterite insulating film on the surface of a grain-oriented silicon steel sheet
US4443425A (en) Magnesium oxide composition for coating silicon steel
GB2181723A (en) Stabilised zirconia
US4543198A (en) Ferrite magnetic material for magnetic recording and process for the preparation thereof
Patschger et al. Piezoelectric glass-ceramics produced via oriented growth of Sr 2 TiSi 2 O 8 fresnoite: thermal annealing of surface modified quenched glasses
JP4192282B2 (en) Method for producing MgO for annealing separator
KR900004064B1 (en) Process for production of magnesium oxide
JP7470242B2 (en) Annealing separator manufacturing method, annealing separator, and grain-oriented electrical steel sheet
KR0173781B1 (en) Magnesium oxide coating for electrical steels and the method of coating
JP4192283B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020105595A (en) Annealing separation agent for grain oriented silicon steel sheet and method for manufacturing grain oriented silicon steel sheet
KR101155606B1 (en) Manufacturing process of magnesia for annealing separator of grain oriented electrical steel
JPH0425349B2 (en)
JP3356933B2 (en) Annealing separator with excellent film-forming ability and method for producing grain-oriented electrical steel sheet using the same
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JPS6044262B2 (en) magnesia clinker
JP2667110B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties
JPS6045145B2 (en) Magnesia sintered body and its manufacturing method
US3282747A (en) Annealing cube texture iron-silicon sheets
JPS5867871A (en) Application of parting agent for high-temperature annealing directional electromagnetic steel sheet
JP2008285393A (en) Calcia material and its manufacturing process
JPS59185781A (en) Protective coating material for annealing grain-oriented silicon steel plate
JPS60210801A (en) Manufacture of magnetic fine particle
JPH09256068A (en) Production of grain-oriented silicon steel sheet for obtaining excellent glass coating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19971229

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee