KR890004478B1 - Burrus type semiconductor radiation device - Google Patents

Burrus type semiconductor radiation device Download PDF

Info

Publication number
KR890004478B1
KR890004478B1 KR1019850004258A KR850004258A KR890004478B1 KR 890004478 B1 KR890004478 B1 KR 890004478B1 KR 1019850004258 A KR1019850004258 A KR 1019850004258A KR 850004258 A KR850004258 A KR 850004258A KR 890004478 B1 KR890004478 B1 KR 890004478B1
Authority
KR
South Korea
Prior art keywords
layer
type
cladding layer
light emitting
phase growth
Prior art date
Application number
KR1019850004258A
Other languages
Korean (ko)
Other versions
KR860006140A (en
Inventor
고이찌 니따
바라 다다시 고마쯔
마사루 나가무라
Original Assignee
가부시끼기이샤 도오시바
사바 쇼오이찌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼기이샤 도오시바, 사바 쇼오이찌 filed Critical 가부시끼기이샤 도오시바
Publication of KR860006140A publication Critical patent/KR860006140A/en
Application granted granted Critical
Publication of KR890004478B1 publication Critical patent/KR890004478B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Abstract

The invention is related to semiconductor LED in which a double hetero junction structure is formed by metal-organic CVD. The semiconductor is composed of III-V group compounds. The characteristic of the device is to decrease in diffusion resistance in a clad layer being away from an active layer, by injection carrier in the closet layer from the active layer of the clad layer which consists of multiple structures shielded. Multiple structures mean that compositions of both sides of the double heterojunction are different from each other.

Description

바라스형 반도체 발광소자Varas type semiconductor light emitting device

제1도는 본 발명의 실시예에 따른 바라스형 발광소자의 개략구조를 나타내는 단면도.1 is a cross-sectional view showing a schematic structure of a varass type light emitting device according to an embodiment of the present invention.

제2(a)도, 제2(b)도, 제2(c)도는 바라스형 발광소자의 제조공정을 나타낸 단면도.Fig. 2 (a), Fig. 2 (b) and Fig. 2 (c) are cross-sectional views showing the manufacturing process of the varass type light emitting device.

제3도는 다른 실시예의 개략구조를 나타내는 단면도.3 is a sectional view showing a schematic structure of another embodiment.

제4도는 종래의 발광소자의 개략구조를 나타내는 단면도이다.4 is a cross-sectional view showing a schematic structure of a conventional light emitting device.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

11 : 기판 12 : 버퍼층11 substrate 12 buffer layer

13 : 제1클래드층 14 : 제2클래드층13: first cladding layer 14: second cladding layer

15 : 제3클래드층 16 : 활성층15: third clad layer 16: active layer

17 : P형 클래드층 18 : 오옴전극17: P-type cladding layer 18: ohmic electrode

19 : 이산화규소막 20 : P형전극19 silicon dioxide film 20 P-type electrode

21 : Au방열판 22 : N형전극21: Au heat sink 22: N-type electrode

23 : 창 331, 332∼33n: N형 클래드층23: window 33 1, 33 2 ~33 n: N -type clad layer

본 발명은 반도체발광소자에 관한것으로, 특히 2중헤테로 접합구조를 갖는 바라스형반도체 발광소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor light emitting devices, and more particularly, to a Varas type semiconductor light emitting device having a double hetero junction structure.

최근에 이르러 광가입자계통전송시스템이 급격히 보급되기 시작하고 있는바, 그중에서도 발광다이오드는 레이저 다이오드에 비해 가격이 싸고 신뢰성도 뛰어나며 다중무드섬유(multimode-fiber)와의 조합으로 발생되는 모드의 노이즈문제를 제거할 수기 있기 때문에 상기 광가입자계 전송시스템에서 주요한 장치로 사용되어지고 있다.In recent years, optical subscriber system transmission systems are rapidly spreading. Among them, light emitting diodes are cheaper and more reliable than laser diodes, and eliminate the problem of mode noise caused by combination with multimode fiber. It is used as a major device in the optical subscriber transmission system because it can.

종래에 발광다이오드를 액상적층성장법(LPE법)을 써서 각층을 성장시켜왔으나, 이 액상적층성장법은 일반적으로 웨이퍼면적이 작고 균일성도 나쁘며 대량생산을 할 수 없는 난점이 었어 최근 생산성 및 제어성이 뛰어난 결정성장기술로 알려진 유기금속기상 성장법(MOCVB법)을 이용하여 발광다이오드를 제작하는 제작방법이 시도되고 있다.Conventionally, light emitting diodes have been grown by using the liquid layer growth method (LPE method), but this liquid layer growth method has generally had a small wafer area, poor uniformity, and difficult mass production. A manufacturing method for producing a light emitting diode using an organometallic gas phase growth method (MOCVB method) known as this excellent crystal growth technique has been attempted.

제4도는 유기 금속기상성장법으로 제작된 기판면방향으로 빛을 내보내게 되는 대표적인 바라스(burrus)형 발광다이오드의 구조를 나타낸 것인데, 그중 부호 41은 n형 GaAs기판을 나타내고, 부호 42는 N형 GaAs버퍼층을, 부호 43은 N형 GaA1As클래드층을, 부호 44는 P형 GaAs접합층을, 부호 47은 P형 전극을, 부호, 48은 이산화 규소막을, 부호 49는 Au방열판을, 부호 50은 N형 전극을 51은 광출력을 내는 창을 각각 나타낸 것인데, 여기서 각층의 케리어 농도 및 두께는 제1표의 내용돠 같다.4 shows the structure of a typical Burrus type light emitting diode that emits light in the direction of a substrate fabricated by an organometallic vapor phase growth method, of which reference numeral 41 denotes an n-type GaAs substrate, and reference numeral 42 denotes an N-type GaAs substrate. Type GaAs buffer layer, 43 is N type GaA1As cladding layer, 44 is P type GaAs bonding layer, 47 is P type electrode, 48 is silicon dioxide film, 49 is Au heat sink, 50 is 51 represents an N-type electrode, and 51 represents a light output window, wherein the carrier concentration and thickness of each layer are as shown in the first table.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

그런데 제4도에 도시되어 있는 발광다이오드는 N형 GaA1As클래드층(43)의 캐리어의 농도가 n=2×1017(cm-3)로 낮기 때문에 이층을 흐르는 전류에 의해 확산저항이 커지게되어 확산저항에 의한 발열의 영향으로 발광다이오드의 광출력이 포화되어지게 되는 결점을 갖게된다. 유기금속 기상성장법으로 형성시킬 경우, N형 Gal-xAlxAs층은 A1As 혼정비(混晶比)(X)가 커지게되면 캐리어농도가 일반적으로 높아지지 않게되므로, A1As혼정비를 X=0.35로 해서 N형 클래드층(43)을 성장시키면 캐리어농도가 n=2×1017(cm-3)보다 높지않게 때문에 이런현상이 발생하는 것이다.However, since the concentration of the carrier of the N-type GaA1As cladding layer 43 is low as n = 2 × 10 17 (cm −3 ), the light emitting diode shown in FIG. 4 increases the diffusion resistance due to the current flowing through the two layers. Due to the heat generated by the diffusion resistance, there is a drawback that the light output of the light emitting diode is saturated. In the case of organometallic vapor phase growth, the N-type Gal-xAlxAs layer has a high A1As mixing ratio (X), so that the carrier concentration does not generally increase. Therefore, when the N-type cladding layer 43 is grown, this phenomenon occurs because the carrier concentration is not higher than n = 2 × 10 17 (cm −3 ).

한편, 확산저항을 낮추기 위해서 N형클래드층(43)의 A1As혼정비(X)를 작게하면 2중 해테로구조에 의하 주입캐리어의 폐쇄가 불완전해지게 되어 광출력이 낮아지게 된다. 그런데 상기와 같은 문제점은 유기금속 기상성장법 대신에 분자선적층성장법(MBE법)을 채용할 경우에도 마찬가지라 할수 있다.On the other hand, if the A1As mixing ratio X of the N-type cladding layer 43 is reduced in order to reduce the diffusion resistance, the closing of the injection carrier is incompletely closed due to the double heterostructure, thereby lowering the light output. However, the above problem can be also applied to the case of employing the molecular linear stacked growth method (MBE method) instead of the organometallic vapor phase growth method.

본 발명은 종래의 발광소자들이 지니고 있는 상기와 같은 문제점들을 해소하기 위해 발명한 것으로서 그 목적하는 바는 2중헤테로 구조에서의 클래드층의 확산저항을 작아지게 할뿐만아니라 주입캐리어의 폐쇄를 확실하게 할수가 있고 나아가 양산성이 높은 고출력바라스형 반도체 발광소자를 제공함에 있다.The present invention has been invented to solve the above problems of conventional light emitting devices, and its object is to reduce the diffusion resistance of the cladding layer in the double hetero structure as well as to securely close the injection carrier. The present invention also provides a high output semiconductor semiconductor light emitting device having high productivity.

본 발명의 골자는 2중헤테로구조의 한쪽 클래드층을 이루는 N형 클래드층을 조성이 다른 다층구조가 되도록해서 그 클래드층의 활성층에 가까운 층에다 주입캐리어를 폐쇄시켜서 활성층에서 멀리 떨어진 클래드층에서 확산 저항을 낮아지게 되도록 하는 것이다.The core of the present invention makes the N-type cladding layer constituting one cladding layer of the double heterostructure to have a multi-layered structure with a different composition, and closes the injection carrier to the layer close to the active layer of the cladding layer to diffuse from the cladding layer far from the active layer. To lower the resistance.

즉 본 발명은 화합물 반도체재료로 구성되고서 유기금속 기상성장법이나 분자선적층 성장법등과 같은 기상성장법으로 제작된 2중헤테로 구조를 갖는 바라스형 반도체 발광 소자에 있어서, N형 불순물이 주입된 클래드층을 활성층보다 큰 금지대역폭을 갖는 것으로 할뿐만 아니라 그 조성비가 다른 다층구조로 되도록하며, 나아가 N형 클래드층의 혼정비를 변화시킴에 따라 주입 캐리어의 폐쇄 및 확산 저항의 감소등 양쪽을 모두 만족시킬 수 있도록 한것이다.In other words, the present invention relates to a clath implanted with an N-type impurity in a Barath type semiconductor light emitting device composed of a compound semiconductor material and having a double hetero structure produced by a vapor phase growth method such as an organometallic vapor phase growth method or a molecular beam deposition method. Not only does the layer have a larger forbidden bandwidth than the active layer, but its composition ratio is a multi-layered structure, and moreover, both the closing of the injection carrier and the reduction of diffusion resistance are satisfied by changing the mixing ratio of the N-type cladding layer. I made it possible.

상기와 같은 본 발명에 따른면 N형 클래드층중, 활성층에 가까운 층의 금지대역폭을 충분히 넓어지게 함으로써 주입캐리어의 폐쇄를 확실히 할수 있게되고, 활성층에서 멀리 떨어진 층의 금지대역폭을 좁게하여 캐리어농도를 충분히 높임으로써 클래드층에서의 확산저항을 충분히 작아지게할 수가 있게된다. 이때문에 유기금속기상 성장법이나 분자선적층성장법으로 제작하더라도 발광출력이 포화한다거나 저하되지 않게되어 생산성 향상 및 고출력화를 꾀할 수 있게 되는 것이다.According to the present invention as described above, it is possible to ensure the closing of the injection carrier by sufficiently widening the forbidden bandwidth of the layer close to the active layer among the N-type cladding layers, and narrowing the forbidden bandwidth of the layer far from the active layer to reduce the carrier concentration. By sufficiently high, the diffusion resistance in the clad layer can be made sufficiently small. Therefore, even if the organic metal vapor phase growth method or the molecular linear layer growth method is produced, the light emission output is not saturated or lowered, thereby improving productivity and increasing output.

이하 본 발명의 구성 및 작용, 효과를 예시된 도면에 의거 상세히 설명하면 다음과 같다.Hereinafter, the configuration, operation, and effects of the present invention will be described in detail with reference to the illustrated drawings.

제1도는 본 발명의 실시예에 관한 바라스형발광다이오드의 개략적인 구조를 도시한 단면도이고, 제2(a)도, 제2(b)도, 제2(c)도는 상기 발광다이오드의 제조검정을 도시한 단면도로서, 먼저 제2(a)도에 도시한 바와 같이 N형 GaAs기판(11)상에 N형 GaAs버퍼층(12)과 N형 GaA1As 제1클래드층(13), N형 GaA1As 제2클래드층(14), N- GaA1As 제3클래드층(15), P- GaAs활성층(16) 및 P형 GaA1As클래드층(17)을 유기금속기상 성장법으로 차례로 성장시켜 형성되도록 한다.FIG. 1 is a cross-sectional view showing a schematic structure of a Varas type light emitting diode according to an embodiment of the present invention. FIG. 2 (a), 2 (b), and 2 (c) are manufacturing tests of the light emitting diode. As shown in FIG. 2A, first, the N-type GaAs buffer layer 12, the N-type GaA1As first cladding layer 13, and the N-type GaA1As are formed on the N-type GaAs substrate 11, as shown in FIG. The second cladding layer 14, the N-GaA1As third cladding layer 15, the P-GaAs active layer 16, and the P-type GaA1As cladding layer 17 are grown in this order by an organometallic vapor phase growth method.

이때 상기 각층의 혼정비와 캐리어 농도 및 두께는 다음 제2표의 내용과 같이된다.In this case, the mixing ratio, carrier concentration and thickness of each layer are as shown in the following second table.

한편 여기서 N형 도우핑물질로서는 Se, P형 도우핑 물질로서는 Zn을 사용하게 되고, 결정성장온도는 양호한 표면상태가 얻어지는 조건인 750℃로 한다.Here, Se is used as the N-type doping material and Zn is used as the P-type doping material, and the crystal growth temperature is set at 750 ° C. under which a good surface state is obtained.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

그런데 상기 수치는 가장바람직스러운 조건을 나타내는 예인데, 이수치는 반도체의 각종규격에 따라서 적의변경 될수 있다.By the way, the numerical value is an example showing the most desirable conditions, this number may be changed according to the various specifications of the semiconductor.

즉 예를들면 제1도 및 제3도에서의 제1 및 제3 N형 클래드층(13, 15)의 GaAs혼정비는 0.3∼0.45, 캐리어 농도는 n=0.8∼3×1017cm-3, 두께는 1∼2㎛범위에서 적의 변경시킬수가 있고, 이와마찬가지로 제2클래드층(14)의 GaAs, 혼정비는 0.1∼0.25캐리어농도는 4∼8×1017cm-3, 두께는 5∼20

Figure kpo00003
의 범위에서 적의 변경시킬수가 있게된다.That is, for example, the GaAs mixing ratio of the first and third N-type cladding layers 13 and 15 in FIGS. 1 and 3 is 0.3 to 0.45, and the carrier concentration is n = 0.8 to 3 x 10 17 cm -3. The thickness of the second cladding layer 14 is GaAs, the mixing ratio is 0.1 to 0.25, and the carrier concentration is 4 to 8 × 10 17 cm -3 , and the thickness is 5 to. 20
Figure kpo00003
Enemy can be changed within the range of.

다음에는 제2(b)도에 도시한 바와 같이 P형 클래드층(17)상에 AnZn(Zn5%)f로 되어진 오음전극(18)을 3000∼4000(

Figure kpo00004
)의 두께로 형성시킨 다음 포토 레지스트(photh-resist)를 마스크로하여, I2-RI-H2O(중량비 1 : 4 : 4)계통의 에칭액을 사용하여 직경 30(㎛)의 원형이 되게 오금전극(18)을 남기고 그 밖의 것은 에칭시켜 제거한 다음, 이어 계속해서 기상성장법을 써서 p형 전면에다 2산화규소막 (SiO2막)(19)을두께 3000(
Figure kpo00005
)로 되게 형성시킨 후 포토레지스트를 마스크로 하여 오옴전극(18)상의 2산환규소막(19)을 불화암모늄 용액으로 에칭시켜 제거한다.Next, as shown in FIG. 2 (b), the cathode electrode 18 made of AnZn (Zn 5%) f on the P-type cladding layer 17 is placed at 3000 to 4000 (
Figure kpo00004
) To a circular shape having a diameter of 30 (占 퐉) using an etching solution of I 2 -RI-H 2 O (weight ratio 1: 4: 4) system using a photoresist as a mask. After leaving the electrode 18, the others were etched and removed, and then a silicon dioxide film (SiO 2 film) 19 was deposited on the entire surface of the p-type using a vapor phase growth method.
Figure kpo00005
), And the dicyclic silicon film 19 on the ohmic electrode 18 is etched away with an ammonium fluoride solution using a photoresist as a mask.

다음에는 또 제2(c)도에 도시한 바와같이 p형쪽의 전면에다 Cr(1000

Figure kpo00006
)과 Au(5000
Figure kpo00007
)로써 되는 p형 전극(20)을 형성시킨 다음 계속하여 p형전극(20)상에 전계도금법에 의해 Au방열판(21)을 20(㎛)정도의 두께로 형성시킨다.Next, as shown in Fig. 2 (c), Cr (1000)
Figure kpo00006
) And Au (5000
Figure kpo00007
After the p-type electrode 20 is formed, the Au heat-dissipating plate 21 is formed on the p-type electrode 20 to a thickness of about 20 (占 퐉) by the electroplating method.

그리고 기판(11)의 뒷면에는 AuGe(Ge00.5%)및 Au를 각각 5000(

Figure kpo00008
)및 1000(
Figure kpo00009
)의 두께로 증착시켜 N형전극(22)을 형성시킨다.On the back of the substrate 11, AuGe (Ge00.5%) and Au were respectively 5000 (
Figure kpo00008
) And 1000 (
Figure kpo00009
The N-type electrode 22 is formed by depositing at a thickness of the?

그 다음에는 포토레지스트를 마스크하여 오옴전극(18)에 마주 보도록 N형전극(22)을 에칭방법으로 제거한다.Next, the N-type electrode 22 is removed by an etching method so as to mask the photoresist and face the ohmic electrode 18.

이어 마지막으로 NH4OH-H2O계통의 에칭액을 써서 N형 전극(22)을 마스크로하여 기판(11) 및 버퍼층(12)을 상기 N형의 제1클래드층(13)에 이르는 깊이까지 에칭방법으로 제거하므로서 광방출창(23)을 형성함에 따라제1도에 도시되어져 있는 바와 같이 바라스형 발광다이오드가 완성되게 된다.Finally, using the NH 4 OH-H 2 O-based etching solution, the N-type electrode 22 is used as a mask and the substrate 11 and the buffer layer 12 are extended to the depth of the N-type first cladding layer 13. As the light emitting window 23 is formed by removing by the etching method, the Barath type light emitting diode is completed as shown in FIG.

이때 NH4OH-H2O(중량비 1 : 30)계통의 에칭액을 사용하게 되면 기판(11) 및 버퍼층(12)을 이루는 GaAs의 에칭속도가 N형의 제1클레드층(13)(Ga0.65Al0.35As)의 에칭속도보다 10배정도 빨라지게 되므로 제1클래드층(13)이 광방출창(23)을 형성시킬때의 에칭방지막으로 역할하게된다. 또 제1도에 도시된 바와 같이 되어진 발광다이오드는 Au방열판(21)을 도시되어 있지 않은 스템상에 장착시키도록 되어 있다.In this case, when the etching solution of NH 4 OH-H 2 O (weight ratio 1:30) is used, the etching rate of GaAs forming the substrate 11 and the buffer layer 12 is N-type first clad layer 13 (Ga). Since the etching rate of 0.65 Al 0.35 As) is about 10 times faster, the first cladding layer 13 serves as an etching preventing film when forming the light emitting window 23. In addition, the light emitting diode shown in FIG. 1 is designed to mount the Au heat sink 21 on a stem (not shown).

상기와 같이 형성된 발광다이오드는 N형의 제1 내지 제 3클래드층(13)∼(15The light emitting diodes formed as described above are N-type first to third cladding layers 13 to 15.

)이 활성층(16)의 금지대역보다 크기 때문에 활성층(16)에서의 발광은 내부에서 흡수되지 않고 방출되게 되고, 또 N형 클래드층이 3층구조로 되어 있어 2중헤테로구조에 의한 캐리어의 폐쇄를 제3클래드층(15)에서하게 되고 발광다이오드의 직렬저항의 감소를 제2클래드층(14)에서, 그리고 광출력을 내는 창(23)을 형성할 때의 에칭방지막 역할을 제1클래드등(13)에서 할수 있게 되는 것이다.) Is larger than the forbidden band of the active layer 16, so that the light emitted from the active layer 16 is emitted without being absorbed from the inside, and the N-type cladding layer has a three-layer structure, so that the carrier is closed by a double hetero structure. In the third cladding layer 15 to reduce the series resistance of the light emitting diode in the second cladding layer 14 and to form an anti-etching film when forming the light emitting window 23. You can do it in (13).

따라서, 본 실시예에 의하면 제3클래드층(15)의 작용으로 주입캐리어 폐쇄를 확실히 할수 있게되고, 제2클래드층(14)의 작용으로 확산저항의 감소를 기할수가 있기 때문에, 발광다이오드의 직렬저항에 의한 열의 영향으로 발광출력이 저하하는 현상이 일어나지 않아 발광특성이 좋고 고출력화를 기할수가 있으며, 나아가 유기금속기상 성장밥으로 결정이 되어지게 됨으로서 양산을 할수 있어 생산성 향상을 기할 수 있게 되는 것이다.Therefore, according to the present embodiment, since the injection carrier can be secured by the action of the third cladding layer 15, and the diffusion resistance can be reduced by the action of the second cladding layer 14, The effect of heat caused by series resistance does not decrease the luminous output, so the luminous property is good and the output can be increased. Furthermore, it can be mass-produced by crystallization of organic metal-based growth rice to improve productivity. Will be.

제3도는 다른 실시예의 개략구조를 나타내는 단면도로서, 이 실시예가 앞에서 설명한 실시예와 다른점은 상기 N형 클래드층을 3층이상의 다층구조로 형성되어 있다는 점이다.3 is a cross-sectional view showing a schematic structure of another embodiment, which differs from the embodiment described above in that the N-type cladding layer is formed in a multi-layered structure of three or more layers.

즉 형버퍼층(12)과 형활성층(16)사이에는 다수의 N형 GaA1As클래드층(331, 332∼33n)이 설치되어 있고, 이경우 활성층(16)에 가까운 쪽의 층은 주입캐리어의 폐쇄를 확실히 하기위해서 GaAs혼정비(X)를 0.35이상으로 할 필요가 있는 한편, 중앙부의 층은 캐리어농도를 충분히 높이기 위하여 GaAs혼정비(X)를 0.25정도로 낮추도록하며, 버퍼층(12)에 접하는 층은 GaAs을 에칭할때 방지막작용을 할수 있도록 GaAs혼정비(X)를 어느정도 크게할 필요가 있다. 이와같은 구조라 하더라도 앞에서의 실시예와 똑같은 효과가 얻어지는 것은 물론이다.I.e. type buffer layer 12 and the type active layer 16 had a plurality of N-type GaA1As been installed clad layer (33 1, 33 2 ~33 n ) between, in this case layer closer to the active layer 16 is injected into the carrier In order to ensure closure, the GaAs mixing ratio (X) needs to be 0.35 or more, while the central layer lowers the GaAs mixing ratio (X) to about 0.25 in order to sufficiently increase the carrier concentration. The layer needs to increase the GaAs mixing ratio (X) to some extent so that it can act as a barrier when etching GaAs. Even in such a structure, it is a matter of course that the same effect as in the above embodiment can be obtained.

또 본 실시예에서는 N형 클래드층내애서의 GaAs혼정비를 단계적으로 가변시킬 수 있고, 그 혼정비를 거의 연속적으로 가변시킬수도 있다.In this embodiment, the GaAs mixing ratio in the N-type cladding layer can be varied step by step, and the mixing ratio can be changed almost continuously.

또한, 본 발명은 상술한 각 실시예에 한정되지 않고 여러가지로 변형시킬 수 있는데, 예를들면 상기 각층을 성장형성시키는 방법으로서는 유기금속기상 성장법에 한하는것이 아니라 분자선적층 성장법을 이용할수 있고, 또 N형 클래드층을 3층이나 그 이상으로 된 다층구조에 한하는 것이 아니라 상기 기판 및 버퍼층으로서의 GaAS를 에칭할때에 있어서 제2클래드층의 에칭속도가 GaAs보다 훨씬 느린 속도라면 제1클래드층을 생략하고 2층구조로 할수도 있다.In addition, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, as the method for growing and forming the respective layers, not only an organometallic gas phase growth method but also a molecular beam deposition method can be used. The first cladding layer is not limited to an N-type cladding layer having three or more layers, but the etching rate of the second cladding layer is much slower than GaAs in etching GaAS as the substrate and the buffer layer. You can omit the two-layer structure.

더구나 GaAs/GAa1As계통의 재료에 한정되지 않고 Inp/InGaAsP계통이나 다른 Ⅲ-V족 화합물 반도체 재료를 이용할수도 있다. 그 밖에 본 발명의 요지를 벗어나지 않은 범위에서 각종형태로 변형시켜 실시할수도 있다.In addition, not only the GaAs / GAa1As material but also an Inp / InGaAsP system or other III-V compound semiconductor material may be used. In addition, the present invention may be modified in various forms without departing from the spirit of the present invention.

Claims (5)

화합물반도체재료로 되고 기상성장법으로 제작된 2중 헤테로구조를 갖는 바라스형 반도체발광소자에 있어서, N형 불순물을 도우핑한 클래드층(13, 14, 15)은 활성층보다 큰 금지 대역폭을 갖고있는 한편 그 조성비가 각기다른 다층 구조로 되어져 있는 것을 특징으로 하는 바라스형 반도체 발광소자.In the Varas type semiconductor light emitting device made of a compound semiconductor material and having a double heterostructure fabricated by vapor phase growth method, the cladding layers 13, 14, and 15 doped with N type impurities have a larger prohibited bandwidth than the active layer. On the other hand, the varass-type semiconductor light-emitting device characterized in that the composition ratio has a multi-layer structure having different. 제1항에 있어서, 상기 조성비가 다른 N형클래드층은 2층구조로 되어 있으면서 상기 활성층(16)쪽 층(15)의 금지대역폭을 다른층(14)의 금지대력폭 보다 넓게한것.The N-type cladding layer having a different composition ratio has a two-layer structure, and the prohibition bandwidth of the layer (15) on the active layer (16) side is wider than the prohibition band width of the other layer (14). 제1항에 있어서, 상기 조성비가 다른 N형 클래드층은 금지대력폭이 좁은 층(14)이 금지대역폭이 넓은층(13, 15)에 의하여 끼워져 있는 3층구조를 갖게 된것.The N-type cladding layer having a different composition ratio has a three-layer structure in which a layer having a narrow forbidden band width (14) is sandwiched by a layer (13, 15) having a wide band width. 제1항 내지 제3항중 어느한항에 있어서, 상기 화합물 반도체 재료로서 GaAs/GaA1AS계 재료를 이용하고, 그 조성비가 각기 다른 N형 클래드층이 Gal-xAlxAs재질로 되며, 상기 클래드층중 활성층쪽 층의 AlAs혼정비(X)가 0.35이상으로 설정되어진 것.The N-type cladding layer according to any one of claims 1 to 3, wherein a GaAs / GaA1AS-based material is used as the compound semiconductor material, and the N-type cladding layers having different composition ratios are made of Gal-xAlxAs, and the active layer side of the cladding layer AlAs mixing ratio (X) of the layer is set to 0.35 or more. 제1항에 있어서, 상기 기상성장법은 유기금속기상 성장법이나 분자선적층 성장법을 이용하는 것.The method of claim 1, wherein the vapor phase growth method uses an organometallic gas phase growth method or a molecular beam deposition method.
KR1019850004258A 1985-01-31 1985-06-15 Burrus type semiconductor radiation device KR890004478B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-16789 1985-01-31
JP1678985A JPH0738458B2 (en) 1985-01-31 1985-01-31 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
KR860006140A KR860006140A (en) 1986-08-18
KR890004478B1 true KR890004478B1 (en) 1989-11-04

Family

ID=11925942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850004258A KR890004478B1 (en) 1985-01-31 1985-06-15 Burrus type semiconductor radiation device

Country Status (2)

Country Link
JP (1) JPH0738458B2 (en)
KR (1) KR890004478B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435968A (en) * 1987-07-30 1989-02-07 Mitsubishi Monsanto Chem Gallium arsenide/aluminum mixed crystal epitaxial wafer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557714A (en) * 1978-06-30 1980-01-19 Fujitsu Ltd Luminous flux corrector

Also Published As

Publication number Publication date
KR860006140A (en) 1986-08-18
JPS61176172A (en) 1986-08-07
JPH0738458B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
JP3763667B2 (en) Semiconductor light emitting device
US6855959B2 (en) Nitride based semiconductor photo-luminescent device
US4706101A (en) Light emitting diode formed of a compound semiconductor material
JP3188522B2 (en) Method of forming light emitting diode
KR19980064764A (en) Semiconductor light emitting device having high luminous efficiency
WO2023040204A1 (en) Led epitaxial structure and preparation method therefor
US4122486A (en) Semiconductor light-emitting element
US4249967A (en) Method of manufacturing a light-emitting diode by liquid phase epitaxy
US20040021142A1 (en) Light emitting diode device
CA1078949A (en) Light emitting devices
US4220960A (en) Light emitting diode structure
KR890004478B1 (en) Burrus type semiconductor radiation device
US4354140A (en) Light-emitting semiconductor
US4206468A (en) Contacting structure on a semiconductor arrangement
JPS603178A (en) Semiconductor laser device
JPH05218585A (en) Semiconductor light emitting device
JPS6352479B2 (en)
JPH05110135A (en) Multilayer epitaxial crystalline structure
JP2004095827A (en) Light emitting diode
JPS61228684A (en) Semiconductor light emitting element
JPH11121796A (en) Light emitting diode and manufacture thereof
JP2004247503A (en) Nitride semiconductor device and method for manufacturing it
KR940011271B1 (en) Manufacturing method of laser diode array
KR100366697B1 (en) Semiconductor laser diode and manufacturing method thereof
KR890004477B1 (en) Radiation diode manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20041101

Year of fee payment: 16

EXPY Expiration of term