KR900000022B1 - Semiconductor laser - Google Patents

Semiconductor laser Download PDF

Info

Publication number
KR900000022B1
KR900000022B1 KR1019860006144A KR860006144A KR900000022B1 KR 900000022 B1 KR900000022 B1 KR 900000022B1 KR 1019860006144 A KR1019860006144 A KR 1019860006144A KR 860006144 A KR860006144 A KR 860006144A KR 900000022 B1 KR900000022 B1 KR 900000022B1
Authority
KR
South Korea
Prior art keywords
laser
quantum well
regions
layer
region
Prior art date
Application number
KR1019860006144A
Other languages
Korean (ko)
Other versions
KR870003593A (en
Inventor
다다시 후꾸자와
나오끼 치노네
가즈히사 우오미
다까시 가지무라
Original Assignee
가부시기가이샤 히다찌세이사구쇼
미따 가쯔시게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시기가이샤 히다찌세이사구쇼, 미따 가쯔시게 filed Critical 가부시기가이샤 히다찌세이사구쇼
Publication of KR870003593A publication Critical patent/KR870003593A/en
Application granted granted Critical
Publication of KR900000022B1 publication Critical patent/KR900000022B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • H01S5/0424Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer lateral current injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The semiconductor laser for UHF oscillators has a laser structure including a laser active region (3) of multi-quantum well structure, cladding layers and a cap layer (2) formed on a substrate (1). Both end regions of the laser active region in the quantum well layer is converted into mixed crystal by impurity induced intermixing so that a multi-quantum well active region is sandwiched between mixed crystal regions (6,7). Impurity diffused regions are formed between the surface of the crystal and the mixed crystal regions, to form a current path and to inject carriers into the multi-quantum well region in a direction parallel to the laser active layer.

Description

반도체레이저Semiconductor laser

제1도 및 제2도는 본 발명의 실시예에서 설명하는 반도체레이저의 단면도.1 and 2 are cross-sectional views of a semiconductor laser according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반절연성 GaAs기판 2 : 언도우프 GaAlAs크래드층DESCRIPTION OF SYMBOLS 1 Semi-insulating GaAs substrate 2: Undoped GaAlAs cladding layer

3 : 언도우프초격자레이저활성층 4 : 언도우프 GaAlAs크래드층3: undoped superlattice laser active layer 4: undoped GaAlAs clad layer

5 : 언도우프 GaAs캡층 6 : n형이온주입영역5: undoped GaAs cap layer 6: n-type ion implantation area

7 : p형이온주입영역 8 : n형이온주입영역7: p-type ion implantation region 8: n-type ion implantation region

9 : p형이온주입영역 10, 11 : 전극9: p-type ion implantation region 10, 11: electrode

12, 13 : 마스크레이스법으로 주입한 이온주입영역12, 13: ion implantation region implanted by the mask race method

15, 16 : 이온주입영역15, 16: ion implantation zone

14 : 분자선에피택시법으로 재성장한 크래드층14: Re-grown cladding layer by molecular beam epitaxy

본 발명은 10㎓이상의 고속으로 변조할 수 있는 반도체 레이저에 관한 것이다.The present invention relates to a semiconductor laser capable of modulating at a high speed of 10 Hz or more.

반도체레이저의 변조주파수의 상한을 결정하는 요인의 하나로, 레이저의 pn접합용량이 클것을 들수 있다. 그 대책으로서, 레이저 발진에 필요한 레이저활성영역이외를 에칭에 의해 제거하여, 보다더 유전율이 낮은 재료로 매립한 구조를 가진 레이저가 J.E.Bowers들에 의해서 발표되어있다(J.E.Bowers et al., Appl. Phys. Lett. Vol 47(1985) P.78). 그러나, 반도체결정으로 매립하고 있기때문에 결함이 많이 발생하며, 그 결과, 수명이 짧아져서 실용적이 못된다.One of the factors that determine the upper limit of the modulation frequency of a semiconductor laser is that the pn junction capacitance of the laser is large. As a countermeasure, a laser having a structure in which a portion of the laser active region necessary for laser oscillation is removed by etching and embedded in a material having a lower dielectric constant is disclosed by JEBowers (JEBowers et al., Appl. Phys. Lett. Vol 47 (1985) P. 78). However, since it is embedded in a semiconductor crystal, many defects occur, and as a result, the service life is shortened and it is not practical.

본 발명의 목적은, 초고속변조가 가능해지도록 소자의 용량을 작게한 반도체레이저를 수명의 면에서도 문제가 없는 구조를 얻는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to obtain a structure in which a semiconductor laser having a small capacity of an element so that ultra-fast modulation is possible in terms of lifetime.

소자전체의 용량을 줄이기위해서는, 레이저발진에 필요한 pn접합의 용량과 기생용량을 감소시키지 않으면 안된다. 따라서, 본원 발명은 레이저에 흐르는 전류를 제한하는 구조나, 광의 모우드제한을 위한 구조가, 용량의 증가에 관계를 갖지않는 구조로 하는데 있다.In order to reduce the capacitance of the entire device, the capacitance and parasitic capacitance of the pn junction required for laser oscillation must be reduced. Therefore, the present invention is intended to have a structure in which the current flowing through the laser is limited and the structure for limiting the mode of light has no relation to the increase in capacitance.

또한, 본 발명의 반도체레이저는, 양자배리어의 높이와 폭이 두껍고, 양자사이즈효과가 큰 다중양자우물을 레이저활성층으로 하는 방법을 제시하고, 고밀도, 고효율의 레이저발진을 가능하게 하였다. 또한, 이구조는, 반도체레이저소자의 용량을 극한적으로 작게하는 일이 가능하고, 레이저의 변조주파수를 대폭적으로 증가시킬 수 있었다.In addition, the semiconductor laser of the present invention has proposed a method of making a multi-quantum well having a high quantum barrier and a large quantum size effect as a laser active layer, thereby enabling high density and high efficiency laser oscillation. In addition, this structure makes it possible to reduce the capacitance of the semiconductor laser element to an extremely small size and significantly increase the modulation frequency of the laser.

이하 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

[실시예 1]Example 1

제1도에 있어서, 반절연성 GaAs 기판(1)상에, 언도우프 Ga0.5-Al0.5As크래드층(2)(2㎛), 언도우프 GaAs 50Å/AlAs 50Å초격자활성층(3), 언도우프 Ga0.5Al0.5As크래드층(4)(2㎛), 언도우프 GaAs캡층(5)(0.2㎛)을 분자선 에피택시법(molecular epitaxy method)으로 성장한다. Si이온을 2.3MeV로 선량 2×1018Cm-2주입한다. 주입이온농도가 1×1018Cm-3를 초과하는 영역을(6)으로 나타낸다. 이어서 Al이온을 2.3MeV로 선량 4×1013Cm-2 주입한다. 이온이 주입된 영역을(7)로 나타낸다. 동일한 마스크를 사용하여, 가속전압 250KeV로 Be이온을 주입한다. Be농도가 높은 영역은(7)과 대체로 동일하다.In FIG. 1, the undoped Ga is placed on the semi-insulating GaAs substrate 10.5-Al0.5As cladding layer (2) (2 µm), undoped GaAs 50 mA / AlAs 50 mA superlattice active layer (3), undoped Ga0.5Al0.5As cladding layer 4 (2 mu m) and undoped GaAs cap layer 5 (0.2 mu m) are grown by molecular beam epitaxy method. Dose 2 × 10 Si at 2.3 MeV18Cm-2Inject. Implant ion concentration 1 × 1018Cm-3The area | region exceeding is shown by (6). The Al ions were then dosed at 2.3 MeV at 4 × 10.13Cm-2in Inject. A region into which ions have been implanted is shown by (7). Using the same mask, Be ions are implanted with an acceleration voltage of 250 KeV. The region of high Be concentration is generally the same as in (7).

이어서, 영역(8) 및 (9)에 각각 Si와 Be를 주입하여, n형 및 p형의 전극접촉영역을 형성한다. 이때. 주입전압을 저하시키면서 복수회 주입함으로서, 한결같은 n+및 p+영역을 얻는다. As압력하에서 850℃, 5시간의 어니일링을 행하여 영역(6)(7)의 초격자중의 Ⅲ족구성원자를 상호확산시켜서 혼합결정화한다. 혼합결정화된 영역(6)(7)사이에 끼워진 초격자활성층의 폭은 0.8∼1.5㎛가 되도록 이온주입용 마스크의 폭을 선정하였다.Subsequently, Si and Be are implanted into the regions 8 and 9, respectively, to form n-type and p-type electrode contact regions. At this time. By injecting a plurality of times while lowering the injection voltage, uniform n + and p + regions are obtained. After annealing at 850 DEG C for 5 hours under the As pressure, mixed crystallization is performed by mutually diffusing Group III members in the superlattices of the regions 6 and 7. The width of the ion implantation mask was selected so that the width of the superlattice active layer sandwiched between the mixed crystallized regions 6 and 7 was 0.8 to 1.5 mu m.

p쪽 또는 n쪽의 전극(10)(11)은, 폭 10㎛의 스트라이프형상을 이루고, 중앙부에 본딩용의 볼록부를 가진 형상으로 함으로서 용량의 저감을 도모하였다. 레이저의 공진기의 길이는 150㎛로 하였다.The p-side or n-side electrodes 10 and 11 form a stripe shape having a width of 10 µm and have a shape having a convex portion for bonding at the center portion, thereby reducing the capacity. The length of the laser resonator was 150 µm.

소자의 용량은, 1PF이하였다. 레이저발진의 스레소울드값은 5mA이고, 5mW출력시의 변조특성은, 실온에서 17㎓(3dB저하시), 10mW출력시에는 23㎓였다.The capacity of the device was 1 PF or less. The threshold value of the laser oscillation was 5 mA, and the modulation characteristic at 5 mW output was 17 Hz at room temperature (3 dB reduction) and 23 Hz at 10 mW output.

이와 같은 고속변조특성을 얻게된 이유를 다음에 설명한다. 본 구조에서는 캐리어의 주입을 초격자 에피택시층에 대하여 수직으로 행할 필요가 없기 때문에, 초격자의 배리어를 충분히 높게할 수 있고, 오우버 플로우에 의한 캐리어의 유실손실을 감소시킬 수 있다. 또 터널전류에 의한 주입을 행할필요가 없기때문에 배리어의 두께도 충분히 두껍게 할 수 있고, 개개의 양자우물의 에너지준위의 폭이, 서브밴드의 형성에 의해서, 흐려지는 것을 방지할 수 있다. 따라서 주입캐리어의 변화분에 대한 이득의 변화분(G)이 커지며, 레이저의 완화진동주파수(fr)가 커져서, 소자의 변조주파수를 크게할 수 있다.The reason why such a high speed modulation characteristic is obtained is explained next. In this structure, since the carrier is not required to be perpendicular to the superlattice epitaxy layer, the barrier of the superlattice can be made sufficiently high, and the loss of carrier loss due to the overflow can be reduced. In addition, since it is not necessary to perform injection by tunnel current, the thickness of the barrier can also be sufficiently thick, and the width of the energy level of each quantum well can be prevented from being blurred by the formation of the subbands. Therefore, the change G of the gain with respect to the change of the injection carrier becomes large, and the relaxation oscillation frequency fr of the laser becomes large, so that the modulation frequency of the device can be increased.

소자의 용량에 대해서 고찰한다. pn접합은 수 1000Å의 n형 및 p형의 이온주입영역이, 1㎛정도의 레이저 활성층을 개재해서 대향하고 있을뿐이며, 통상의 레이저구조에 비해서 극히 작다. 레이저발진시에는, p, n영역사이의 저항이 감소하기 때문에 주입영역(6)(8)과 (7)(9)사이의 용량도 나누어져서 더욱 용량이 작아진다. 캐리어의 주입을 모두 이온주입에 의해 형성하고 있으며 기판이나, 기타 에피택시층전체를 언도우프 할 수 있어, 용량을 저하시킬 수 있다.Consider the capacitance of the device. In the pn junction, n-type and p-type ion implantation regions of several thousand microseconds face each other via a laser active layer of about 1 mu m, and are extremely small compared with a conventional laser structure. At the time of laser oscillation, the resistance between the p and n regions decreases, so that the capacitance between the injection regions 6, 8, and 7, 9 is also divided, further reducing the capacitance. All of the carrier injection is formed by ion implantation, and the entire substrate and other epitaxy layers can be undoped, thereby reducing the capacity.

이상의 이유에 의해서, 극히 고속변조가 가능한 반도체레이저를 얻을 수 있었다.For the above reason, a semiconductor laser capable of extremely high speed modulation can be obtained.

[실시예 2]Example 2

이온주입장치와 분자선 에피택시장치를 초고진공의 이송실에서 결합시킨 장치로 제2도에 도시한 레이저를 제작하였다. 반절연성 GaAs기판(1)상에, 언도우프 Ga0.5Al0.5Al크래드층(2), 언도우프 Ga0.9Al0.1As 60Å/AlAs 80Å 초격자레이저활성층(3), 언도우프 Ga0.5AlAs크래드층(4)를 성장한 후, 이온주입장치에 이송하여, 을 사용해서 영역(12)에, 마스크레스 이온비임주입을 행한다. 다음에 Zn이온비임을 사용해서, 영역(13)에 이온주입을 행한다. 층(4)의 두께는, 500Å정도로 하여, Zn이온이 초격자층에 용이하게 도달할 수 있도록 한다.The laser shown in FIG. On the semi-insulating GaAs substrate (1), the undoped Ga 0.5 Al 0.5 Al cladding layer (2), the undoped Ga 0.9 Al 0.1 As 60Å / AlAs 80 Å superlattice laser active layer (3), undoped Ga 0.5 AlAs clad After the layer 4 is grown, it is transferred to an ion implantation apparatus and maskless ion beam implantation is performed in the region 12 using. Next, ion implantation is performed in the region 13 using the Zn ion beam. The thickness of the layer 4 is about 500 GPa, so that Zn ions can easily reach the superlattice layer.

다시 분자선 에피택시장치에 피이드백하여, 언도우프 Ga0.5Al0.5As크래드층(14), 언도우프 GaAs층(5)을 성장한다. 다시 이온주입장치내에서, Si이온과 Be이온을 영역(15) 및 (16)에 주입하고, 750℃에서 어니일링하여 이온의 활성화와, 초격자의 혼합결정화를 행하고, 초격자의 매립헤테로구조를 얻는다. 전극(10)과 (11)을 형성하여 고주파용 마운드에 짜넣어서 변조특성의 평가를 행하였다. 레이저공진기의 길이 150㎛에서 5mW 출력시의 변조특성은 20㎓ 10mW 출력시에 25㎓였다.Again, feedback is made to the molecular beam epitaxy device to grow the undoped Ga 0.5 Al 0.5 As cladding layer 14 and the undoped GaAs layer 5. In the ion implantation apparatus, Si ions and Be ions are injected into the regions 15 and 16 and annealed at 750 ° C. to activate the ions and to perform mixed crystallization of the superlattice, and to embed the superstructure of the superlattice. Get The electrodes 10 and 11 were formed and incorporated in a high frequency mound to evaluate modulation characteristics. The modulation characteristics at 5 mW output at 150 μm length of the laser resonator were 25 dB at 20 mW 10 mW output.

[실시예 3]Example 3

가스소오스를 사용한 분자선 에피택시법에 의해서, 반절연체인 Inp기판상에 막두께 2㎛의 언도우프 Inp에 의한 크래드층 및 막두께 0.5㎛ 언도우프 AlInAs로 이루어진 배리어층을 성장시킨 후, 막두께 100Å의 GaInAs로 이루어진 양자우물층과 막두께 100Å의 AlInAs로 이루어진 배리어층을 교호로 성장해서, 막두께 0.5㎛의 다중양자우물층을 형성하였다. 다시, 그위에 AlInAs로 이루어진 배리어층(막두께 0.5㎛), 언도우프 Inp로 이루어진 크래드층(막두께 1.5㎛) 및 언도우프 GaInAs로 이루어진 캡층(막두께 0.1㎛)을 성장한다.By using a molecular beam epitaxy method using a gas source, a barrier layer made of a undoped Inp having a film thickness of 2 탆 and a barrier layer made of an undoped AlInAs having a thickness of 0.5 탆 was grown on an Inp substrate which is a semi-insulator, and then the film thickness A quantum well layer made of GaInAs of 100 kW and a barrier layer made of AlInAs of 100 kW were alternately grown to form a multi-quantum well layer having a film thickness of 0.5 mu m. Again, a barrier layer made of AlInAs (film thickness of 0.5 mu m), a clad layer made of undoped Inp (film thickness of 1.5 mu m) and a cap layer made of undoped GaInAs (film thickness of 0.1 mu m) are grown.

그후의 공정은 실시예 1과 마찬가지방법을 사용해서 불순물이온주입과 어니일링에 의해 다중양자우물을 혼합결정화하여, 가로단일모우드의 초고속변조레이저를 얻었다. 그 발진파장은 1.52㎛이고, 변조속도는 16㎓(3dB다운)였다.Subsequently, the multi-quantum well was mixed and crystallized by impurity ion implantation and annealing in the same manner as in Example 1 to obtain an ultrafast modulated laser of a transverse single mode. The oscillation wavelength was 1.52 mu m and the modulation rate was 16 Hz (3 dB down).

상시 실시예에 있어서, 양자우물층의 막두께는 30∼200Å이고, 배리어층의 막두께는 20∼400Å로, 양호한 결과가 얻어졌고, 막두께가 이보다 얇으면 우물사이의 상호작용이 급격히 발생해서, 다중양자 우물로서의 작용이 없어지며, 두꺼우면 다중양자우물의 양자사이즈 효과가 급격히 감소해서 고속성이나 모우드제어성을 상실하였다.In the usual embodiment, the film thickness of the quantum well layer was 30-200 kPa, the film thickness of the barrier layer was 20-400 kPa, and a good result was obtained. If the film thickness is thinner than this, the interaction between the wells occurs rapidly. In addition, the quantum size effect of the multi-quantum wells is drastically reduced, and the high speed and mode control are lost.

또 다중양자우물층의 두께는 0.01∼0.15㎛가 적당하다.The thickness of the multi-quantum well layer is preferably 0.01 to 0.15 µm.

Claims (5)

불순물이 도우핑되어 있지 않은 양자우물구조를 가진 레이저활성층(3)과, 이 활성층(3)의 속의 양자우물의 에너지밴드갭보다도 큰 밴드갭을 가지며, 또한 불순물이 도우핑되어있지 않는 반도체층의 적어도 2층(2)이, 이 활성층(3)을 사이에둔 형상으로 반절연성기판(1)상에 형성되어 있으며, 또한 선택적인 불순물도우핑에 의해, 이 활성층(3)의 양자 우물구조의 레이저활성영역(3)이외의 영역일부이고 이 활성영역(3)에 접하는 영역(6)(7)이 불순물 유기혼합결정화되어 있으며, 또한, 활성영역에 접하는 혼합결정화영역(6)(7)중 레이저공진기방향으로 직교하는 영역의 한쪽이 p형(9)으로, 다른한쪽이 n형(8)으로 도우핑되어서 레이저활성영역(3)에 캐리어를 주입할 수 있는 구조를 가진것을 특징으로 하는 반도체레이저.A laser active layer 3 having a quantum well structure in which an impurity is not doped, and a semiconductor layer having a band gap larger than the energy band gap of the quantum well in the active layer 3 and which is not doped with impurities. At least two layers (2) are formed on the semi-insulating substrate (1) in a shape sandwiching the active layer (3), and by selective impurity doping, the quantum well structure of the active layer (3) The regions 6 and 7 which are part of a region other than the laser active region 3 and are in contact with the active region 3 are impurity organic mixed crystallized, and are also in the mixed crystallization regions 6 and 7 which are in contact with the active region. A semiconductor having a structure in which one of the regions orthogonal to the laser resonator direction is doped with p-type 9 and the other with n-type 8 to inject carriers into the laser active region 3. laser. 제1항에 있어서, 상기 혼합결정화영역(6)(7)에 전류를 공급하는 수단(8)(9)을 가진것을 특징으로 하는 반도체레이저.A semiconductor laser according to claim 1, characterized by having means (8) (9) for supplying a current to said mixed crystallization region (6) (7). 제1항에 있어서, 상기 기판이 Inp이며, 양자우물구조의 활성층이 GaInAs 및 AlInAs로 이루어진것을 특징으로 하는 반도체레이저.The semiconductor laser according to claim 1, wherein the substrate is Inp, and the active layer of the quantum well structure is made of GaInAs and AlInAs. 제1항 혹은 제2항에 있어서, 상기 기판(1)이 GaAs이며, 상기 양자우물구조의 활성층(3)이 GaAlAs 및 AlAs인것을 특징으로 하는 반도체레이저.The semiconductor laser according to claim 1 or 2, wherein the substrate (1) is GaAs and the active layer (3) of the quantum well structure is GaAlAs and AlAs. 제2항에 있어서, 상기 전류를 공급하는 수단이 (8)(9)이 불순물확산 혹은 주입에 의해서 처리되어 있는 것을 특징으로 하는 반도체레이저.3. The semiconductor laser according to claim 2, wherein said means for supplying current is processed by diffusion or implantation of impurities (8) and (9).
KR1019860006144A 1985-09-20 1986-07-28 Semiconductor laser KR900000022B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-206444 1985-09-20
JP60206444A JPS6267890A (en) 1985-09-20 1985-09-20 Semiconductor laser

Publications (2)

Publication Number Publication Date
KR870003593A KR870003593A (en) 1987-04-18
KR900000022B1 true KR900000022B1 (en) 1990-01-18

Family

ID=16523474

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860006144A KR900000022B1 (en) 1985-09-20 1986-07-28 Semiconductor laser

Country Status (5)

Country Link
US (1) US4752934A (en)
EP (1) EP0215298B1 (en)
JP (1) JPS6267890A (en)
KR (1) KR900000022B1 (en)
DE (1) DE3687102T2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786951A (en) * 1985-02-12 1988-11-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical element and a process for producing the same
DE3788841T2 (en) * 1986-10-07 1994-05-05 Sharp Kk Semiconductor laser device and method of manufacturing the same.
JPS63144589A (en) * 1986-12-09 1988-06-16 Sharp Corp Semiconductor laser element
JPS63150986A (en) * 1986-12-15 1988-06-23 Sharp Corp Semiconductor laser
JPS63150985A (en) * 1986-12-15 1988-06-23 Sharp Corp Semiconductor laser
JPS63177495A (en) * 1987-01-16 1988-07-21 Sharp Corp Semiconductor laser device
JPS63208296A (en) * 1987-02-24 1988-08-29 Sharp Corp Semiconductor device
JPS63271992A (en) * 1987-04-28 1988-11-09 Sharp Corp Semiconductor laser element
JPS63287082A (en) * 1987-05-19 1988-11-24 Sharp Corp Semiconductor laser element
JPS63299186A (en) * 1987-05-29 1988-12-06 Hitachi Ltd Light emitting element
JPH0775265B2 (en) * 1988-02-02 1995-08-09 三菱電機株式会社 Semiconductor laser and manufacturing method thereof
US5164797A (en) * 1988-06-17 1992-11-17 Xerox Corporation Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
US4987468A (en) * 1988-06-17 1991-01-22 Xerox Corporation Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
US4873696A (en) * 1988-10-31 1989-10-10 The Regents Of The University Of California Surface-emitting lasers with periodic gain and a parallel driven nipi structure
JPH0777278B2 (en) * 1988-12-09 1995-08-16 三菱電機株式会社 Semiconductor laser and manufacturing method thereof
JPH02196486A (en) * 1989-01-24 1990-08-03 Mitsubishi Electric Corp Manufacture of semiconductor laser
US5063569A (en) * 1990-12-19 1991-11-05 At&T Bell Laboratories Vertical-cavity surface-emitting laser with non-epitaxial multilayered dielectric reflectors located on both surfaces
JPH04291304A (en) * 1991-03-20 1992-10-15 Fujitsu Ltd Optical waveguide and control method for light signal
US5406574A (en) * 1991-10-23 1995-04-11 Kabushiki Kaisha Toshiba Semiconductor laser device
JP2677232B2 (en) * 1995-02-23 1997-11-17 日本電気株式会社 Long wavelength semiconductor laser and manufacturing method thereof
US5661740A (en) * 1996-04-16 1997-08-26 The United States Of America As Represented By The Secretary Of The Army TEM mode quantum wire or well structure
US6369403B1 (en) * 1999-05-27 2002-04-09 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods with tunnel contact hole sources and non-continuous barrier layer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511371A (en) * 1978-07-10 1980-01-26 Mitsubishi Electric Corp Semiconductor laser system
US4511408A (en) * 1982-04-22 1985-04-16 The Board Of Trustees Of The University Of Illinois Semiconductor device fabrication with disordering elements introduced into active region
US4594603A (en) * 1982-04-22 1986-06-10 Board Of Trustees Of The University Of Illinois Semiconductor device with disordered active region
JPS58225680A (en) * 1982-06-23 1983-12-27 Nec Corp Semiconductor laser
JPS5944797B2 (en) * 1982-07-28 1984-11-01 工業技術院長 Manufacturing method of semiconductor laser device
JPS5923584A (en) * 1982-07-29 1984-02-07 Nec Corp Semiconductor laser
JPS607789A (en) * 1983-06-28 1985-01-16 Agency Of Ind Science & Technol Planar semiconductor light emitting device
NL8304008A (en) * 1983-11-22 1985-06-17 Philips Nv SEMICONDUCTOR DEVICE FOR GENERATING ELECTRO-MAGNETIC RADIATION.

Also Published As

Publication number Publication date
US4752934A (en) 1988-06-21
EP0215298A2 (en) 1987-03-25
KR870003593A (en) 1987-04-18
JPS6267890A (en) 1987-03-27
EP0215298A3 (en) 1990-01-24
DE3687102D1 (en) 1992-12-17
DE3687102T2 (en) 1993-03-25
EP0215298B1 (en) 1992-11-11

Similar Documents

Publication Publication Date Title
KR900000022B1 (en) Semiconductor laser
KR100255689B1 (en) Semiconductor laser device and its manufacturing method
EP0261262B1 (en) Transverse junction stripe laser
US4937835A (en) Semiconductor laser device and a method of producing same
US5020068A (en) Semiconductor laser device
EP0033137B1 (en) Semiconductor laser device
US4881235A (en) Semiconductor laser having a multiple quantum well structure doped with impurities
US5219785A (en) Method of forming current barriers in semiconductor lasers
US5107514A (en) Semiconductor optical element
US5193098A (en) Method of forming current barriers in semiconductor lasers
GB2252872A (en) Laser diode and method of manufacture
EP0020019B1 (en) A heterojunction solid state laser
US4905060A (en) Light emitting device with disordered region
US4916709A (en) Semiconductor laser device
EP0000267B1 (en) Light source in an optical communications system
US4517674A (en) Zinc-diffused narrow stripe AlGaAs/GaAs double heterostructure laser
US4581743A (en) Semiconductor laser having an inverted layer in a stepped offset portion
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JP2679974B2 (en) Semiconductor laser device
US4521887A (en) W-shaped diffused stripe GaAs/AlGaAs laser
JPS6118192A (en) Semiconductor structure
US5341002A (en) Semiconductor light emitting device with ridged contact
JP3213428B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6356977A (en) Semiconductor laser
JP2702964B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19950107

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee