KR870002075B1 - Zinc electrolysis method of saving energy - Google Patents

Zinc electrolysis method of saving energy Download PDF

Info

Publication number
KR870002075B1
KR870002075B1 KR1019840005302A KR840005302A KR870002075B1 KR 870002075 B1 KR870002075 B1 KR 870002075B1 KR 1019840005302 A KR1019840005302 A KR 1019840005302A KR 840005302 A KR840005302 A KR 840005302A KR 870002075 B1 KR870002075 B1 KR 870002075B1
Authority
KR
South Korea
Prior art keywords
zinc
sulfuric acid
solution
electrolytic
anode
Prior art date
Application number
KR1019840005302A
Other languages
Korean (ko)
Other versions
KR860001903A (en
Inventor
윤경석
조병원
Original Assignee
한국과학기술원
전학제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 전학제 filed Critical 한국과학기술원
Priority to KR1019840005302A priority Critical patent/KR870002075B1/en
Priority to JP59272153A priority patent/JPS6160894A/en
Priority to CA000478871A priority patent/CA1289509C/en
Priority to AU42264/85A priority patent/AU561640B2/en
Publication of KR860001903A publication Critical patent/KR860001903A/en
Application granted granted Critical
Publication of KR870002075B1 publication Critical patent/KR870002075B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

In the invention, the cathodic solution of 1.5M H2SO4+0.8M Zinc in mixture and the anodic solution of H2SO4+H2SO3 gas+ a small amount of Iodine ion are partitioned by a diaphragm in between the solutions with employment of a graphite anode and an aluminum cathode. Applying the current of a density 50mA/cm2, electrolysis is carried out at about 2.0V to lower about 1.5V from that of the conventional method.

Description

에너지 절약형 아연전해방법Energy saving zinc electrolytic method

제 1도(a)는 본 발명의 아연전해조 중 격막이 하나인 음·양극 전해조의 단면도FIG. 1 (a) is a cross-sectional view of a negative electrode and a positive electrode having one diaphragm in the zinc electrolytic cell of the present invention.

제(b)는 본 발명의 아연전해조 중 격막이 둘인 음·양극 전해조의 단면도(B) is a cross-sectional view of a negative electrode and a positive electrode having two diaphragms in the zinc electrolytic cell of the present invention.

제 2도는 본 발명의 아연전해 공정도2 is a zinc electrolytic process diagram of the present invention

본 발명은 아연전해 채취 용액에 아황산기체와 아황상기체 산화반응에 촉매 역할을 하는 요오드 이온을 소량 첨가하여 낮은 전압하에서 전해가 이루어지게 함으로써 에너지를 절약하는 아연저해 방법에 관한 것이다.The present invention relates to a zinc inhibition method that saves energy by adding a small amount of iodine ions, which act as a catalyst in the oxidation reaction of sulfurous acid and sulfur sulfide, to a zinc electrolytic extraction solution to perform electrolysis at a low voltage.

공지된 아연제조법에는 건식법과 습식법의 두 종류가 있는데 이중 습식법은 황산아연욕의 전해 채취 방법으로 우리나라를 비롯하여 대부분의 나라가 이 방법을 채택하고 있다. 공지된 황산 아연옥 전해(Batt-elle, ANL/OEPM-79-3, 94(1979)에서는 양극과 음극에서 각각 상이한 전기화학적 반응이 일어나는데, 반응식과 평형 상태에서의 전극 전위는 다음과 같다.There are two types of known zinc manufacturing methods, dry method and wet method. The double wet method is an electrolytic extraction method of zinc sulfate bath and most countries including Korea have adopted this method. In the known zinc sulphate electrolysis (Batt-elle, ANL / OEPM-79-3, 94 (1979)), different electrochemical reactions occur at the anode and the cathode, respectively, and the electrode potentials at the equilibrium state are as follows.

음극 : Zn+2+2e→Zn E0=-0.76V (1)Cathode: Zn +2 + 2e → Zn E 0 = -0.76V (1)

양극 : 2H2O→O2+4H++4e E0=1.23V (2)Anode: 2H 2 O → O 2 + 4H + + 4e E 0 = 1.23V (2)

따라서 평형 상태에서의 전해 방법은 0.76V + 1.23V = 1.99V에 불과하지만 실제는 산소 과전압 때문에 전류밀도 50㎃/㎠ 하에서 3.5V로 작업되고 있다. 이론적인 에너지 소비량은 전해전압 1.99V인 경우, 1,630Kwh/t인데 실제 전해전압 3.5V에서는 2,870Kwh/t이 되며, 여기에 전류 효율에 의한 손실, 교류를 직류로 전환하는데 소요되는 손실, 정류기와 전해조 사이의 도선 저항에 의한 손실등을 가산하면 아연 1톤 전해에 약 3,500Kwh/t의 에너지가 소요된다. 전해 전압이 이론치보다 훨씬 높은 것은 음극반응 과전압은 0.06V로 무시할 정도인데 비하여 양극반응 과전압은 0.84V로 상당히 높기 때문이다. 이처럼 공지된 아연전해법에서의 가장 큰 취약점은 양극반응에서의 막대한 에너지 소모에 있는데, 전해 제조시에 양극에서 발생하는 막대한 량의 산소는 용도가 없으며 오히려 용액을 증발시키고 전극의 부식을 조장하는 부작용을 하고 있다.Therefore, the electrolytic method in the equilibrium state is only 0.76V + 1.23V = 1.99V, but is actually being operated at 3.5V under current density of 50 mA / cm 2 due to oxygen overvoltage. The theoretical energy consumption is 1630Kwh / t at the electrolytic voltage of 1.99V, but at 2,870Kwh / t at the actual electrolytic voltage of 3.5V, including loss due to current efficiency, loss of switching AC to DC, rectifier and Adding losses due to lead resistance between the electrolyzers requires about 3,500 Kwh / t of energy for one ton of zinc. The electrolytic voltage is much higher than the theoretical value because the cathodic reaction overvoltage is negligible at 0.06V, whereas the cathodic reaction overvoltage is quite high at 0.84V. The biggest drawback of this known zinc electrolysis method is the enormous energy consumption in the anode reaction. The enormous amount of oxygen generated at the anode during electrolytic production is of no use, but rather a side effect of evaporating the solution and promoting corrosion of the electrode. Doing

이러한 양극 과전합은 소극성 매체로 알려져 있는 아황산 기체를 산화시킴으로써 줄일 수 있는데, 산성용액에서 아황산 기체의 산화반응과 아연 전해 반응을 보면 다음과 같다(A.J. Applebyand B. Pichon, J. Electroanal. Chem., 95,59 (1979)).Anodic overelectrolysis can be reduced by oxidizing sulfite gas, known as a non-polar medium. The oxidation and zinc electrolytic reactions of sulfite gas in acidic solutions are as follows (AJ Applebyand B. Pichon, J. Electroanal. Chem., 95, 59 (1979)).

양극 : SO2+2H2O→HSO4 -+3H++2e E0=0.12V (3) Anode: SO 2 + 2H 2 O → HSO 4 - + 3H + + 2e E 0 = 0.12V (3)

음극 : Zn+2+2e→Zn E0=-0.76V (1)Cathode: Zn +2 + 2e → Zn E 0 = -0.76V (1)

따라서 아황산 기체 용액에서의 아연전해 전압은 0.76V+0.12V=0.88V에 불과해 황산 아연욕에서의 전해 전압보다 1.1V정도 낮으며 산소 과전압도 나타나지 않는다.Therefore, the zinc electrolytic voltage in the sulfurous acid gas solution is only 0.76V + 0.12V = 0.88V, which is about 1.1V lower than the electrolytic voltage in the zinc sulfate bath and no oxygen overvoltage occurs.

본 발명은 단순히 아황산 기체 용액을 산화시키는 대신에 아황산 기체의 산화에 촉매 역할을 하는 요오드이온(요오드칼륨 혹은 요오드)을 소량 첨가하여 보다 비한(-) 전위에서 아황산 기체의 산화가 이루어지게 하는 방법이다. 즉, 본 발명에서는 양극실용액을 1.5M황산+아황산기체+요오드이온·음극실 용액을 1.5M황산+0.8M아연으로 하여 다공선 흑연 양극과 알루미늄 음극을 사용하여 전류밀도 50㎃/㎠에서 전해를 실시하면 전해전압은 2.0V 정도로써 공지 방법의 현장 조업 전압과 비교하여 약 1.5V의전압강하를 기할 수 있었다.In the present invention, instead of simply oxidizing a sulfurous acid gas solution, a small amount of iodine ion (potassium iodine or iodine), which acts as a catalyst for the oxidation of sulfurous acid gas, is added to allow oxidation of sulfite gas at a more negative (-) potential. . That is, in the present invention, the solution of the positive electrode chamber is 1.5 M sulfuric acid + sulfite gas + iodine ion and cathode chamber solution is 1.5 M sulfuric acid + 0.8 M zinc electrolytic at a current density of 50 mA / cm 2 using a porous graphite anode and an aluminum cathode The electrolytic voltage was about 2.0V, and the voltage drop of about 1.5V was obtained compared to the field operating voltage of the known method.

양극용액에 촉매(I-)를 주입시키지 않고 전해를 실시하면 전해 전압은 2.5V정도로써 공지 방법의 현장조업 전압과 비교하여 약 1.0V의 전압 강하를 기할 수 있었다.When electrolysis was carried out without injecting the catalyst (I ) into the positive electrode solution, the electrolytic voltage was about 2.5V, which resulted in a voltage drop of about 1.0V compared to the field operating voltage of the known method.

따라서 소량의 촉매를 첨가함으로써 단순히 아황산기체 용액을 사용하는 것보다 약 0.5V의 전압 강하를 기할 수 있었다. 이는 촉매 용액에서 아황산 기체의 산화반응은 비한(-) 전위에서 반응식(4), (5)에 의하여 생성된 삼요오드이온(I3 -)과 요오드(I2)가 아황산 기체의 산화에 촉매 역할을 하기 때문이다((G.S.Calabrese and M.S. Wrighton, J.A.C.S., 103(21), 6273(1981)).Therefore, the addition of a small amount of the catalyst was able to achieve a voltage drop of about 0.5V than simply using a sulfurous acid gas solution. This oxidation reaction of sulfurous acid gas in the catalyst solution is ruthless (-) from the potential of reaction (4), the three iodine ions produced by (5) (I 3 -) and iodine (I 2) a catalyst for the oxidation of sulfur dioxide gas (GSCalabrese and MS Wrighton, JACS, 103 (21), 6273 (1981)).

3I-→I3 -+2e E0=0.536V (4) 3I - → I 3 - + 2e E 0 = 0.536V (4)

2I-→I2+2e E0=0.621V (5) 2I - → I 2 + 2e E 0 = 0.621V (5)

SO2+2H2O+I3 -→H2SO4+2H++3I-(6) SO 2 + 2H 2 O + I 3 - → H 2 SO 4 + 2H + + 3I - (6)

SO2+2H2O+I2→H2SO4+2H++2I-(7) SO 2 + 2H 2 O + I 2 → H 2 SO 4 + 2H + + 2I - (7)

아황산 기체의 산화 반응에 있어서 촉매효과가 나타나기 시작하는 요오드이온 농도는 0.001M이었으며, 농도는 증가시킴에 따라 촉매효과, 즉, 다시말하여 전압 강화효과가 증가하였는데 0.1M 이상의 농도에서는 그효과가 0.1M에서와 거의 비슷하였다. 본 용액의 양극산화 반응에 있어서 황산 농도가 0.5M이하인 경우는 용액의 전도도가 낮아지게 되어 전해 전압이 상승하였으며, 5M 이상인 경우는 S O2용해도가 저하되어 한계전류 밀도가 저하됨으로써 전해 전압이 상승하였다. 또한, 아황산 기 체농도는 0.1M 이상인 경우 전압 강하 효과가 나타났으며, 농도가 증가함에 따라 전압 강하 효과가 증가하였으나 2.0M 이상에서는 그 효과가 2.0M에서와 거의 비슷하였다. 전해는 일반적으로 상온에서 실시하는데, 전해 온도를 변화시켜 전해한 결과 온도가 증가함에 따라 전압 강하효과가 증가하므로 20℃ 이상이어야 하나 40℃ 이상에서는 전압강하 효과가 40℃에서와 거의 비슷하였다.The concentration of iodine ion at the oxidation reaction of sulfurous acid gas was 0.001M, and as the concentration was increased, the catalytic effect, that is, the voltage strengthening effect, was increased. Almost the same as in M. In the anodic oxidation of this solution, the sulfuric acid concentration was 0.5 M or less, the conductivity of the solution was lowered, and the electrolytic voltage was increased. When the sulfuric acid concentration was 5 M or more, the SO 2 solubility was decreased and the limit current density was lowered. . In addition, the sulfurous acid gas concentration showed a voltage drop effect when the concentration was above 0.1M, and the voltage drop effect increased as the concentration was increased, but the effect was almost the same as that at 2.0M. Electrolysis is generally carried out at room temperature. As the result of electrolysis by changing the electrolysis temperature, the voltage drop effect increases as the temperature increases, but the voltage drop effect is almost similar to that at 40 ° C. above 40 ° C.

따라서 아황산 기체의 산화 반응에 있어서, 적절한 작업 조건은 요오드이온 농도 0.001M-0.1M, 황산 농도 0.5M-2.0M, 아황산 기체농도 0.1M-2.0M, 온도 20℃-40℃이다. 촉매를 요오드칼륨 대신 요오드이온의 단위 무게에 대하여 가격이 저렴한 요오드를 사용하면 요오드가 아황산 기체를 산화시키고 요오드이온으로 환원되어 SO2, I-상태로 존재하게 되므로 요오드칼륨을 사용하는 방법과 동일한 효과을 얻을 수 있으며 촉매 비용도 줄일 수 있다.Therefore, in the oxidation reaction of sulfite gas, suitable working conditions are iodine ion concentration of 0.001M-0.1M, sulfuric acid concentration of 0.5M-2.0M, sulfurous acid gas concentration of 0.1M-2.0M, and temperature of 20 ° C-40 ° C. Using inexpensive iodine with respect to the catalyst per unit weight of the iodide instead of potassium iodide are iodine and the oxidation of sulfur dioxide gas reduced to iodide ion SO 2, I - because it exists in a state the same hyogwaeul and using the potassium iodide Can be obtained and the catalyst cost can be reduced.

본 발명에서의 전해 전압은 2.0V로써 에너지 소비량은 1,640Kwh/t이되며, 전류 효율에 의한 손실, 교류를 직류로 전환하는데 소요되는 손실, 정류기와 전해조 사이의 도선 저항에 의한 손실등을 가산하면 아연 1 톤 전해에 약 2.000Kwh의 에너지가 소요된다. 이 에너지 소비량은 공지방법에서 소요되는 에너지 소비랑의 57% 정도로써 아연 1 톤 전해에 1,500Kwh의 에너지를 절감할 수 있다.In the present invention, the electrolytic voltage is 2.0V and the energy consumption is 1,640 Kwh / t, and if the loss due to current efficiency, loss for converting AC into direct current, loss due to lead resistance between the rectifier and the electrolytic cell are added. It takes about 2.000 Kwh of energy to deliver 1 ton of zinc. This energy consumption is about 57% of the energy consumption in the known method, and it can save 1,500Kwh of energy in 1 ton zinc.

본 발명에 의하면, 양극실에서는 아황산 기체가 산화되어 황산이 제조되므로 황산 농도가 증가하는 데, 이 양극실 용액을 석회석 혹은 소석회와 반응시켜 석고를 생성한 후 이를 여과하여 석고를 분리하고 요오드이온이 용해되어 입는 여과액을 회수하여 양극실 용액으로 재 사용할 수 있어 석고를 제조할 뿐만 아니라, 요오드이온의 소모없이 연속적인 공정을 기할 수 있다(M.Grayson and D. Eckroth, Kirk-Othmer encyclopedia of chemical technology, 4,443(1978)).According to the present invention, sulfuric acid is produced by oxidation of sulfurous acid gas in the anode chamber to increase sulfuric acid concentration. The anode chamber solution is reacted with limestone or slaked lime to produce gypsum, which is then filtered to separate gypsum and iodine ion. The dissolved filtrate can be recovered and reused as an anode chamber solution, making not only gypsum, but also a continuous process without the consumption of iodine ions (M. Grayson and D. Eckroth, Kirk-Othmer encyclopedia of chemical). technology, 4,443 (1978).

H2SO4+CaCO3or Ca(OH)2→CaSO4, 2H2O (8)H 2 SO 4 + CaCO 3 or Ca (OH) 2 → CaSO 4 , 2H 2 O (8)

또한, 양극실 용액중의 아황산 기체는 소석회와 반응하여 석고를 생성하므로 제조된 황산속의 아황산기체는 문제시 되지 않는다.In addition, since the sulfurous acid gas in the anode chamber solution reacts with hydrated lime to produce gypsum, sulfuric acid gas in the sulfuric acid produced is not a problem.

SO2+Ca(OH)2→CaSO3,

Figure kpo00002
H2O (9)SO 2 + Ca (OH) 2 → CaSO 3 ,
Figure kpo00002
H 2 O (9)

2CaSO3,

Figure kpo00003
H2O+O2+3H2O→ 2CaSO4, 2H2O (10)2CaSO 3 ,
Figure kpo00003
H 2 O + O 2 + 3H 2 O → 2CaSO 4 , 2H 2 O (10)

음극실 용액에 소량의 요오드이온을 첨가하여 전해를 실시한 후, 전해 석출된 아연의 표면을 관찰하여 보면, 무첨가시 전해 아연에 나타나는 구멍들이 없었으며, 전류 효율도 무첨가시 보다 증가하였다.After the electrolysis was carried out by adding a small amount of iodine ion to the cathode chamber solution, observing the surface of the electrolytically deposited zinc, there were no pores appearing in the electrolytic zinc when no addition, and the current efficiency also increased more than no addition.

본 발명에서 전류 밀도를 공지 방법의 조업 전류 밀도의 2배인 100㎃/㎠로 높여 작업하면 전압이 2.2V 정도인데, 공지 황산 아연욕 전해 공정에서는 조업 전류 밀도를 100㎃/㎠로 높이면 전압이 3.8V로 크게 상승할뿐 아니라, 전압이 높기 때문에 Pb-Ag양극이 용해하여 음극에 Pb가 전착하게 되므로 제품의 순도를 불량하게 만든다. 또한, 양극 전위가 더욱 귀(+)하게 되므로 양극에 MnO2가 더욱 많이 전착되어 전극의 전기 전도도를 저하시키고 전압 상승의 요인이 된다. 이에 반하여 본 발명은 전류 밀도 증가에 따른 양극 과전압이 작고 양극 전위가 비(-)하기 때문에 흑연 양극의 용해와 MnO2의 전착이 이루어지지 않는다. 이처럼 본 발명 방법으로 조업 전류 밀도를 2배로 증가시키면 생산성이 2배로 향상되어 공지 전해 방법과 비교할 때 장치 설비 및 기타 경비를 반으로 절감시킬 수 있다.In the present invention, when the current density is increased to 100 mA / cm 2, which is twice the operating current density of the known method, the voltage is about 2.2 V. In the known zinc sulfate bath electrolytic process, when the operation current density is increased to 100 mA / cm 2, the voltage is 3.8. Not only does it rise significantly to V, but because of the high voltage, the Pb-Ag anode melts and Pb is electrodeposited on the cathode, which makes the product poor. In addition, since the anode potential becomes more positive (+), more MnO 2 is electrodeposited on the anode, thereby lowering the electrical conductivity of the electrode and causing a voltage increase. On the contrary, in the present invention, since the anode overvoltage is small due to the increase of the current density and the anode potential is negative, the melting of the graphite anode and electrodeposition of MnO 2 are not performed. As such, by doubling the operating current density by the method of the present invention, the productivity is doubled, which can reduce the equipment installation and other expenses in half when compared to the known electrolytic method.

상기한 바와 같이 본 발명은 공지 전해 방법과 비교할 때 아연 전해에 소요되는 에너지를 대폭 감소시킬 뿐만 아니라, 양극에서 제조되는 황산으로 석고를 생성시키고 조업 전류 밀도를 2배로 증가시킴으로써 생산성을 2배로 향상시킬 수 있는 장점을 가지고 있다.As described above, the present invention not only significantly reduces the energy required for zinc electrolysis compared to the known electrolytic method, but also doubles the productivity by producing gypsum with sulfuric acid produced at the anode and doubling the operating current density. It has advantages.

[실시예 1]Example 1

양극실 용액을 1.5M황산+1M아황산 기체+0.01M 요오드 이온, 음극실 용액을 1.5M황산+0.8M아연으로 하여 25℃에서 다공성 흑연 양극과 알루미늄 음극 사이의 극간 거리를 5㎝로 고정시키고, 제 1도(a)의 전해조에서 전류 밀도 50㎃/㎠로 20시간 동안 전해를 실시하였다. 이때 양극실 용액과 음극실 용액은 아황산 기체와 아연의 농도 저하를 방지하기 위하여 계속 순환시켰으며, 격막은 축전지 격막을 사용하였다. 석출된 전해 아연의 전류 효욜은 89%였고, 전해시의 전해 전압은 2.0V로 나타났다.Anode chamber solution is 1.5M sulfuric acid + 1M sulfurous acid gas + 0.01M iodine ion, the cathode chamber solution is 1.5M sulfuric acid + 0.8M zinc at 25 ℃ fixed the distance between the porous graphite anode and aluminum cathode at 5cm, In the electrolytic cell of FIG. 1 (a), electrolysis was performed at a current density of 50 mA / cm 2 for 20 hours. At this time, the anode chamber solution and the cathode chamber solution were continuously circulated in order to prevent the concentration of sulfurous acid gas and zinc from being lowered, and the separator was a battery separator. The current effect of the deposited electrolytic zinc was 89%, and the electrolytic voltage at the time of electrolysis was 2.0V.

[실시예 2]Example 2

양극실 용액을 1.5M황산+1M아황산 기체+0.01M 요오드 이온, 음극실 용액을 1.5M황산+0.8M아연으로 하여 실시예 1의 전해 조건과 전해 방법으로 전해를 실시하였다. 석출된 전해 아연의 전류 효율은 89%였고, 전해시 전해 전압은 1.9V로 나타났다.Electrolysis was carried out using the electrolytic conditions and the electrolytic method of Example 1, with the anode chamber solution being 1.5 M sulfuric acid + 1 M sulfurous acid gas + 0.01 M iodine ion and the cathode chamber solution being 1.5 M sulfuric acid + 0.8 M zinc. The current efficiency of the deposited electrolytic zinc was 89%, and the electrolytic voltage was 1.9V during electrolysis.

[실시예 3]Example 3

양극실 용액을 1.5M황산+1M아황산 기체+0.01M 요오드이온, 음극실 용액을 1.5M황산+0.08M아연+0.01M요오드이온으로 하여 실시예 1의 전해 조건과 전해 방법으로 전해를 실시하였다. 석출된 전해아연의 전류 효율은 91%이었으며, 음극실 용액에 요오드이온을 첨가할 경우, 전해 아연에 나타나는 구멍들이 나타나지 않았다. 이때도 전해 전압은 2.0V로 나타났다.Electrolyte was carried out by the electrolytic conditions and the electrolytic method of Example 1, using the positive electrode chamber solution as 1.5 M sulfuric acid + 1 M sulfite gas + 0.01 M iodine ion and the negative electrode chamber solution as 1.5 M sulfuric acid + 0.08 M zinc + 0.01 M iodide. The current efficiency of the deposited electrolytic zinc was 91%, and when iodine ion was added to the cathode chamber solution, no holes appeared in the electrolytic zinc. At this time, the electrolytic voltage was 2.0V.

[실시예 4]Example 4

양극실 용액을 1.5M황산+1M아황산 기체+0.01M 요오드 이온, 음극실 용액을 1.5M황산+0.8M아연, 30℃에서 중간실 용액을 5M황산으로 하여 다공성 흑연 양극과 알루미늄 음극 사이의 극간 거리를 6㎝로 고정시키고, 제 1도(a)의 전해조에서 전류밀도 50㎃/㎠로 20시간 동안 저해를 실시하였다.Interpolar distance between porous graphite anode and aluminum cathode with 1.5M sulfuric acid + 1M sulfite gas + 0.01M iodine ion, cathode chamber solution 1.5M sulfuric acid + 0.8M zinc, intermediate chamber solution 5M sulfuric acid at 30 ℃ Was fixed at 6 cm and inhibited for 20 hours at a current density of 50 mA / cm 2 in the electrolytic cell of FIG.

이때 양극실 용액과 음극실 용액을 아황산 기체와 아연의 농도 저하를 방지하기 위하여 계속 순환시켰으며, 격막은 축전지 격막을 사용하였다.At this time, the anode chamber solution and the cathode chamber solution were continuously circulated in order to prevent the concentration of sulfurous acid gas and zinc from being lowered, and the separator was a battery separator.

석출된 전해 아연의 전류 효율을 90%였으며, 전해시의 전해 전압은 2.1V로 나타났다.The current efficiency of the deposited electrolytic zinc was 90%, and the electrolytic voltage at the time of electrolysis was 2.1V.

Claims (3)

황산과 아연 용액을 혼합하여 음극실 용액으로 하고 황산에 아황산가스와 소량의 요오드이온 또는 요오드를 첨가하여 양극실 용액으로 하여 격막으로 양용액을 분리 전해하는 에너지 절약형 아연 전해 방법.An energy-saving zinc electrolysis method in which sulfuric acid and a zinc solution are mixed to form a cathode chamber solution, and sulfuric acid gas and a small amount of iodine ion or iodine are added to sulfuric acid to form a cathode chamber solution to separate and electrolyze a good solution through a diaphragm. 제 1항에 있어서,The method of claim 1, 작업 조건을 요오드이온 농도 0.001M-0.1M, 황산농도 0.5M-2.0M, 아황산가스 농도 0.1M-2.0M, 온도 20-40℃로 하는 방법.Method of making working conditions into iodine ion concentration 0.001M-0.1M, sulfuric acid concentration 0.5M-2.0M, sulfurous acid concentration 0.1M-2.0M, temperature 20-40 degreeC. 제 1항에 있어서,The method of claim 1, 양극실에서 생성되는 황산을 석회석 또는 소석회와 반응시켜 석고를 제조하고, 이를 여과 분리하여 양극실 용액으로의 요오드이온을 회수하여 재사용하는 방법.A method of producing gypsum by reacting sulfuric acid produced in the anode chamber with limestone or slaked lime, and filtering and separating the iodine ion into the anode chamber solution.
KR1019840005302A 1984-08-30 1984-08-30 Zinc electrolysis method of saving energy KR870002075B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019840005302A KR870002075B1 (en) 1984-08-30 1984-08-30 Zinc electrolysis method of saving energy
JP59272153A JPS6160894A (en) 1984-08-30 1984-12-25 Energy saving type zinc electrolysis
CA000478871A CA1289509C (en) 1984-08-30 1985-04-11 Energy-saving type zinc electrolysis method
AU42264/85A AU561640B2 (en) 1984-08-30 1985-05-10 Electrolytic manufacture of zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019840005302A KR870002075B1 (en) 1984-08-30 1984-08-30 Zinc electrolysis method of saving energy

Publications (2)

Publication Number Publication Date
KR860001903A KR860001903A (en) 1986-03-24
KR870002075B1 true KR870002075B1 (en) 1987-12-03

Family

ID=19235244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019840005302A KR870002075B1 (en) 1984-08-30 1984-08-30 Zinc electrolysis method of saving energy

Country Status (4)

Country Link
JP (1) JPS6160894A (en)
KR (1) KR870002075B1 (en)
AU (1) AU561640B2 (en)
CA (1) CA1289509C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357521A (en) * 1989-07-24 1991-03-12 Yoshitsuka Seiki:Kk Linear feeder of press apparatus
JPH04238634A (en) * 1990-12-28 1992-08-26 Kanai Hiroyuki Positioning and transporting device for wheel disk for automobile
KR100397296B1 (en) * 1998-12-21 2004-02-11 주식회사 포스코 Manufacturing method of electro galvanized steel sheet with excellent surface appearance
CN104911630A (en) * 2015-05-11 2015-09-16 北京工业大学 Low bath voltage zinc electrolysis method

Also Published As

Publication number Publication date
AU561640B2 (en) 1987-05-14
KR860001903A (en) 1986-03-24
AU4226485A (en) 1986-04-10
JPS6160894A (en) 1986-03-28
CA1289509C (en) 1991-09-24
JPS6256238B2 (en) 1987-11-25

Similar Documents

Publication Publication Date Title
CN110616438A (en) Device and method for electrochemically preparing high-purity battery-grade lithium hydroxide
US3959021A (en) Novel manganese dioxide
KR870002075B1 (en) Zinc electrolysis method of saving energy
DE2251262C2 (en) Process for the continuous production of aluminum by the electrolysis of aluminum chloride
CN106048654A (en) Technology for preparing lead through ammonia electroreduction in ammonium chloride
US4431496A (en) Depolarized electrowinning of zinc
CN105696017B (en) A kind of new technique method of iron reduction nitrobenzene
EP3805429A1 (en) Method and electrolysis device for producing chlorine, carbon monoxide and hydrogen if applicable
KR20220068566A (en) Hydrogen generation apparatus using aqueous ammonia
AU2004217809B2 (en) Method for copper electrowinning in hydrochloric solution
SU1691424A1 (en) Method for obtaining vanadium oxide(v)
KR890002060B1 (en) Electrolytic process for manufacturing potassium peroxydephosphate
SU1059023A1 (en) Process for producing concentrated nitric acid
DE19624024A1 (en) Electrolytic production of halogens or halogen-oxygen or peroxy compounds
GB781287A (en) Process for electrolysis
SU380106A1 (en)
JPH0665754B2 (en) Method for producing electrolytic manganese dioxide
SU744054A1 (en) Method of preparing cuprous bromide
KR100198193B1 (en) Manufacturing method of methanesulfonic acid
CN115747832A (en) Method for one-step purification and manganese removal and co-production of low-iron zinc from manganese-containing zinc sulfate solution in zinc hydrometallurgy
SU558970A1 (en) Method for electrochemical reduction of hexavalent chromium compounds
GEP20227436B (en) Method for electrochemical enrichment of low quality raw manganese
SU1407996A1 (en) Method of producing chlorine and sodium hydroxide solution
RU1840844C (en) Method of producing alkaline, alkaline earth metals and their alloys
RU2366762C1 (en) Method of sodium hydroxide preparation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19920924

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee